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Supplementary Text

This supplementary section provides additional details about the Deep Neural Network (DNN) and

K-nearest neighbor (KNN) model training and a comprehensive analysis of the models used in our

study to predict underwater sound speed.

The DNN model’s architecture, illustrated in Fig. 1, features an input layer (dense 24 input)

accepting an 8-dimensional vector, followed by fully connected layers with decreasing nodes:

dense 24 (320 nodes), dense 25 (160 nodes), dense 26 (80 nodes), dense 27 (40 nodes), and

dense 28 (20 nodes). Each dense layer is accompanied by a batch normalization layer, enhancing

training efficiency. The final layer (dense 29) consists of a single node outputting continuous values

for the predicted underwater sound speed. This design enables the DNN to capture both simple and

complex features critical for modeling marine relationships.

The learning curve for the DNN model, shown in Fig. 2A, demonstrates improved prediction

accuracy over training epochs. Both training and cross-validation MAE metrics decrease sharply

initially, indicating effective learning. The close alignment of training and validation errors suggests

that the model is well-suited to the task, with minimal overfitting. After the initial rapid decrease,

metrics plateau as the model converges on the loss function’s minimum. The stabilization of cross-

validation MAE indicates the application of early stopping, which halts training before overfitting

occurs, conserving computational resources and enhancing generalization to new data.

The learning curve for the KNN model, illustrated in Fig. 2B, shows a significant decrease in both

training and cross-validation RMSE as dataset size increases, indicating improved accuracy. The

initial steep decline suggests substantial learning gains from early data additions. As more examples

are introduced, convergence of training and cross-validation RMSE implies good generalization,

with similar performance on seen and unseen data. The eventual plateau of the cross-validation

RMSE suggests that additional data may not significantly improve model performance beyond a

certain point, providing insight into optimal training dataset size and balancing performance with

computational resources.

It includes additional performance metrics, detailed comparisons, and explanations of each

model’s effectiveness. We present an extended evaluation using Root Mean Squared Error (RMSE),

R-squared (R²) scores, and Pearson correlation coefficients (𝑟) to offer a thorough understanding
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Figure 1: Architecture of Deep Neural Networks (DNN) model.
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Figure 2: Learning curves for, (A) DNN model training (average). (B) K-NN model training.
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Table 1: Comparative Performance Metrics of DNN and KNN Models
Region DNN Model KNN Model

RMSE 𝑅2 RMSE 𝑅2

Top Layer (0-50 m) 3.3549 0.9749 0.4404 0.9996
Upper Layer (0-400 m) 3.2585 0.9682 0.2568 0.9998

Deep Layer (beyond 400 m) 1.1297 0.9949 0.0367 1.0000
All Depths 1.4621 0.9918 0.0855 1.0000

of the models’ strengths and limitations. The Pearson correlation coefficient measures the linear

relationship between predicted and actual values, with coefficients near +1 or -1 indicating strong

positive or negative correlations, respectively, while values close to 0 suggest minimal linear

correlation. Our evaluation aims to identify the more effective model and determine the depths

at which each model excels in predicting sound speed. We conducted depth-specific assessments

across various strata: the top layer (0-50 m), the upper layer (0-400 m), and the deep layer (beyond

400 m), as well as a comprehensive evaluation encompassing all depth ranges.

Table 1 provides a detailed comparison of the KNN and DNN models’ predictive performance

across various ocean depths. To visualize model performance, we generated scatter plots illustrating

the relationship between predicted sound speeds and those determined using CTD data. Figure ??

presents these scatter plots side-by-side for both models across different ocean layers, offering

insights into their performance across varying depths.

The scatter plots in Fig.3 and the statistical metrics in Table1 highlight the strengths and

weaknesses of each model. The KNN model demonstrates higher prediction accuracy, particularly

in the upper layer (0-400 m), as evidenced by tight clustering around the line of best fit in Fig.3F,

with an impressive R² of 0.9998. This indicates that the KNN model effectively handles the noisy

and high-dimensional nature of ocean data. In contrast, while competitive, the DNN model shows

greater dispersion, particularly in shallower layers, reflecting its sensitivity to data complexity. This

is visible in the scatter plots for the top layer (0-50 m) Fig.3A and the upper layer (0-400 m) Fig. 3B,

which exhibit more spread-out points, corresponding to higher RMSE and lower R² scores.

Despite these challenges, the DNN model performs well at greater depths, maintaining strong

monotonic relationships in deeper layers (beyond 400 m), as shown in Fig. 3C and Fig. 3G. The

KNN model achieves a perfect R² at these depths, indicating excellent linear accuracy and effective
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Figure 3: Comparative Scatter Plots of Predicted Sound Speed Values: (A-D) DNN Model and

(E-H) KNN Model. (A,E) Top layer (0-50 m), comparing predictions for shallower waters; (B,F)

Upper layer (0-400 m), showing results for the top to mid-depth regions; (C,G) Deep layer (beyond

400 m), depicting outcomes for deeper zones; (D,H) All depths combined.
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maintenance of data rank order.

The DNN model, though slightly more scattered, still shows robust predictive performance

with a high R² of 0.9949, as seen in Fig. 3C. Across all depths, the KNN model maintains high

prediction consistency with perfect R² in Fig. 3H, reflecting its ability to accurately predict sound

speed while preserving the natural order of the data. The DNN model, despite a wider spread in

Fig. 3D and an RMSE of 1.4621, still demonstrates a strong linear relationship with actual values

(R² of 0.9918).

These scatter plots confirm the statistical metrics from the table and highlight the importance

of Spearman’s 𝜌 values in understanding the models’ ability to capture non-linear and rank-ordered

relationships. The KNN model consistently shows high accuracy and strong monotonic relationships

across depths, while the DNN model’s better performance in deeper waters suggests a need for

depth-specific adjustments in shallower layers.
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