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S1 Derivation of Eq. (4) used for polarization control

S1.1 Derivation for target state 40

In the simulation model of the echo chamber phenomenon [7], the agent’s opinion dynamics are represented by
the following differential equation.

T; = —x; + KZ Aij(t) tanh(aa:j) (Sl)

j=1

For this differential equation, a difference approximation using the Fuler method yields:
N
zi(t+dt) = z;(t) + dt | —zi(t) + K Z A;;(t) tanh[ox; (t)] (S5.2)
j=1

where dt is the appropriate time step width.

From the perspective of suppressing opinion polarization, the objective is to maintain the absolute value of
each agent’s opinion x in a small state while keeping its sign. When a7 > 0, x7 is targeted to +0. When z} <0,
xf is targeted to —0. Considering adversarial attacks that bring x;(t +dt) closer to the target state, polarization
mitigation is applied by minimizing the energy F, defined as the correlation coeflicient between the observed
opinion state and the target opinion state.

N
1 *
E= N g i (t + dt) (S.3)

=1

Here we consider minimizing E by varying the weights of the links in the network. Specifically, we employ gradi-
ent descent to introduce perturbations into the adjacency matrix at each time step. Assuming that the weights
of self-loops and links that do not exist in the original network are ignored, we consider adding perturbations
to the weights of links for node pairs (i, j) with i # j and A;; # 0 at time step ¢ as follows.

oF

Azj(t) = Aij — €

Here, € is a small positive value. Focusing on a specific node pair (i, j), from Eqgs. (S.2) and (S.3), the gradient
OFE/0A;; in Eq. (S.4) can be expressed as follows.

OE oy {xy(t +dt)}
oA, TN o, = thKtanh[ax](t)] (S.5)




In this case, the final equation for adding perturbations to the network is as follows:
AS() = Ag(t) — e%‘dtK tanh[o; (1)) (S6)

Also, in Eq. (S.5), since dt >0, N >0, K > 0and « > 0, the optimal maximum value norm of the
gradient is given by sign[0E/0A;;(t)] = sign[z}xz;(t)]. When using this, Eq. (S.6) is transformed as follows.

A?f”(t) = A;;(t) — e x signfz;x;(t)] (S.7)

which corresponds to Eq. (4).



Figure S1: Opinion dynamics for varying values of € within the range e € [0.001,0.01]. Each plot shows how
the opinions z(t) of agents evolve over time for a given value of €. As € increases, it weakens the connections
between agents with similar opinions and strengthens the connections between those with opposing opinions,
driving (Jz|) closer to 0. However, for small values of € (e.g., ¢ = 0.003,0.004), some agents overshoot, switching
from positive to negative opinions (or vice versa), destabilizing the system and temporarily increasing (|z|).



