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S1 Derivation of Eq. (4) used for polarization control

S1.1 Derivation for target state ±0

In the simulation model of the echo chamber phenomenon [7], the agent’s opinion dynamics are represented by
the following differential equation.

ẋi = −xi +K

N∑
j=1

Aij(t) tanh(αxj) (S.1)

For this differential equation, a difference approximation using the Euler method yields:

xi(t+ dt) = xi(t) + dt

−xi(t) +K

N∑
j=1

Aij(t) tanh[αxj(t)]

 (S.2)

where dt is the appropriate time step width.
From the perspective of suppressing opinion polarization, the objective is to maintain the absolute value of

each agent’s opinion x in a small state while keeping its sign. When x∗
i ≥ 0, x∗

i is targeted to +0. When x∗
i ≤ 0,

x∗
i is targeted to −0. Considering adversarial attacks that bring xi(t+dt) closer to the target state, polarization

mitigation is applied by minimizing the energy E, defined as the correlation coefficient between the observed
opinion state and the target opinion state.

E =
1

N

N∑
i=1

x∗
i xi(t+ dt) (S.3)

Here we consider minimizing E by varying the weights of the links in the network. Specifically, we employ gradi-
ent descent to introduce perturbations into the adjacency matrix at each time step. Assuming that the weights
of self-loops and links that do not exist in the original network are ignored, we consider adding perturbations
to the weights of links for node pairs (i, j) with i ̸= j and Aij ̸= 0 at time step t as follows.

A∗
ij(t) = Aij − ϵ

∂E

∂Aij
(S.4)

Here, ϵ is a small positive value. Focusing on a specific node pair (i, j), from Eqs. (S.2) and (S.3), the gradient
∂E/∂Aij in Eq. (S.4) can be expressed as follows.

∂E

∂Aij
=

x∗
i

N

∂{xi(t+ dt)}
∂Aij

=
x∗
i

N
dtK tanh[αxj(t)] (S.5)
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In this case, the final equation for adding perturbations to the network is as follows:

Aadv
ij (t) = Aij(t)− ϵ

x∗
i

N
dtK tanh[αxj(t)] (S.6)

Also, in Eq. (S.5), since dt > 0, N > 0, K > 0 and α > 0, the optimal maximum value norm of the
gradient is given by sign[∂E/∂Aij(t)] = sign[x∗

i xj(t)]. When using this, Eq. (S.6) is transformed as follows.

Aadv
ij (t) = Aij(t)− ϵ× sign[x∗

i xj(t)] (S.7)

which corresponds to Eq. (4).
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ε=0.001 ε=0.002 ε=0.003 ε=0.004 ε=0.005

ε=0.006 ε=0.007 ε=0.008 ε=0.009 ε=0.010

Figure S1: Opinion dynamics for varying values of ϵ within the range ϵ ∈ [0.001, 0.01]. Each plot shows how
the opinions x(t) of agents evolve over time for a given value of ϵ. As ϵ increases, it weakens the connections
between agents with similar opinions and strengthens the connections between those with opposing opinions,
driving ⟨|x|⟩ closer to 0. However, for small values of ϵ (e.g., ϵ = 0.003, 0.004), some agents overshoot, switching
from positive to negative opinions (or vice versa), destabilizing the system and temporarily increasing ⟨|x|⟩.
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