

1

SUPPLEMENTARY INFORMATION FOR

2

Evolution of species complementarity in response to drought in a grassland biodiversity experiment

4

Authors: Yuxin Chen, Anja Vogel, Cameron Wagg, Tianyang Xu, Maitane Iturrate
5 Garcia, Michael Scherer-Lorenzen, Alexandra Weigelt, Nico Eisenhauer, Bernhard
6 Schmid

7

***Correspondence:** yuxin.chen@xmu.edu.cn and bernhard.schmid@uzh.ch

8

9 **Supplementary Table 1 | Species information and number of replicates of species composition (identity of species pair) before the**
10 **drought event in the glasshouse.** Numbers in brackets indicate the numbers of replicates for ambient- vs. drought-selected plants, respectively.
11 Data in the diagonal are for monocultures (in blue, planted in blocks 1–4); data in the lower diagonal are for 2-speices mixtures (in red, planted
12 in blocks 1–4). The last two rows are for individuals from pots with one individual planted in blocks 1–4 and 5 (in orange), respectively. Upper-
13 case letters indicate functional groups (G=grass, S=short herb, T=tall herb, L=legume).

14

Species full name	Short name	AP1 (G)	AP2 (G)	BP (S)	CB (T)	LC (L)	PL (S)	PM (S)	PT (G)	PV (S)	RA (T)	TO (S)	TD (L)
<i>Alopecurus pratensis</i>	AP1	(11, 11)	--	--	--	--	--	--	--	--	--	--	--
<i>Avenula pubescens</i>	AP2	(8, 7)	(9, 9)	--	--	--	--	--	--	--	--	--	--
<i>Bellis perennis</i>	BP	(10, 10)	--	(14, 14)	--	--	--	--	--	--	--	--	--
<i>Crepis biennis</i>	CB	(1, 1)	--	--	(2, 2)	--	--	--	--	--	--	--	--
<i>Lotus corniculatus</i>	LC	--	--	--	--	(1, 1)	--	--	--	--	--	--	--
<i>Plantago lanceolata</i>	PL	(8, 8)	--	--	(1, 1)	--	(8, 7)	--	--	--	--	--	--
<i>Plantago media</i>	PM	--	--	--	(1, 1)	--	--	(16, 16)	--	--	--	--	--
<i>Poa trivialis</i>	PT	(11, 10)	(7, 7)	--	--	--	--	(16, 15)	(15, 15)	--	--	--	--
<i>Prunella vulgaris</i>	PV	--	(4, 4)	(8, 8)	--	--	(7, 7)	--	--	(8, 8)	--	--	--
<i>Rumex acetosa</i>	RA	--	(5, 6)	(12, 12)	--	(1, 1)	--	--	--	(8, 8)	(14, 14)	--	--
<i>Taraxacum officinale</i>	TO	--	--	--	--	--	(4, 4)	(3, 3)	(4, 4)	--	--	(4, 4)	--
<i>Trifolium dubium</i>	TD	--	--	--	--	--	(5, 5)	--	(6, 5)	--	--	--	(7, 7)
Individual (blocks 1–4)		(11, 11)	(9, 9)	(14, 14)	(2, 2)	(2, 3)	(7, 8)	(16, 16)	(15, 15)	(8, 8)	(14, 14)	(6, 5)	(5, 5)
Individual (block 5)		(22, 16)	(12, 13)	(13, 15)	(5, 4)	(2, 2)	(11, 11)	(14, 13)	(17, 15)	(4, 4)	(8, 11)	(3,3)	(12, 11)

15

16 **Supplementary Table 2 | Significance tests against zero for net biodiversity effect**
 17 **(NE), complementarity effect (CE) and sampling effect (SE) before, during and**
 18 **after the drought event in the glasshouse for the two selection treatments.** Block
 19 and species composition were set as fixed- and random-effects terms, respectively.

20

	Ambient-selected plants				Drought-selected plants			
	df	ddf	F	P	df	ddf	F	P
Before drought								
NE (127, 128)	1	17.3	4.540	0.048 (+)	1	16.6	4.798	0.043 (+)
CE (126, 128)	1	13.8	1.675	0.217 (+)	1	14.4	1.653	0.219 (+)
SE (126, 128)	1	18.7	3.201	0.090 (+)	1	17.4	9.429	0.007 (+)
During drought								
NE (126, 128)	1	17.4	0.149	0.705 (-)	1	18.6	2.309	0.145 (-)
CE (124, 124)	1	20.0	0.070	0.788 (-)	1	16.9	5.985	0.026 (-)
SE (124, 124)	1	19.6	0.051	0.824 (-)	1	18.4	0.013	0.910 (-)
After drought								
NE (109, 110)	1	13.4	0.022	0.882 (-)	1	16.2	10.330	0.005 (+)
CE (97, 91)	1	9.9	<0.001	0.993 (-)	1	13.4	21.480	<0.001 (+)
SE (97, 91)	1	10.9	0.867	0.372 (-)	1	14.6	14.690	0.002 (-)

21

22 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
 23 residual degrees of freedom among the 15–21 species pairs [= species compositions]
 24 for which biodiversity effects were calculated). F and P indicate F ratios and P values
 25 of the significance tests, respectively. ± besides the P values represents the direction
 26 of effects. Numbers within brackets indicate the numbers of pots for plants under
 27 ambient or drought conditions in the glasshouse, respectively.

28 **Supplementary Table 3 | Significance tests for the effects of selection treatment**
 29 **on net biodiversity effect (NE), complementarity effect (CE) and sampling effect**
 30 **(SE) before, during and after the drought event in the glasshouse.** Block and
 31 selection treatment were set as fixed-effects terms; species composition and its
 32 interaction with selection treatment were set as random-effects terms.

33

	df	ddf	F	P
Before drought				
NE (n=255)	1	11.6	0.035	0.855 (+)
CE (n=254)	1	12.5	0.029	0.867 (+)
SE (n=254)	1	15.7	0.524	0.480 (+)
During drought				
NE (n=254)	1	12.9	1.671	0.219 (-)
CE (n=248)	1	17.8	2.853	0.109 (-)
SE (n=248)	1	18.7	0.070	0.794 (+)
After drought				
NE (n=219)	1	9.1	14.490	0.004 (+)
CE (n=188)	1	14.0	22.110	0.001 (+)
SE (n=188)	1	11.4	9.988	0.009 (-)

34

35 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
 36 residual degrees of freedom among the selection responses of 15–21 species pairs [=
 37 species compositions] for which biodiversity effects were calculated). F and P
 38 indicate F ratios and the P values of the significance tests, respectively. ± besides
 39 the P values represents the direction of difference between drought vs. ambient
 40 selection treatments. Numbers within brackets indicate the numbers of mixtures.

41 **Supplementary Table 4 | Significance tests for the effects of selection treatment**
42 **on stability calculated separately for mixtures and monocultures.** Block and
43 selection treatment were set as fixed-effects terms; species composition and its
44 interaction with selection treatment were set as random-effects terms.

45

	df	ddf	F	P
Resistance				
Mixture (255)	1	15.4	1.690	0.212 (-)
Monoculture (209)	1	5.1	0.668	0.450 (+)
Recovery				
Mixture (255)	1	6.9	7.388	0.030 (+)
Monoculture (206)	1	9.8	0.044	0.839 (-)
Resilience				
Mixture (255)	1	15.8	1.020	0.328 (+)
Monoculture (209)	1	10.2	0.003	0.955 (+)

46
47 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
48 residual degrees of freedom across species compositions). F and P indicate F ratios
49 and the P values of the significance tests, respectively. ± besides the P values
50 represents the direction of difference between drought vs. ambient selection
51 treatments. Numbers within brackets indicate the numbers of pots.

52 **Supplementary Table 5 | Significance tests for the effects of selection treatment**
53 **on the difference in stabilities between mixtures and monocultures.** Block and
54 selection treatment were set as fixed-effects terms; species composition and its
55 interaction with selection treatment were set as random-effects terms.

56

	df	ddf	F	P
Resistance (254)	1	16.5	4.627	0.047 (-)
Recovery (248)	1	19.0	6.550	0.020 (+)
Resilience (254)	1	14.7	0.686	0.421 (+)

57

58 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
59 residual degrees of freedom across species compositions). F and P indicate F ratios
60 and the P values of the significance tests, respectively. ± besides the P values
61 represents the direction of difference between drought vs. ambient selection
62 treatments. Numbers within brackets indicate the numbers of mixtures.

63 **Supplementary Table 6 | Significance tests for the effects of selection treatment**
64 **on neighbor interaction intensity in mixtures and monocultures before, during**
65 **and after the drought event in the glasshouse.** Block and selection treatment were
66 set as fixed-effects terms; species composition and its interaction with selection
67 treatment were set as random-effects terms.

68

	df	ddf	F	P
Before drought				
Mixture (257)	1	11.2	0.037	0.851 (-)
Monoculture (216)	1	10.4	0.639	0.442 (-)
During drought				
Mixture (253)	1	14.1	6.330	0.025 (-)
Monoculture (205)	1	9.7	1.710	0.222 (-)
After drought				
Mixture (245)	1	9.3	0.245	0.632 (+)
Monoculture (195)	1	5.2	0.140	0.720 (-)

69

70 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
71 residual degrees of freedom across species compositions). F and P indicate F ratios
72 and the P values of the significance tests, respectively. ± besides the P values
73 represents the direction of difference between drought vs. ambient selection
74 treatments. Numbers within brackets indicate the numbers of pots.

75 **Supplementary Table 7 | Significance tests for the difference between**
76 **heterospecific and conspecific interactions before, during and after the drought**
77 **event in the glasshouse for the two selection treatments.** Block and species
78 composition as set as fixed- and random-effects term, respectively

79

	df	ddf	F	P
Before drought				
Drought (127)	1	14.9	0.158	0.696 (+)
Ambient (130)	1	6.3	2.348	0.174 (-)
During drought				
Drought (125)	1	14.2	0.635	0.439 (-)
Ambient (128)	1	17.7	1.963	0.178 (+)
After drought				
Drought (120)	1	15.6	22.680	<0.001 (+)
Ambient (123)	1	13.8	4.495	0.053 (+)

80

81 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
82 residual degrees of freedom across species compositions). F and P indicate F ratios
83 and the P values of the significance tests, respectively. ± besides the P values
84 represents the direction of difference between heterospecific vs. conspecific
85 interaction. Numbers within brackets indicate the numbers of mixtures.

86 **Supplementary Table 8 | Significance tests for the effects of selection treatment**
87 **on the difference between heterospecific and conspecific interaction before,**
88 **during and after the drought event in the glasshouse.** Block and selection
89 treatment were set as fixed-effects terms; species composition and its interaction with
90 selection treatment were set as random-effects terms.

91

	df	ddf	F	P
Before drought (n=257)	1	9.1	1.985	0.192 (+)
During drought (n=253)	1	15.4	2.677	0.122 (-)
After drought (n=243)	1	10.1	10.640	0.008 (+)

92

93 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect
94 residual degrees of freedom across species compositions). F and P indicate F ratios
95 and the P values of the significance test, respectively. ± besides the P values
96 represents the direction of difference between drought vs. ambient selection
97 treatments. Numbers within brackets indicate the numbers of mixtures.

98 **Supplementary Table 9 | Significance tests for the effects of selection treatment**
99 **on traits measured on individual plants without neighbors from general linear**
100 **models.** Numbers within brackets indicate the numbers of individual plants.

101

	df	P
Leaf relative chlorophyll content before drought (n=420)		
Species	11	<0.001
Selection treatment	1	0.847
Species x selection treatment	11	0.175
Leaf area before drought (n=422)		
Species	11	<0.001
Selection treatment	1	0.257
Species x selection treatment	11	0.400
Leaf mass per area before drought (n=422)		
Species	11	<0.001
Selection treatment	1	0.330
Species x selection treatment	11	0.019
Leaf osmometric potential before drought (n=359)		
Species	11	<0.001
Selection treatment	1	0.973
Species x selection treatment	10	0.506
Leaf stomatal conductance before drought (n=329)		
Species	11	<0.001
Selection treatment	1	0.500
Species x selection treatment	11	0.886

Leaf stomatal conductance during drought (n=152)

Species	10	0.012
Selection treatment	1	0.454
Species x selection treatment	10	0.974

Root-shoot biomass ratio after drought (n=368)

Species	11	<0.001
Selection treatment	1	0.526
Species x selection treatment	11	0.488

102103 df and P indicate numerator degrees of freedom and the P values of the significance

104 test, respectively.

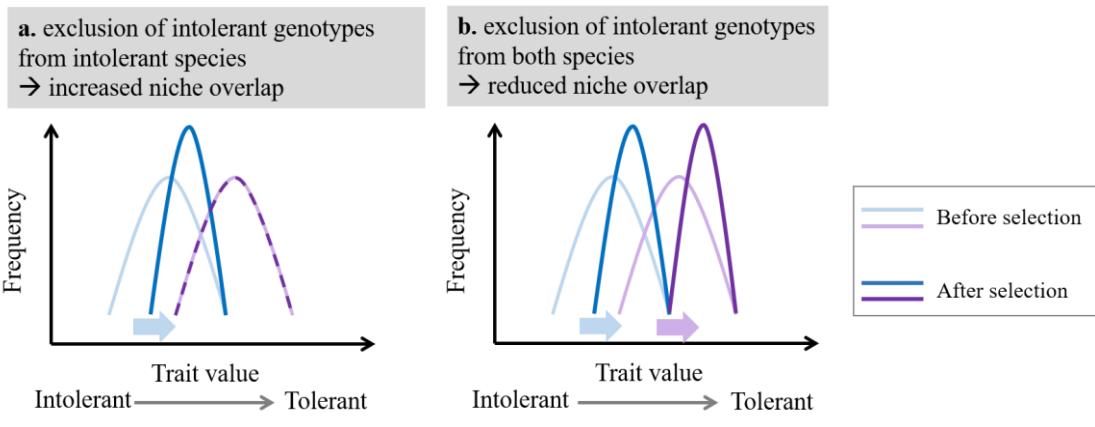
105 **Supplementary Table 10 | Significance tests for the effects of selection treatment on trait dissimilarity between interacting species in**
106 **mixtures from mixed-effects models.** Block and selection treatment were set as fixed-effects terms; species composition and its interaction with
107 selection treatment were set as random-effects terms. Traits were measured on plants within mixtures.

108

	df	ddf	F	P
Leaf relative chlorophyll content (n=237)	1	14.7	0.912	0.355 (+)
Leaf area (n=232)	1	19.0	3.660	0.071 (+)
Leaf mass per area (n=232)	1	12.0	0.041	0.843 (-)
Three traits (n=230)	1	12.3	1.483	0.246 (+)

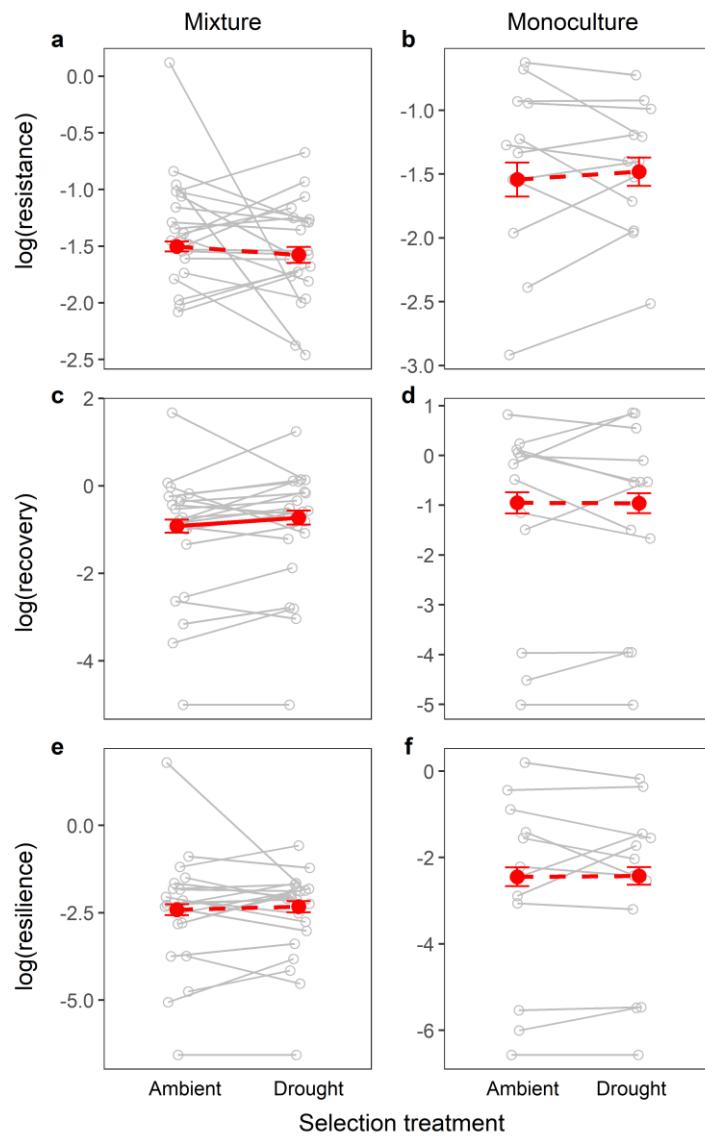
109

110 df, numerator degrees of freedom; ddf, denominator degrees of freedom (these reflect residual degrees of freedom across species composition). F
111 and P indicate F ratios and the P values of the significance test, respectively. ± besides the P values represents the direction of difference between
112 drought vs. ambient selection treatments. Numbers within brackets indicate the numbers of mixtures.

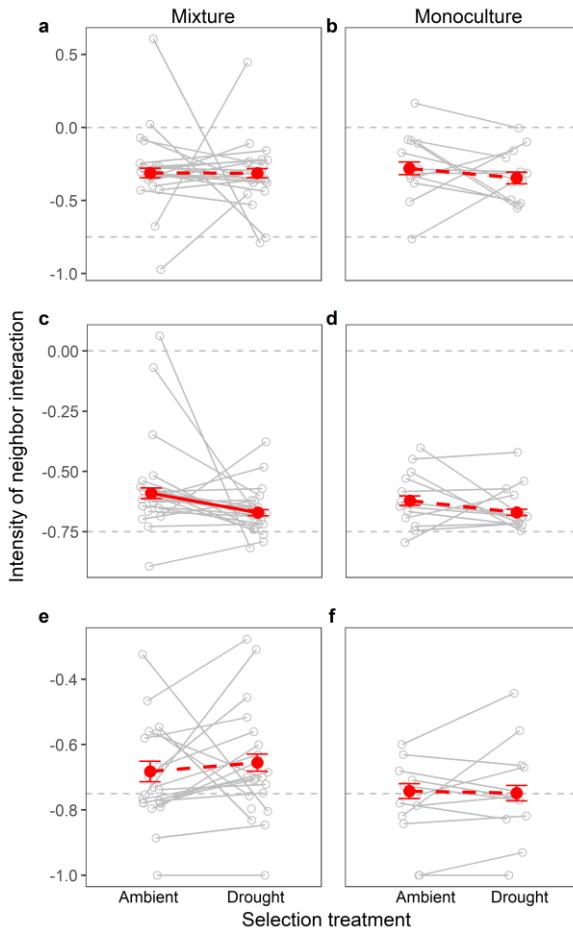

113 **Supplementary Table 11 | Effects of drought selection x functional group richness**
 114 **history (FGR, as factor) in the field on net biodiversity effect (NE),**
 115 **complementarity effect (CE) and sampling effect (SE) before, during and after**
 116 **the drought event in the glasshouse.** Block, drought selection, FGR and drought
 117 selection x FGR were set as fixed-effects terms; species composition, species
 118 composition x drought selection, species composition x FGR and species composition
 119 x drought selection x FGR were set as random-effects terms.

120

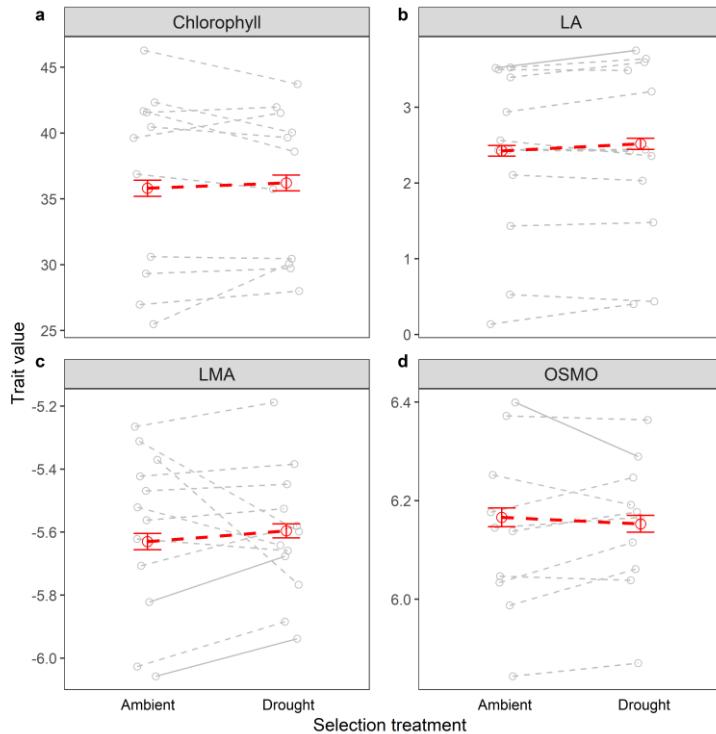
	df	ddf	F	P
Before drought				
NE (n=242)	3	6.9	0.769	0.547
CE (n=241)	3	8.6	1.736	0.232
SE (n=241)	3	15.1	0.907	0.461
During drought				
NE (n=241)	3	15.4	0.845	0.490
CE (n=235)	3	10.2	1.881	0.196
SE (n=235)	3	15.0	0.370	0.776
After drought				
NE (n=206)	3	16.0	0.334	0.801
CE (n=176)	3	14.0	0.230	0.873
SE (n=176)	3	14.0	1.410	0.282


121
 122 df, numerator degrees of freedom; ddf, denominator degrees of freedom. F and P
 123 indicate F ratios and the P values of the significance tests, respectively. Numbers
 124 within brackets indicate the numbers of mixtures. We excluded 13 pots from this
 125 analysis because their composed two species were from different FGR field plots.

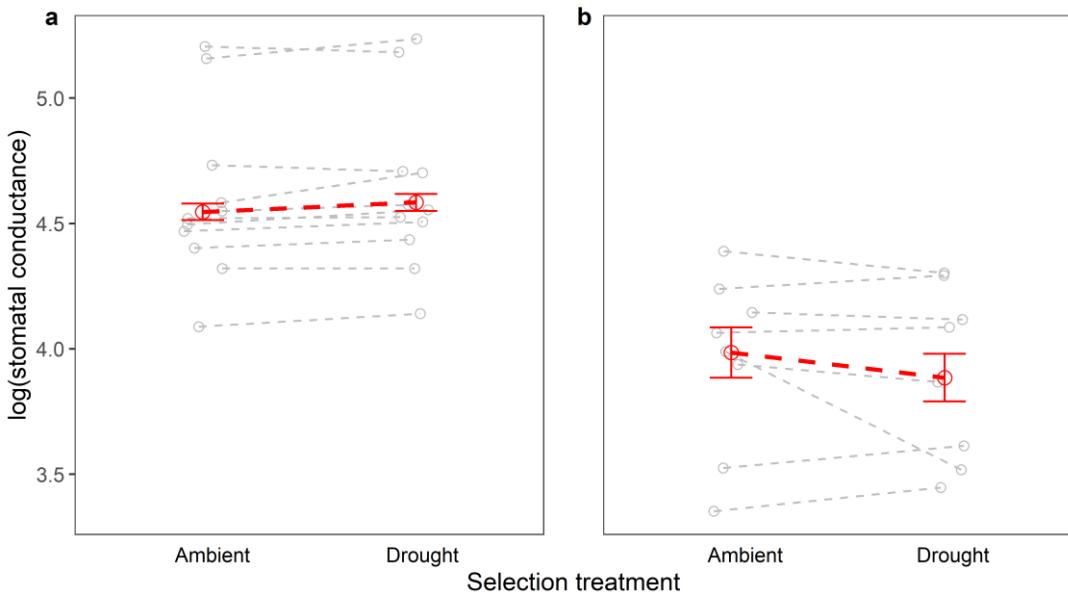
126 **SUPPLEMENTARY FIGURES**


127

128 **Supplementary Figure 1 | Illustration on how selection for traits associated with**
129 **drought tolerance may change niche overlaps between two species within**
130 **communities, under the assumption that selection arises from a filtering of pre-**
131 **existing genotypes without recombination and without new mutations.** Panel a
132 shows how exclusion of intolerant genotypes from intolerant species (blue curves) but
133 not from tolerant species (purple curves) would shift the overall trait distribution of
134 intolerant species closer to that of tolerant species, thus, increasing the overlap of trait
135 distribution or niche. Panel b shows how exclusion of intolerant genotypes could
136 occur both in tolerant and intolerant species when there is strong intraspecific
137 competition within tolerant species. In this case, the trait distribution of both species
138 would shift to the side of higher tolerance and shrink in their ranges, thus reducing the
139 niche overlap between species. Light and dark colors represent the scenarios before
140 and after selection, respectively. Arrows represent the directions of selection.

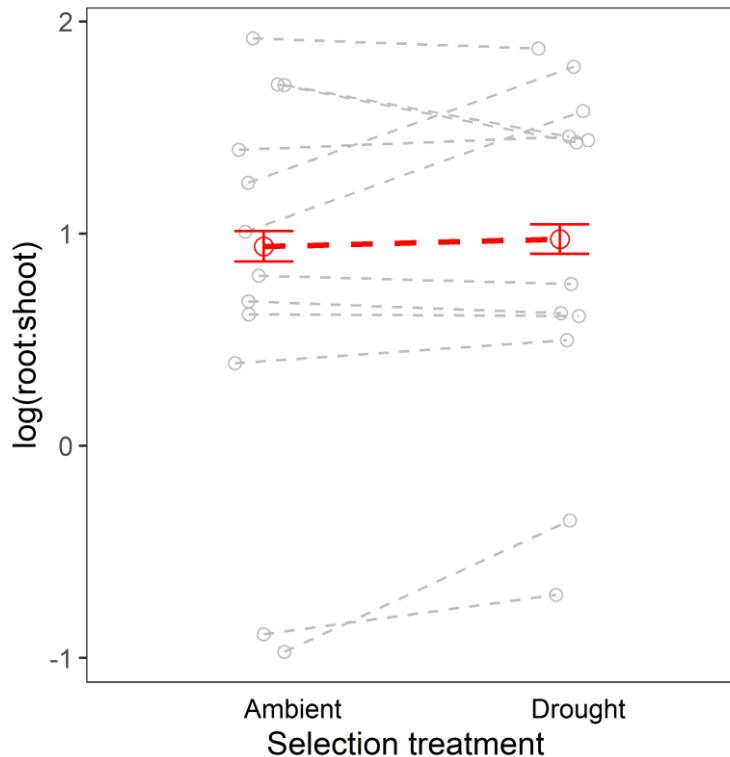

141

142 **Supplementary Figure 2 | Difference in biomass stabilities (resistance [a–b],**
 143 **recovery [c–d] and resilience [e–f] in response to the drought event in the**
 144 **glasshouse between selection treatments (plants selected under ambient vs.**
 145 **drought conditions), calculated separately for mixtures (first column) and**
 146 **monocultures (second column).** The solid red line indicates a significant difference
 147 between the two selection treatments ($P < 0.05$ in mixed-model analysis of variance,
 148 see Supplementary Table 4). Red points and error bars show means \pm standard error.
 149 Grey points represent means for species pairs (standard errors for species pairs were
 150 not shown). Grey lines connect the two selection treatments for each species pair.


151

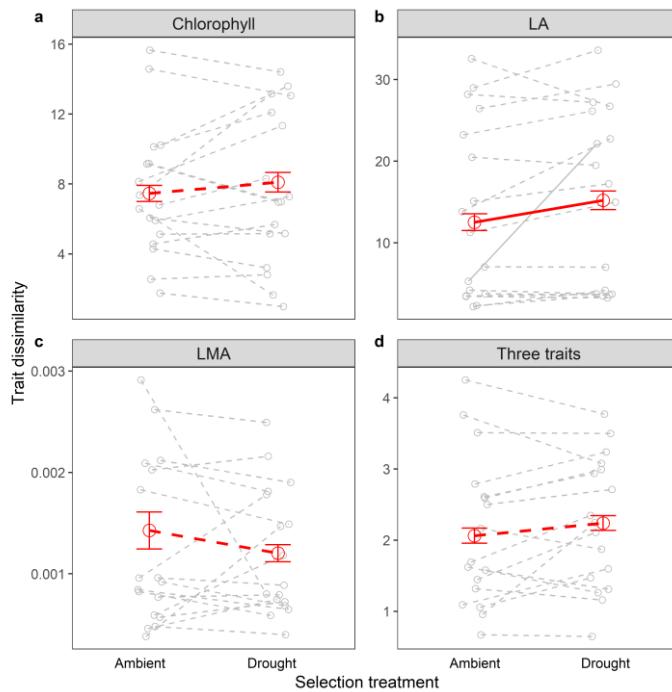
152 **Supplementary Figure 3 | Effects of selection treatment (ambient- vs. drought-
153 selected plants) on neighbor interaction intensity for 2-species mixtures (first
154 column) and monocultures (second column) before (a–b), during (c–d) and after
155 (e–f) the drought event in the glasshouse.** The solid red line indicates a significant
156 difference between the two selection treatments ($P < 0.05$ in mixed-model analysis of
157 variance, see Supplementary Table 6). Red points and error bars show means \pm
158 standard error. Grey points represent means for species pairs (standard errors for
159 species pairs were not shown). Grey solid lines connect the same species pair between
160 the two selection treatments for each species pair. Grey dashed lines at zero indicate
161 the case when individual plants with vs. without neighbors have the same biomass.
162 Grey dashed lines at -0.75 indicate the case when an individual grown alone in a pot
163 is four times bigger than an individual grown in a pot with four individuals.

164


165 **Supplementary Figure 4 | Effects of selection treatment (ambient- vs. drought-**
 166 **selected plants) on trait values (leaf relative chlorophyll content [a], leaf area [b],**
 167 **LA], leaf mass per area [c, LMA] and leaf osmometric potential [d, OSMO])**
 168 **measured on individual plants before the drought event in the glasshouse. Red**
 169 points and error bars show means \pm standard error of all individual plants. Grey
 170 points represent means for species (standard errors for species were not shown). Grey
 171 lines connected the same species between the selection treatments. Solid lines
 172 represent statistically significant difference ($P < 0.05$) in trait values between the two
 173 selection treatments. The statistical tests for all species together were conducted by
 174 fitting block and selection treatment as fixed-effects terms, species composition and
 175 its interaction with selection treatment as random-effects terms in mixed-effects
 176 models ($P > 0.10$; results not shown). The statistical tests for each species were
 177 conducted by fitting block and selection treatment in general linear models. Note that
 178 the values of LA, LMA and OSMO were log-transformed.

179

180 **Supplementary Figure 5 | Effects of selection treatment (ambient- vs. drought-**
 181 **selected plants) on leaf stomatal conductance measured on individual plants**
 182 **before (a) and during (b) the drought event in the glasshouse.** Red points and error
 183 bars show means \pm standard error of all individual plants. Grey points represent
 184 means for species (standard errors for species were not shown). Grey lines connected
 185 the same species between the selection treatments. Dashed lines represent statistically
 186 insignificant difference ($P > 0.10$) in trait values between the two selection
 187 treatments. The statistical tests for all species together were conducted by fitting
 188 selection treatment as fixed-effects terms, species composition and its interaction with
 189 selection treatment as random-effects terms in mixed-effects models (results not
 190 shown). The statistical tests for each species were conducted by fitting selection
 191 treatment in general linear models. Block was additionally included as fixed-effect
 192 term in panel a.


193

194

195 **Supplementary Figure 6 | Effects of selection treatment (ambient- vs. drought-**
 196 **selected plants) on biomass ratio between root and shoot measured on individual**
 197 **plants after the drought event in the glasshouse.** Red points and error bars show
 198 means \pm standard error of all individual plants. Grey points represent means for
 199 species (standard errors for species were not shown). Grey lines connected the same
 200 species between the selection treatments. Dashed lines represent statistically
 201 insignificant difference ($P > 0.05$) in trait values between the two selection
 202 treatments. The statistical tests for all species together were conducted by fitting block
 203 and selection treatment as fixed-effects terms, species composition and its interaction
 204 with selection treatment as random-effects terms in mixed-effects models (results not
 205 shown). The statistical tests for each species were conducted by fitting block and
 206 selection treatment in general linear models.

207

208

209 **Supplementary Figure 7 | Effects of selection treatment (ambient- vs. drought-
210 selected plants) on trait dissimilarity between interacting species within 2-species
211 mixtures before the drought event in the glasshouse.** Trait dissimilarities were
212 measured for leaf relative chlorophyll content (a), leaf area (b, LA), leaf mass per area
213 (c, LMA) and the three traits together (d). Red points and error bars show means \pm
214 standard error of all mixtures. Grey points represent means for species pair (standard
215 errors for species pairs were not shown). Grey lines connected the same species pair
216 between the selection treatments. The solid red line indicates a marginally significant
217 difference (averaged across species pairs) between the two selection treatments ($P <$
218 0.10) from a mixed-effects model, in which block and selection treatment were set
219 fixed-effects terms, species composition and its interaction with selection treatment
220 were set as random-effects terms (Supplementary Table 10). The solid grey line
221 indicates a significant difference for a specific species pair between the two selection
222 treatments ($P < 0.05$) from a general linear model, in which block and selection
223 treatment were set as fixed-effects terms.