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S1 Feature matrix

Suppose the combinatorial library consists of L mutation sites for mutagenesis. The feature matrix will
encoding all possible variants (i.e. 20%). Each amino acid at any mutation site is encoded as a vector with
R-dimension (e.g. R = 19 for the Georgiev encoding [1, 2]). Then the embedding of the combinatory library
leads to a tensor of shape 20% x L x R (e.g. 160,000 x 4 x 19). This three-dimensional feature tensor is
standardized by function StandardScalar() in scikit-learn [3] to have centered mean and unit variance. We
take this standardized tensor X as the input to both unsupervised clustering and supervised learning, and
necessary reshape is needed.

In unsupervised clustering, X is reshaped into a two-dimensional matrix with shape M x LR (e.g.
160,000 x 76 for Georgiev on GB1). In supervised learning models, the same two-dimensional matrix was
used for models except for the convolution neural networks. For one-dimensional convolution neural networks,
the three-dimensional tensor X was taken as the input where M is the sample size, R is the dimension of
the channel and L is the number of channels.

S2 Supervised learning model

The supervised learning model was implemented in the MLDE package [4]. It is an ensemble of 16
regression models optimized by Bayesian hyperparameter optimizations. Various regression architectures
from scikit-learn [3], Keras [5], and XGBoost [6] were employed. Five-fold cross validation was used to
evaluate the performance of each model in mean square errors. Bayesian hyperparameter optimizations were
performed to find the best-performing hyperparameters, which is implement by package “hyperopt” [7].
After hyperparameter optimizations, the top three models were picked and averaged to predict the fitness of
unlabeled variants. The list of 16 regression models was given in Table S6. Parameters that were optimized
via hyperopt are listed with their default values and search space in Table S7. Other hyperparameters not
optimized by hyperopt and supervised learning architectures are given below.

Keras models The architectures and the non-tunable hyperparameters are given here. In the three
fully connected neural networks, a batch normalization layer and a “ReLu” activation layer were employed
followed by each hidden layer. A dropout layer was used before the output layer. And a “ReLu” activation
was used to obtain the scalar output. In the two convolution neural networks, the size and number of filters
in the convolution layer were taken to be proportional to the dimension of the encoding for single amino
acid and the number of mutation sites, respectively (Table S7). A batch normalization layer and a “ReLu”
activation layer were employed followed by each convolutional layer. Then a single layer was used to flatten
the convolution layer to the fully connected layer. This single layer can be taken as flatten, max pooling and,
average pooling, given by the hyperparameter “flatten_choice” which was optimized by hyperopt (Table S7).
Next, a dropout layer and a “ReLu” activation were employed to get the output layer. In all five neural
network architectures, optimizer was taken as “adam” with a batch size of 32 and, “mse” loss was used. The
number of epochs was taken as 1000 and the early stopping criterion for training was taken as 10 epochs if
no further improvement.

XGBoost models The tree base model was employed with different loss functions. In Table S6, “Tree”
used square errors, “reg:squarederror”, and “Tree-Tweedie” used Tweedie loss function, “reg:tweedie”. The
Tweedie loss function is designed to learn imbalance data, like the fitness landscape enriched with low- or
zero-fitness variants.

Scikit-learn models The default parameters from the scikit-learn package were used as the default
hyperparameters in the MLDE model. They were then optimized.
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S3 Simulations on cluster-learning sampling

Three simulated samplings with maximum hierarchy N = 1, N = 2 and N = 3 were presented to further
illustrate the sampling process (Figure S1). The increments of clusters were taken to be 4 at any hierarchy
and any N (e.g. K3 = Ky =4 for N = 2). Variants were selected and screened in parallel at each batch
and the batch size was taken as 96. In all cases, the sampling process selected and screened four batches
of variants (i.e. 384 labeled variants). The first batch of variants (96 variants) was selected randomly and
equally over clusters for any maximum hierarchy N. Starting from the second batch, variants were selected
over clusters according to the sampling probabilities and the sampling probabilities were updated after each
batch to allow oversampling in the cluster with high-fitness. With maximum hierarchy N = 1, the sampling
was performed on 4 clusters from the second to fourth batch (Figure S1A). With maximum hierarchy N = 2,
the sampling was performed on 4 clusters at the second batch. Then these 4 clusters were further divided
into 8 clusters. The 4th cluster at hierarchy 1 having the highest average fitness was divided into 4 clusters
at hierarchy 2. The 2nd cluster at hierarchy 1 having the second highest average fitness was divided into 2
clusters at hierarchy 2. The rest of the clusters, 1st and 3rd clusters, at hierarchy 1 were not further divided
at hierarchy 2 because of their low average fitness. The third and fourth batches of variants were selected in
the 8 clusters at hierarchy 2 (Figure S1B). With maximum hierarchy N = 3, the sampling was performed
on 4 clusters at the second batch and 8 clusters at the third batch. The linkages of clusters at the first two
hierarchies were identical to that in the case with maximum hierarchy N = 2. These 8 clusters at hierarchy
2 were further divided into 12 clusters at hierarchy 3. The 4th cluster at hierarchy 2 having the highest
average fitness was divided into 4 clusters. The 7th cluster at hierarchy 2 having the second highest average
fitness was divided into 2 clusters. The rest 6 clusters at hierarchy 2 with low average fitness were not
further divided. The fourth batch of variants was selected in the 12 clusters at hierarchy 3 (Figure S1C). In
all cases, more variants usually were selected in clusters with higher average sample fitness. Deep hierarchy
structure can find the cluster with much higher average fitness. As a result, the deepest hierarchical structure
generates the sample set with the highest average fitness, where the average fitness is 0.0120, 0.0113, and
0.0143 for N =1, N = 2, and N = 3, respectively. The expected average fitness from multiple repeats with
various hierarchies further supports this point (Table S2).

S4 CLADE using Louvain clustering

We also used Louvain clustering in CLADE. Louvain clustering is a robust community-based clustering
method. It is widely used to detect cell heterogeneity in transcriptomic data. Here we incorporated Louvain
clustering in CLADE. The Louvain clustering implemented in the Seurat package [8] requires two hyperpa-
rameters, k.param, and resolution. First, a shared nearest neighbor graph is calculated as the neighborhood
overlap between every cell with k.param nearest neighbors. Then a modularity function is optimized to de-
termine clusters. The parameter resolution sets the granularity of the downstream clustering, with increased
values leading to a greater number of clusters.

We first performed Louvain clustering with various parameters and the followup cluster-learning sam-
pling (Figure S2C-E). Multiple repeats were performed for a single simulation. In a single simulation, clusters
were numbered by unique cluster ID, where cluster ID indicates the descending ranking of the average fitness
for all variants within the corresponding cluster. In multiple repeats, expectations of quantities in cluster
with identical cluster ID were calculated. Because the number of clusters in multiple repeats under the same
parameters may be different, we only showed cluster ID exists for all repeats. Many similar observations have
been found as we did in K-means (Figure 2 and Figure S2A-B). Louvain clustering reveals the heterogeneity
in the fitness landscape, where the clusters with smaller cluster ID have significantly larger average fitness
than the clusters with larger cluster ID, and the followup cluster-learning sampling successfully recapitu-
lated such fitness heterogeneity (Figure S2C). Both expected cluster average fitness and expected number of
selected variants in cluster show the polarized distributions (Figure S2C and E). Interestingly, a difference
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between Louvain and K-means was observed in the plot for the number of variants in clusters. The numbers
of variants in clusters have similar sizes by using K-means (Figure S2A). But they fluctuate more by using
Louvain (Figure S2D), especially, the first few clusters seem to contain a fewer number of variants than
others. As a result, Louvain clustering may be less effective to select high-fitness variants than K-means,
where it has lower expected max fitness and expected fitness in training data (Table S2).

Then we performed CLADE by using Louvain clustering and evaluated the outcome. Since Louvain
requires two hyperparameters and it is not easy to precisely control the number of clusters, we only performed
Louvain in the shallow hierarchy (i.e. N = 1). Compared to the CLADE using randomly sampled training
data, CLADE with Louvain clustering always has improvement on expected max fitness and expected mean
fitness in all explored parameters (Table S1). However, the global maximal fitness hitting rate sometimes
can be lower than that using random sampling (e.g. k.param and resolution = 0.8). By picking up the
best-performing parameters, CLADE using Louvain reaches almost 2-fold improvement on global maximal
fitness hitting rate: 36.4% (Table 1). It can be seen that CLADE using Louvain clustering underperforms
CLADE using K-means, and it is more sensitive to the selection of parameters (Table 1). The training
data composition from Louvain clustering drew the consistent observations made in Section 2.4. Louvain
clustering leads to a slightly reduced sequence diversity and increased fitness diversity in training data
comparing to the random sampling. However, their sequence diversity and fitness diversity are generally
higher and lower than that using K-means. Indeed, we observed CLADE using Louvain can outperform
that using random sampling but underperformed CLADE using K-means in the shallow hierarchy in their
best-performing parameters (Table 1).

S5 Supplementary Figures
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Figure S1: Cluster-learning sampling with various maximum hierarchies. Sampling is simulated in the medium-
throughput systems with batch size 96. The first batch was randomly and uniformly sampled in K; = 4 clusters. Dendrograms
show the linkage between clusters in different hierarchies. In each round of clustering, a parent cluster can divide into multiple
clusters or remain unchanged depending on the average fitness of existing samples in it. Number with red font in the distal
of the dendrogram shows the total number of samples obtained in the corresponding cluster and bar plots show the average
fitness of samples obtained in the corresponding cluster before the cluster is further divided. (A) Maximum hierarchy N = 1;
increment of clusters: K1 = 4 clusters; total 4 clusters. (B) Maximum hierarchy N = 2; increments of clusters: K1 = K2 = 4;
total 8 clusters. (C) Maximum hierarchy N = 3; increments of clusters: K1 = Ko = K3 = 4; total 12 clusters.
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Figure S2: K-means and Louvain clustering reveals fitness heterogeneity and cluster-learning sampling re-
capitulates the heterogeneity with maximum hierarchy N = 1. GB1 dataset and AA encoding were used. (A-B)
Supplementary to Figure 2 for K-means clustering with K1 = 10 (blue), 40 (red), and 100 (yellow). (A) Bar plots show the
expected number of variants in each cluster. (B) Bar plots show the expected number of variants selected from the cluster-
learning sampling in each cluster. (C-E) Louvain clustering and the follow-up cluster-learning sampling are performed on
the GB1 dataset with 500 independent repeats. Three sets of parameters are presented individually in different plots: 1)
k.param=700, resolution=0.8; 2) k.param=400, resolution=1.6; 3) k.param=100, resolution=2.0. Range of cluster number
from multiple repeats in each parameter set: 1) 11~13; 2) 21~27; 3) 53~63. In a single simulation, each cluster is numbered
by a unique cluster ID, where cluster ID indicates the descending ranking of the average fitness for all variants within the
corresponding cluster. Bar plots only show clusters with cluster ID not greater than the minimum number of clusters obtained
from multiple repeats. (C) Bar plots above the abscissa with dark color show the expected average ground-truth fitness for all
variants contained in each cluster. Bar plots below the abscissa with light color show the expected average fitness for variants
selected from the cluster-learning sampling in each cluster. (D) Bar plots show the expected number of variants in each cluster.
(E) Bar plots show the expected number of variants selected from the cluster-learning sampling in each cluster.
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Figure S3: Performance of CLADE on GB1 dataset with maximum hierarchy N = 1 by using AA encoding.
Various K were explored, and 500 independent repeats were performed for each parameter set. Training data composition were
quantified by (A) expected mean fitness, (B) expected max fitness, (C) global max hitting rate, (D) fitness diversity measured
by MFAD, and (E) sequence diversity measured by MFAD. Top-96 predicted variants from CLADE were evaluated by (F)
expected mean fitness, (G) expected max fitness, (H) global max hitting rate. The ranking quality of CLADE predictions on
all unlabeled variants was evaluated by (I) expected NDCG.
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Figure S4: Performance of CLADE on GB1 dataset with maximum hierarchy N = 2 by using AA encoding.
Various K; and Ko were explored, and 500 independent repeats were performed for each parameter set. Training data com-
position were quantified by (A) expected mean fitness, (B) expected max fitness, (C) global max hitting rate, (D) fitness
diversity measured by MFAD, and (E) sequence diversity measured by MFAD. Top-96 predicted variants from CLADE were
evaluated by (F') expected mean fitness, (G) expected max fitness, (H) global max hitting rate. The ranking quality of CLADE
predictions on all unlabeled variants was evaluated by (I) expected NDCG.
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Figure S5: Performance of CLADE on GB1 dataset with maximum hierarchy N = 3 by using AA encoding.
K3 was taken to be identical to Ka. Various K7 and K2 were explored, and 500 independent repeats were performed for each
parameter set. Training data composition were quantified by (A) expected mean fitness, (B) expected max fitness, (C) global
max hitting rate, (D) fitness diversity measured by MFAD, and (E) sequence diversity measured by MFAD. Top-96 predicted
variants from CLADE were evaluated by (F) expected mean fitness, (G) expected max fitness, (H) global max hitting rate.
The ranking quality of CLADE predictions on all unlabeled variants was evaluated by (I) expected NDCG.
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Figure S6: Fitness distributions for variants selected by CLADE. GB1 dataset and AA encoding were used. Single
CLADE simulation with various maximum hierarchies: 1) N = 0 (random sampling); 2) N = 1 (K; = 30); 3) N = 2
(K1 = K2 =30); 4) N = 3 (K1 = K2 = K3 = 30). The violin plot outlines illustrate kernel probability density where the
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shows the maximum fitness and the purple line shows the mean fitness. Variants selected from different stages are shown: (A)
top 96 predicted variants; (B) entire training data (batch 1-4 with 96 variants); (C) first batch of training data; (D) second
batch of training data; (E) third batch of training data; (F) fourth batch of training data. Each batch contains 96 variants.

10



=1 K,=30
-0 K,=30 K,=30
6 A ., m A A” ’
LS ."-'f. ) eI ]
Batch 1-4 & nil'*n“%i\u %
Oof 3 -Aigdyd 4 e %
384 samples & LR 8 - o ;;:}‘rt;; b3
¢ e . %) / (N
-6
s[B - . B’ B”
Batch 1 Sol 4 iaa .
96 samples O- 1 s ) A
-6
6 C y y C! c” /| i :' c,”' i :-
Batch 2 § ol = o A
S0 S AL LAY A Lori
. / / /i /
6 D i ] J D’ m Du ¥ Dn! X
..-' / WO e eyas T
Bat3 — Gop . gkt £ ¥ P T
96 samples O s, e o ole B T N I S
. ) oot s ”0'.._: / o “"-._0 /i
6
6 E m E’ E” E” 4
., ..,"1:_:". ' s A7 of
Batch 4 Oob & AFw s e e B
96 samples O v i ,*.", / [
LY / O .o
-6
-6 0 6 -6 0 6 -6 0 6 -6 6
PC1 PC1 PC1

Figure S7: Sequence distributions for variants selected by CLADE. GB1 dataset and AA encoding were used. Selected
variants are shown in sequence space in the two-dimensional space spanned by the first two principal components. Gray dots
show all variants in the combinatorial library. Distributions of variants selected from (A-A”’) entire training data (batch
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CLADE Performance

K1 K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
0 0 0.774 0.305 17.80% 18.60% 0.860
(0.151) (0.074) (0.021)
K1 K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 0 0.827 0.359 30.40% 30.60% 0.881
(0.142) (0.065) (0.019)
20 0 0.842 0.377 32.80% 33.40% 0.886
(0.136) (0.062) (0.018)
30 0 0.837 0.386 31.60% 32.40% 0.888
(0.137) (0.059) (0.016)
40 0 0.844 0.383 31.40% 33.20% 0.889
(0.133) (0.062) (0.018)
50 0 0.854 0.388 34.60% 35.60% 0.889
(0.129) (0.060) (0.019)
60 0 0.859 0.394 37.40% 37.60% 0.890
(0.133) (0.066) (0.019)
70 0 0.852 0.395 33.40% 33.80% 0.890
(0.129) (0.064) (0.020)
80 0 0.865 0.400 39.00% 39.60% 0.891
(0.129) (0.063) (0.019)
90 0 0.870 0.406 39.60% 40.20% 0.893
(0.126) | (0.060) (0.017)
100 0 0.861 0.403 38.00% 40.60% 0.891
(0.132) (0.060) (0.018)
150 0 0.858 0.406 36.40% 37.80% 0.891
(0.131) (0.064) (0.020)
200 0 0.860 0.409 37.60% 39.20% 0.892
(0.133) (0.063) (0.020)
250 0 0.864 0.408 36.60% 39.20% 0.891
(0.127) (0.063) (0.020)
300 0 0.866 0.413 38.00% 40.20% 0.891
(0.127) (0.062) (0.021)
350 0 0.857 0.408 37.00% 38.60% 0.891
(0.130) (0.061) (0.020)
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400 0 0.866 0.411 37.40% 40.80% 0.889
(0.127) (0.063) (0.021)
450 0 0.861 0.403 34.60% 39.00% 0.887
(0.124) (0.062) (0.022)
500 0 0.843 0.401 30.60% 34.00% 0.885
(0.130) (0.066) (0.023)
550 0 0.858 0.398 37.20% 41.20% 0.883
(0.132) (0.067) (0.023)
600 0 0.847 0.396 33.80% 37.00% 0.884
(0.135) (0.069) (0.024)
650 0 0.855 0.394 33.80% 37.80% 0.883
(0.128) (0.069) (0.024)
700 0 0.852 0.394 34.20% 37.80% 0.882
(0.133) (0.067) (0.025)
750 0 0.851 0.389 34.60% 39.40% 0.878
(0.132) (0.070) (0.024)
800 0 0.850 0.387 35.60% 41.20% 0.878
(0.137) (0.068) (0.025)
850 0 0.839 0.382 29.80% 34.20% 0.878
(0.134) (0.074) (0.026)
900 0 0.833 0.376 30.60% 34.60% 0.875
(0.139) (0.073) (0.026)
950 0 0.836 0.372 28.60% 32.80% 0.874
(0.132) (0.073) (0.025)
1000 0 0.836 0.378 30.00% 32.60% 0.876
(0.134) (0.069) (0.023)
GB1; AA; Medium throughput;
N = 2; K-means
K, K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.855 0.393 36.80% 37.40% 0.888
(0.134) (0.058) (0.019)
10 20 0.858 0.394 38.60% 40.00% 0.888
(0.137) (0.058) (0.020)
10 30 0.869 0.406 43.80% 45.00% 0.891
(0.136) (0.058) (0.020)
10 40 0.864 0.405 42.60% 43.60% 0.891
(0.138) (0.057) (0.020)
10 50 0.856 0.404 40.40% 41.20% 0.891
(0.142) (0.061) (0.020)
20 10 0.854 0.399 37.00% 38.00% 0.890
(0.136) (0.063) (0.020)
20 20 0.871 0.407 43.00% 43.80% 0.892
(0.132) (0.062) (0.019)
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20 30 0.866 0.413 39.20% 41.00% 0.893
(0.129) (0.058) (0.019)
20 40 0.868 0.413 41.20% 42.80% 0.894
(0.131) (0.059) (0.019)
20 50 0.874 0.416 41.40% 43.20% 0.894
(0.127) (0.057) (0.020)
30 10 0.875 0.412 43.40% 44.00% 0.892
(0.129) (0.057) (0.020)
30 20 0.873 0.414 42.40% 45.00% 0.893
(0.129) (0.059) (0.018)
30 30 0.879 0.418 44.60% 47.20% 0.894
(0.128) (0.057) (0.019)
30 40 0.879 0.420 44.80% 47.00% 0.895
(0.129) (0.058) (0.020)
30 50 0.881 0.419 46.20% 48.40% 0.893
(0.130) (0.059) (0.020)
40 10 0.876 0.417 42.60% 43.00% 0.893
(0.127) (0.059) (0.019)
40 20 0.875 0.416 44.00% 46.40% 0.893
(0.131) (0.064) (0.020)
40 30 0.887 0.421 48.20% 50.80% 0.894
(0.128) | (0.058) (0.018)
40 40 0.878 0.417 44.80% 47.00% 0.893
(0.129) (0.060) (0.019)
40 50 0.883 0.421 47.20% 48.80% 0.894
(0.130) (0.060) (0.020)
50 10 0.872 0.417 42.20% 44.80% 0.892
(0.131) (0.064) (0.021)
50 20 0.877 0.417 44.00% 46.00% 0.892
(0.131) (0.067) (0.022)
50 30 0.882 0.417 46.00% 48.00% 0.893
(0.128) (0.063) (0.020)
50 40 0.883 0.417 45.80% 48.60% 0.893
(0.126) (0.062) (0.021)
50 50 0.877 0.418 43.00% 44.20% 0.894
(0.126) (0.063) (0.022)
GB1; AA; Medium throughput;
N = 3; Ky = K3; K-means
K, K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.867 0.405 42.40% 43.20% 0.889
(0.134) (0.058) (0.019)
10 20 0.870 0.407 43.60% 45.40% 0.889
(0.136) (0.057) (0.021)
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10 30 0.873 0.416 45.80% 48.40% 0.892
(0.137) | (0.058) (0.021)
10 40 0.875 0.413 44.80% 46.80% 0.891
(0.134) | (0.057) (0.021)
10 50 0.866 0.414 39.20% 41.60% 0.891
(0.128) | (0.056) (0.021)
20 10 0.879 0.415 44.80% 46.20% 0.892
(0.129) | (0.059) (0.020)
20 20 0.873 0.418 42.20% 45.20% 0.892
(0.129) | (0.057) (0.020)
20 30 0.876 0.423 42.80% 45.60% 0.894
(0.127) | (0.060) (0.021)
20 40 0.876 0.420 43.40% 47.00% 0.893
(0.129) | (0.062) (0.021)
20 50 0.878 0.419 43.40% 47.00% 0.892
(0.126) | (0.057) (0.020)
30 10 0.881 0.419 45.20% 47.80% 0.891
(0.126) | (0.057) (0.020)
30 20 0.884 0.417 47.00% 50.80% 0.892
(0.128) | (0.057) (0.019)
30 30 0.884 0.421 45.40% 49.20% 0.892
(0.125) | (0.057) (0.021)
30 40 0.888 | 0.423 46.80% 50.80% 0.894
(0.124) | (0.056) (0.021)
30 50 0.878 0.418 44.00% 48.40% 0.892
(0.128) | (0.060) (0.021)
40 10 0.880 0.418 44.40% 47.00% 0.891
(0.127) | (0.060) (0.021)
40 20 0.880 0.419 45.00% 49.00% 0.891
(0.126) | (0.059) (0.021)
40 30 0.886 0.421 47.60% 50.80% 0.892
(0.125) | (0.057) (0.019)
40 40 0.885 0.421 44.60% 47.60% 0.892
(0.122) | (0.059) (0.019)
40 50 0.881 0.419 45.40% 48.40% 0.892
(0.127) | (0.060) (0.021)
50 10 0.880 0.417 43.60% 47.40% 0.890
(0.126) | (0.063) (0.022)
50 20 0.880 0.416 44.60% 47.60% 0.890
(0.129) | (0.064) (0.022)
50 30 0.875 0.417 43.00% 46.00% 0.891
(0.129) | (0.061) (0.022)
50 40 0.879 0.417 44.00% 47.60% 0.891
(0.127) | (0.063) (0.023)
50 50 0.879 0.418 45.20% 48.00% 0.892
(0.130) | (0.064) (0.023)

GB1; AA; Low throughput;
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N = 3; Ky = K3; K-means

K1 K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.8561 0.4030 39.60% 41.00% 0.8890
(0.1393) | (0.0580) (0.0197)
10 20 0.8747 0.4126 45.60% 46.80% 0.8923
(0.1359) | (0.0533) (0.0199)
10 30 0.8724 0.4167 44.80% 47.00% 0.8930
(0.1350) | (0.0567) (0.0211)
10 40 0.8794 0.4200 47.20% 48.60% 0.8946
(0.1339) | (0.0560) (0.0196)
10 50 0.8740 0.4194 45.60% 48.20% 0.8942
(0.1349) | (0.0585) (0.0203)
20 10 0.8734 0.4188 41.60% 43.80% 0.8937
(0.1274) | (0.0573) (0.0194)
20 20 0.8857 0.4250 44.20% 47.40% 0.8955
(0.1199) | (0.0544) (0.0187)
20 30 0.8843 0.4228 44.80% 47.40% 0.8955
(0.1234) | (0.0543) (0.0183)
20 40 0.8781 0.4284 42.60% 45.80% 0.8972
(0.1246) | (0.0542) (0.0176)
20 50 0.8919 0.4307 47.00% 50.40% 0.8975
(0.1192) | (0.0518) (0.0183)
30 10 0.9017 0.4248 51.20% 55.20% 0.8942
(0.1175) | (0.0531) (0.0174)
30 20 0.8974 0.4261 51.20% 54.40% 0.8951
(0.1199) | (0.0503) (0.0176)
30 30 0.8870 0.4256 48.80% 51.80% 0.8952
(0.1279) | (0.0547) (0.0187)
30 40 0.8970 0.4230 49.80% 55.40% 0.8956
(0.1207) | (0.0534) (0.0176)
30 50 0.9043 0.4313 52.00% 55.60% 0.8959
(0.1161)| (0.0489) (0.0176)
40 10 0.8799 0.4229 44.00% 47.20% 0.8924
(0.1256) | (0.0601) (0.0195)
40 20 0.8867 0.4249 47.60% 50.60% 0.8946
(0.1266) | (0.0597) (0.0202)
40 30 0.8805 0.4232 44.60% 48.80% 0.8947
(0.1264) | (0.0582) (0.0190)
40 40 0.8829 0.4250 45.60% 50.00% 0.8950
(0.1254) | (0.0607) (0.0193)
40 50 0.8838 0.4255 45.80% 49.40% 0.8955
(0.1267) | (0.0551) (0.0193)
50 10 0.8879 0.4221 46.20% 49.20% 0.8929
(0.1224) | (0.0581) (0.0200)
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50 20 0.8925 0.4270 46.60% 51.80% 0.8951
(0.1175) | (0.0568) (0.0187)
50 30 0.8934 0.4278 47.40% 51.00% 0.8953
(0.1189) | (0.0573) (0.0198)
50 40 0.8846 0.4285 44.20% 50.20% 0.8954
(0.1231) | (0.0578) (0.0210)
50 50 0.8982 0.4269 50.60% 53.40% 0.8960
(0.1187) | (0.0561) (0.0192)
GB1; AA; Medium throughput;
N = 1; Seurat (Louvain)
k.param resolution Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
100 0.4 0.795 0.330 19.20% 19.60% 0.865
(0.139) (0.066) (0.021)
100 0.8 0.786 0.332 17.80% 18.00% 0.868
(0.137) (0.064) (0.021)
100 1.2 0.804 0.350 22.00% 22.20% 0.872
(0.137) (0.066) (0.022)
100 1.6 0.810 0.355 21.20% 21.80% 0.872
(0.135) (0.067) (0.022)
100 2 0.808 0.349 21.60% 22.40% 0.870
(0.134) (0.069) (0.022)
200 0.4 0.791 0.327 20.80% 21.00% 0.860
(0.140) (0.069) (0.023)
200 0.8 0.788 0.327 16.00% 16.20% 0.864
(0.133) (0.066) (0.022)
200 1.2 0.806 0.337 22.40% 23.20% 0.865
(0.139) (0.069) (0.023)
200 1.6 0.809 0.350 16.80% 17.00% 0.868
(0.121) (0.070) (0.022)
200 2 0.818 0.355 22.40% 22.80% 0.870
(0.130) (0.067) (0.021)
300 0.4 0.792 0.329 20.00% 20.20% 0.861
(0.140) (0.070) (0.022)
300 0.8 0.804 0.334 20.20% 20.80% 0.866
(0.134) (0.065) (0.022)
300 1.2 0.826 0.352 28.80% 29.40% 0.871
(0.140) (0.070) (0.022)
300 1.6 0.810 0.347 20.60% 21.20% 0.869
(0.130) (0.071) (0.022)
300 2 0.817 0.361 19.20% 20.00% 0.873
(0.121) (0.064) (0.021)
400 0.4 0.790 0.322 20.60% 20.60% 0.858
(0.139) (0.069) (0.023)
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400 0.8 0.810 0.331 23.60% 23.80% 0.865
(0.136) (0.066) (0.022)
400 1.2 0.829 0.352 28.80% 29.00% 0.872
(0.139) (0.067) (0.020)
400 1.6 0.825 0.356 26.00% 27.20% 0.873
(0.134) (0.066) (0.021)
400 2 0.816 0.355 21.20% 21.60% 0.873
(0.129) (0.066) (0.021)
500 0.4 0.799 0.324 25.60% 26.20% 0.860
(0.149) (0.076) (0.023)
500 0.8 0.799 0.331 20.00% 20.20% 0.866
(0.133) (0.066) (0.022)
500 1.2 0.846 0.357 34.80% 36.40% 0.872
(0.137) | (0.070) (0.021)
500 1.6 0.832 0.360 27.80% 29.00% 0.875
(0.131) (0.066) (0.020)
500 2 0.828 0.358 25.80% 26.60% 0.872
(0.132) (0.066) (0.022)
600 0.4 0.801 0.326 26.20% 26.40% 0.860
(0.147) (0.072) (0.023)
600 0.8 0.797 0.332 18.60% 19.20% 0.864
(0.133) (0.065) (0.024)
600 1.2 0.844 0.357 35.20% 36.40% 0.872
(0.141) (0.073) (0.020)
600 1.6 0.840 0.366 29.40% 29.80% 0.878
(0.128) (0.069) (0.020)
600 2 0.837 0.360 30.60% 31.60% 0.875
(0.135) (0.067) (0.020)
700 0.4 0.816 0.329 28.40% 29.60% 0.862
(0.145) (0.075) (0.021)
700 0.8 0.802 0.332 22.20% 22.40% 0.864
(0.137) (0.067) (0.023)
700 1.2 0.845 0.353 35.40% 36.80% 0.871
(0.142) (0.071) (0.020)
700 1.6 0.845 0.368 29.80% 30.20% 0.877
(0.127) (0.068) (0.020)
700 2 0.835 0.359 31.80% 33.00% 0.877
(0.139) (0.069) (0.021)
GB1; Georgiev; Medium throughput;
N =0 (Random sampling); K-means
K K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
0 0 0.7471 0.2719 7.40% 8.20% 0.8327
(0.1356) | (0.0766) (0.0263)

GB1; Georgiev; Medium throughput;
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N = 3; Ky = K3; K-means

K1 K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.8184 0.3430 15.60% 17.20% 0.8402
(0.1151) | (0.0946) (0.0292)
10 20 0.8302 0.3535 20.80% 22.80% 0.8425
(0.1171) | (0.0928) (0.0275)
10 30 0.8260 0.3442 19.00% 22.80% 0.8390
(0.1194) | (0.0930) (0.0282)
10 40 0.8325 0.3458 21.80% 24.20% 0.8407
(0.1220) | (0.0969) (0.0296)
10 50 0.8378 0.3501 20.20% 23.40% 0.8410
(0.1111) | (0.0914) (0.0286)
20 10 0.8315 0.3498 16.80% 18.60% 0.8434
(0.1088) | (0.0861) (0.0270)
20 20 0.8286 0.3492 17.20% 19.60% 0.8442
(0.1120) | (0.0859) (0.0278)
20 30 0.8308 0.3467 20.40% 23.80% 0.8440
(0.1187) | (0.0861) (0.0270)
20 40 0.8386 0.3529 20.80% 24.00% 0.8452
(0.1126) | (0.0868) (0.0279)
20 50 0.8430 0.3599 24.40% 26.60% 0.8472
(0.1136) | (0.0875) (0.0280)
30 10 0.8436 0.3609 19.80% 22.60% 0.8464
(0.1048) | (0.0774) (0.0279)
30 20 0.8500 0.3610 22.20% 25.80% 0.8468
(0.1075) | (0.0830) (0.0284)
30 30 0.8497 0.3605 22.60% 25.60% 0.8462
(0.1052) | (0.0800) (0.0289)
30 40 0.8595 0.3674 26.00% 30.60% 0.8493
(0.1056)| (0.0799) (0.0284)
30 50 0.8584 0.3713 25.40% 28.80% 0.8510
(0.1062) | (0.0802) (0.0289)
40 10 0.8367 0.3539 21.40% 24.40% 0.8480
(0.1188) | (0.0798) (0.0277)
40 20 0.8430 0.3497 24.40% 27.00% 0.8456
(0.1176) | (0.0806) (0.0294)
40 30 0.8461 0.3537 22.60% 26.20% 0.8485
(0.1111) | (0.0817) (0.0295)
40 40 0.8512 0.3538 24.20% 28.20% 0.8493
(0.1084) | (0.0823) (0.0291)
40 50 0.8492 0.3583 22.60% 25.60% 0.8504
(0.1090) | (0.0814) (0.0291)
50 10 0.8292 0.3369 19.20% 22.60% 0.8452
(0.1184) | (0.0845) (0.0287)
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50 20 0.8399 | 0.3493 21.80% 24.60% 0.8474
(0.1157) | (0.0814) (0.0299)
50 30 0.8400 | 0.3488 21.20% 24.40% 0.8490
(0.1137) | (0.0858) (0.0287)
50 40 0.8477 | 0.3523 23.20% 27.40% 0.8498
(0.1135) | (0.0866) (0.0296)
50 50 0.8372 | 0.3548 21.40% 24.80% 0.8507

K, Ky Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
0 0 0.2985 0.0719 1.00% 1.00% 0.7859
(0.1321) | (0.0205) (0.0189)

K K Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.3476 0.0915 2.60% 2.60% 0.8060
(0.1541) | (0.0149) (0.0147)
10 20 0.3415 0.0935 0.80% 0.80% 0.8071
(0.1234) | (0.0144) (0.0142)
10 30 0.3573 0.0934 1.40% 1.60% 0.8071
(0.1404) | (0.0146) (0.0151)
10 40 0.3429 0.0925 1.80% 2.20% 0.8073
(0.1390) | (0.0151) (0.0143)
10 50 0.3479 0.0932 1.40% 2.00% 0.8062
(0.1377) | (0.0148) (0.0155)
20 10 0.3278 0.0912 1.40% 1.40% 0.8048
(0.1298) | (0.0163) (0.0156)
20 20 0.3441 0.0923 1.20% 1.40% 0.8050
(0.1334) | (0.0166) (0.0149)
20 30 0.3449 0.0926 1.80% 1.80% 0.8051
(0.1418) | (0.0142) (0.0143)
20 40 0.3404 0.0923 1.40% 1.60% 0.8054
(0.1355) | (0.0147) (0.0149)
20 50 0.3366 0.0912 1.40% 1.60% 0.8051
(0.1289) | (0.0160) (0.0158)
30 10 0.3325 0.0917 1.00% 1.20% 0.8040
(0.1237) | (0.0161) (0.0164)




30 20 0.3417 0.0930 1.60% 1.80% 0.8049
(0.1393) | (0.0150) (0.0157)
30 30 0.3414 0.0917 1.80% 2.00% 0.8036
(0.1413) | (0.0161) (0.0173)
30 40 0.3488 0.0925 1.00% 1.60% 0.8043
(0.1273) | (0.0154) (0.0156)
30 50 0.3514 0.0939 2.60% 3.00% 0.8048
(0.1509) | (0.0159) (0.0163)
40 10 0.3528 0.0926 2.20% 2.60% 0.8037
(0.1479) | (0.0178) (0.0194)
40 20 0.3533 0.0925 2.00% 2.00% 0.8038
(0.1479) | (0.0173) (0.0193)
40 30 0.3572 0.0934 2.80% 3.00% 0.8047
(0.1579)| (0.0160) (0.0153)
40 40 0.3533 0.0935 2.00% 2.00% 0.8045
(0.1471) | (0.0163) (0.0170)
40 50 0.3528 0.0930 2.00% 2.20% 0.8045
(0.1434) | (0.0164) (0.0177)
50 10 0.3284 0.0930 0.80% 1.20% 0.8039
(0.1193) | (0.0160) (0.0171)
50 20 0.3481 0.0934 2.20% 2.80% 0.8037
(0.1475) | (0.0159) (0.0173)
50 30 0.3351 0.0930 1.20% 1.80% 0.8034
(0.1310) | (0.0167) (0.0177)
50 40 0.3398 0.0932 1.80% 2.00% 0.8031
(0.1393) | (0.0161) (0.0183)
50 50 0.3365 0.0930 0.80% 1.20% 0.8038
(0.1226) | (0.0161) (0.0167)
K1 K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
0 0 0.3705 0.0769 7.20% 7.60% 0.7873
(0.2116) | (0.0220) (0.0193)

K1 K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.4700 0.0959 13.60% 15.40% 0.7928
(0.2363) | (0.0221) (0.0225)




10 20 0.4842 | 0.0967 15.20% 17.80% 0.7931
(0.2447) | (0.0216) (0.0222)
10 30 0.5028 | 0.0960 17.60% 20.60% 0.7919
(0.2538)| (0.0230) (0.0232)
10 40 0.4963 | 0.0963 17.60% 20.20% 0.7921
(0.2588) | (0.0228) (0.0234)
10 50 0.4818 | 0.0970 16.20% 21.60% 0.7929
(0.2521) | (0.0224) (0.0226)
20 10 0.4684 | 0.0961 13.40% 15.00% 0.7943
(0.2386) | (0.0207) (0.0207)
20 20 0.4629 | 0.0947 12.80% 14.80% 0.7943
(0.2329) | (0.0212) (0.0215)
20 30 0.4806 | 0.0945 15.00% 17.80% 0.7942
(0.2426) | (0.0226) (0.0221)
20 40 0.4682 | 0.0950 13.40% 16.60% 0.7942
(0.2348) | (0.0199) (0.0217)
20 50 04723 | 0.0943 13.40% 17.60% 0.7945
(0.2371) | (0.0225) (0.0220)
30 10 0.4669 | 0.0925 13.20% 14.80% 0.7937
(0.2384) | (0.0227) (0.0222)
30 20 0.4563 | 0.0925 13.20% 16.00% 0.7944
(0.2389) | (0.0213) (0.0227)
30 30 0.4732 | 0.0924 15.40% 18.80% 0.7926
(0.2502) | (0.0230) (0.0223)
30 40 0.4535 | 0.0947 12.60% 15.20% 0.7947
(0.2350) | (0.0197) (0.0211)
30 50 04716 | 0.0933 14.40% 17.80% 0.7947
(0.2449) | (0.0223) (0.0217)
40 10 0.4492 | 0.0905 12.40% 14.00% 0.7926
(0.2368) | (0.0213) (0.0226)
40 20 0.4609 | 0.0921 14.00% 16.00% 0.7935
(0.2456) | (0.0208) (0.0226)
40 30 0.4550 | 0.0918 12.60% 14.40% 0.7940
(0.2354) | (0.0213) (0.0224)
40 40 0.4658 | 0.0915 14.80% 18.00% 0.7932
(0.2449) | (0.0223) (0.0225)
40 50 0.4693 | 0.0928 15.40% 18.00% 0.7952
(0.2482) | (0.0206) (0.0214)
50 10 0.4728 | 0.0912 14.40% 16.40% 0.7923
(0.2434) | (0.0223) (0.0231)
50 20 0.4615 | 0.0914 12.60% 15.40% 0.7930
(0.2333) | (0.0218) (0.0221)
50 30 0.4675 | 0.0933 14.00% 17.00% 0.7941
(0.2413) | (0.0208) (0.0226)
50 40 0.4761 | 0.0933 16.20% 20.60% 0.7945
(0.2559) | (0.0213) (0.0212)
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20 o0 0.4639 0.0937 14.40% 17.80% 0.7949
(0.2445) | (0.0217) (0.0232)
PhoQ; Georgiev; Low throughput;
N = 3; Ky = K33 K-means
K, K> Max Mean Global Max Global Max NDCG
Fitness Fitness Hitting Rate Hitting Rate
(Top 96 (Top 96
predictions) predictions &
training data)
10 10 0.4844 0.0978 15.60% 17.60% 0.7935
(0.2480) | (0.0215) (0.0226)
10 20 0.4810 0.0981 16.00% 18.20% 0.7939
(0.2499) | (0.0208) (0.0222)
10 30 0.4928 0.0967 16.60% 20.80% 0.7930
(0.2517) | (0.0217) (0.0235)
10 40 0.5005 0.0985 17.60% 21.00% 0.7937
(0.2543)| (0.0222) (0.0222)
10 50 0.4835 0.0979 15.60% 20.20% 0.7940
(0.2443) | (0.0215) (0.0222)
20 10 0.4754 0.0956 14.40% 16.40% 0.7949
(0.2448) | (0.0214) (0.0209)
20 20 0.4593 0.0952 11.60% 16.40% 0.7937
(0.2217) | (0.0213) (0.0211)
20 30 0.4988 0.0967 16.40% 20.20% 0.7956
(0.2470) | (0.0214) (0.0208)
20 40 0.4852 0.0969 15.00% 19.00% 0.7960
(0.2426) | (0.0218) (0.0218)
20 50 0.4796 0.0977 15.20% 19.40% 0.7963
(0.2458) | (0.0204) (0.0206)
30 10 0.4600 0.0945 13.00% 15.20% 0.7952
(0.2355) | (0.0201) (0.0216)
30 20 0.4648 0.0937 12.80% 16.20% 0.7951
(0.2353) | (0.0211) (0.0216)
30 30 0.4736 0.0963 14.80% 16.40% 0.7968
(0.2452) | (0.0206) (0.0206)
30 40 0.4485 0.0947 11.00% 14.80% 0.7965
(0.2225) | (0.0202) (0.0212)
30 50 0.4759 0.0967 15.20% 18.60% 0.7976
(0.2467) | (0.0203) (0.0211)
40 10 0.4730 0.0948 15.40% 17.40% 0.7954
(0.2487) | (0.0202) (0.0216)
40 20 0.4464 0.0930 12.40% 14.40% 0.7949
(0.2336) | (0.0213) (0.0220)
40 30 0.4726 0.0946 15.20% 17.80% 0.7954
(0.2475) | (0.0203) (0.0218)
40 40 0.4701 0.0956 15.20% 18.20% 0.7967
(0.2472) | (0.0201) (0.0213)
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40 50 0.4805 | 0.0963 17.00% 19.80% 0.7970
(0.2578) | (0.0197) (0.0210)
50 10 0.4747 | 0.0928 15.80% 17.80% 0.7930
(0.2515) | (0.0224) (0.0212)
50 20 0.4788 | 0.0921 14.60% 18.00% 0.7925
(0.2414) | (0.0235) (0.0231)
50 30 0.4667 | 0.0935 13.20% 17.40% 0.7941
(0.2365) | (0.0220) (0.0235)
50 40 0.5022 | 0.0955 18.20% 21.40% 0.7942
(0.2583) | (0.0215) (0.0222)
50 50 0.4913 | 0.0959 15.60% 20.40% 0.7956
(0.2449) | (0.0212) (0.0220)

Table S1: Predictive performance of CLADE. Two datasets, GB1 and PhoQ, were tested. Two encoding methods,
AA and Georgiev, were used. Medium- and low-throughput systems were simulated. Two clustering methods, K-means and
Louvain, were used. 384 variants training data and 96 top predicted variants were evaluated. All metrics were evaluated on 500
independent repeats. Both expectations and standard deviations (in parenthesis) were shown for max fitness, mean fitness, and
NDCG. Max fitness and mean fitness were evaluated on the top 96 predicted variants. NDCG was evaluated on all predicted
variants. Global maximum hitting rate in top 96 predictions, and variants from top 96 predictions and training data were
shown. In each architecture, the case with best expected max fitness was highlighted by bold font.
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Training Data

K K> Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
0 0 0.4753 0.0092 0.80% 2.11x103 6.60
(0.1352) | (0.0023) (21.67) (1.68)
K1 Ko Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
10 0 0.5298 0.0161 0.20% 2.03x103 11.25
(0.1264) | (0.0042) (40.14) (2.85)
20 0 0.5591 0.0190 0.60% 2.05%x10° 13.15
(0.1213) | (0.0047) (53.68) (3.13)
30 0 0.5603 0.0208 0.80% 2.03x103 14.29
(0.1220) | (0.0051) (57.91) (3.38)
40 0 0.5697 0.0219 1.80% 2.02x103 15.00
(0.1285) | (0.0058) (61.15) (3.84)
50 0 0.5747 0.0227 1.00% 2.02x10° 15.50
(0.1189) | (0.0062) (66.61) (4.05)
60 0 0.5813 0.0243 0.20% 2.02x10° 16.55
(0.1261) | (0.0071) (69.19) (4.64)
70 0 0.5821 0.0252 0.40% 2.02x103 17.06
(0.1133) | (0.0074) (66.06) (4.76)
80 0 0.5948 0.0264 0.60% 2.02x103 17.85
(0.1208) | (0.0078) (71.76) (4.99)
90 0 0.5987 | 0.0277 0.60% | 2.01x103 18.68
(0.1183)| (0.0080) (71.85) (5.12)
100 0 0.6125 0.0294 2.60% 2.01x10° 19.66
(0.1333) | (0.0091) (74.86) (5.77)
150 0 0.6052 0.0332 1.40% 2.02x103 21.89
(0.1247) | (0.0105) (72.17) (6.47)
200 0 0.6162 0.0378 1.60% 2.04x103 24.55
(0.1228) | (0.0115) (70.34) (6.84)
250 0 0.6170 0.0419 2.60% 2.05%x10° 26.73
(0.1305) | (0.0138) (71.02) (7.99)
300 0 0.6382 0.0460 2.20% 2.06x10° 28.94
(0.1244) | (0.0147) (75.49) (8.28)
350 0 0.6299 0.0480 1.60% 2.06x103 29.99
(0.1318) | (0.0163) (76.98) (9.21)
400 0 0.6452 0.0501 3.20% 2.07x103 31.24
(0.1306) | (0.0154) (81.56) (8.62)




450 0 0.6467 0.0523 4.40% 2.07x103 32.19
(0.1406) | (0.0179) (82.47) (9.87)
500 0 0.6378 0.0541 3.40% 2.07x103 33.09
(0.1319) | (0.0183) (88.07) (10.04)
550 0 0.6528 0.0558 4.00% 2.07x103 34.00
(0.1406) | (0.0187) (85.10) (10.25)
600 0 0.6444 0.0575 3.20% 2.08x103 34.74
(0.1291) | (0.0183) (89.13) (9.84)
650 0 0.6513 0.0588 4.00% 2.08x10° 35.30
(0.1365) | (0.0188) (83.06) (9.98)
700 0 0.6482 0.0587 3.60% 2.09x103 35.22
(0.1336) | (0.0178) (89.36) (9.65)
750 0 0.6543 0.0605 4.80% 2.08x103 36.17
(0.1411) | (0.0197) (97.92) (10.56)
800 0 0.6552 0.0610 5.60% 2.09%103 36.36
(0.1426) | (0.0204) (92.29) (10.84)
850 0 0.6454 0.0620 4.40% 2.09%x10° 36.92
(0.1354) | (0.0194) (93.34) (10.37)
900 0 0.6427 0.0632 4.00% 2.09x103 37.31
(0.1366) | (0.0216) (87.00) (11.39)
950 0 0.6494 0.0626 4.20% 2.10x103 37.09
(0.1363) | (0.0192) (97.52) (10.21)
1000 0 0.6297 0.0620 2.60% 2.08x103 36.57
(0.1239) | (0.0197) (96.69) (10.38)
GB1; AA; Medium throughput;
N = 2; K-means
K1 Ko Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
10 10 0.5773 0.0231 0.60% 1.99x10° 15.77
(0.1178) | (0.0060) (50.88) (3.90)
10 20 0.5820 0.0255 1.40% 2.00x103 17.22
(0.1235) | (0.0070) (56.12) (4.47)
10 30 0.5954 0.0281 1.20% 2.00x103 18.87
(0.1206) | (0.0076) (57.47) (4.76)
10 40 0.5985 0.0298 1.00% 2.00x103 19.87
(0.1126) | (0.0086) (58.60) (5.34)
10 50 0.5986 0.0311 0.80% 2.00x10° 20.62
(0.1191) | (0.0089) (58.03) (5.56)
20 10 0.5911 0.0288 1.00% 2.00x103 19.30
(0.1278) | (0.0078) (63.24) (4.93)
20 20 0.5929 0.0314 0.80% 2.00x103 20.83
(0.1173) | (0.0086) (64.21) (5.35)
20 30 0.6161 0.0340 1.80% 2.00x103 22.43
(0.1244) | (0.0095) (62.83) (5.81)
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20 40 0.6184 0.0360 1.60% 2.00x10% 23.63
(0.1229) | (0.0103) (64.47) (6.25)
20 50 0.6206 0.0373 1.80% 2.01x10% 24.36
(0.1232) | (0.0104) (65.95) (6.33)
30 10 0.6093 0.0332 0.60% 1.99x103 21.93
(0.1163) | (0.0098) (72.11) (5.97)
30 20 0.6201 0.0362 2.60% 1.99x10° 23.67
(0.1286) | (0.0105) (72.81) (6.33)
30 30 0.6212 0.0382 2.60% 2.00x10° 24.88
(0.1297) | (0.0113) (75.72) (6.77)
30 40 0.6318 0.0408 2.20% 2.00x103 26.39
(0.1245) | (0.0115) (78.03) (6.82)
30 50 0.6334 0.0415 2.20% 2.00x103 26.73
(0.1254) | (0.0120) (75.39) (7.12)
40 10 0.6153 0.0366 0.40% 1.97x103 23.97
(0.1194) | (0.0110) (74.27) (6.60)
40 20 0.6334 0.0398 2.40% 1.98x10? 25.85
(0.1331) | (0.0120) (78.91) (7.22)
40 30 0.6363 0.0417 2.60% | 1.99x103 26.91
(0.1293)| (0.0115) (79.23) (6.85)
40 40 0.6438 0.0437 2.20% 1.99x103 28.06
(0.1196) | (0.0119) (82.21) (7.05)
40 50 0.6410 0.0455 1.60% 1.99x10° 29.03
(0.1276) | (0.0128) (80.42) (7.58)
50 10 0.6293 0.0379 2.60% 1.97x10? 24.71
(0.1360) | (0.0115) (74.99) (6.99)
50 20 0.6371 0.0419 2.00% 1.98x103 27.04
(0.1314) | (0.0127) (77.65) (7.55)
50 30 0.6325 0.0433 2.00% 1.98x103 27.70
(0.1310) | (0.0125) (79.46) (7.44)
50 40 0.6422 0.0450 2.80% 1.98x10° 28.72
(0.1347) | (0.0127) (81.68) (7.46)
50 50 0.6322 0.0466 1.20% 1.99x10° 29.62
(0.1248) | (0.0129) (83.14) (7.54)
GB1; AA; Medium throughput;
N = 3; Ky = K3; K-means
K1 K> Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
10 10 0.5990 0.0312 0.80% 1.98x103 20.82
(0.1134) | (0.0084) (56.78) (5.25)
10 20 0.6113 0.0359 1.80% 1.99x10° 23.61
(0.1240) | (0.0102) (61.50) (6.26)
10 30 0.6326 0.0409 2.60% 2.00x103 26.55
(0.1239) | (0.0113) (65.27) (6.75)
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10 40 0.6322 | 0.0436 | 2.00% | 2.00x103 28.11
(0.1232) | (0.0119) (65.61) (6.97)
10 50 0.6443 | 0.0457 | 240% | 2.01x103 29.31
(0.1291) | (0.0121) (64.03) (7.12)
20 10 0.6267 | 00388 | 1.40% | 1.98x103 25.31
(0.1275) | (0.0101) (66.98) (6.19)
20 20 0.6335 | 0.0437 | 3.00% | 1.99x10° 28.16
(0.1259) | (0.0111) (68.44) (6.68)
20 30 0.6357 | 0.0468 | 2.80% | 1.99x103 29.89
(0.1268) | (0.0120) (68.85) (7.04)
20 40 0.6522 | 0.0500 | 3.60% | 2.00x103 31.71
(0.1316) | (0.0130) (70.83) (7.55)
20 50 0.6453 | 00512 | 3.60% | 2.00x103 32.30
(0.1293) | (0.0130) (71.65) (7.61)
30 10 0.6446 | 0.0439 | 2.60% | 1.98x103 28.21
(0.1282) | (0.0128) (74.93) (7.58)
30 20 0.6576 | 0.0494 | 3.80% | 1.99x103 31.33
(0.1306) | (0.0134) (78.17) (7.77)
30 30 0.6551 | 0.0522 | 3.80% 995.55 16.41
(0.1333) | (0.0141) (40.33) (4.04)
30 40 0.6598 | 0.0549 | 4.00% | 2.00x10% | 34.31
(0.1297)| (0.0139) (82.32) | (7.94))
30 50 0.6621 | 0.0556 | 4.40% | 2.00x103 34.61
(0.1310) | (0.0145) (81.72) (8.24)
40 10 0.6415 | 0.0481 | 2.60% | 1.96x103 30.56
(0.1259) | (0.0133) (77.77) (7.70)
40 20 0.6685 | 0.0529 | 4.00% | 1.97x103 33.26
(0.1343) | (0.0143) (83.68) (8.24)
40 30 0.6637 | 0.0553 | 3.20% | 1.98x103 34.54
(0.1275) | (0.0142) (84.10) (8.15)
40 40 0.6669 | 0.0577 | 3.00% | 1.98x10° 35.82
(0.1291) | (0.0140) (86.66) (7.95)
40 50 0.6596 | 0.0590 | 3.00% | 1.99x10° 36.36
(0.1260) | (0.0152) (87.14) (8.50)
50 10 0.6506 | 0.0498 | 3.80% | 1.96x10° 31.49
(0.1380) | (0.0141) (80.11) (8.27)
50 20 0.6553 | 0.0545 | 3.00% | 1.97x103 34.01
(0.1310) | (0.0154) (82.87) (8.79)
50 30 0.6556 | 0.0555 | 3.00% | 1.98x10° 34.46
(0.1339) | (0.0146) (83.64) (8.33)
50 40 0.6594 | 0.0579 | 3.60% | 1.98x103 35.75
(0.1310) | (0.0149) (85.32) (8.40)
50 50 0.6620 | 0.0593 | 2.80% | 1.98x103 36.50
(0.1297) | (0.0145) (87.71) (8.16)

GB1; AA; Low throughput;
N = 3; Ky = K3; K-means
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K, K> Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
110 10 0.6084 0.0315 1.40% 1.99x10° 21.01
(0.1242) | (0.0081) (50.36) (5.11)
10 20 0.6158 0.0365 1.20% 2.00x10° 23.94
(0.1182) | (0.0097) (55.21) (5.85)
10 30 0.6359 0.0415 2.20% 2.00x103 26.90
(0.1208) | (0.0107) (56.83) (6.34)
10 40 0.6366 | 0.0447 1.40% | 2.01x10° 28.74
(0.1167) | (0.0110) (57.18) (6.48)
10 50 0.6436 0.0474 2.60% 2.01x10° 30.31
(0.1230) | (0.0114) (60.59) (6.68)
20 10 0.6227 0.0397 2.20% 1.99x10? 25.89
(0.1261) | (0.0097) (62.79) (5.93)
20 20 0.6394 0.0451 3.20% 2.00x103 29.03
(0.1268) | (0.0106) (61.95) (6.34)
20 30 0.6429 0.0494 2.60% 2.00x103 31.40
(0.1253) | (0.0115) (64.63) (6.75)
20 40 0.6481 0.0524 3.20% 2.01x10% 33.00
(0.1248) | (0.0116) (65.31) (6.81)
20 o0 0.6601 0.0536 3.40% 2.01x10% 33.67
(0.1305) | (0.0120) (65.12) (6.93)
30 10 0.6491 0.0450 4.00% 1.98x103 28.84
(0.1317) | (0.0113) (68.48) (6.67)
30 20 0.6584 0.0514 3.20% 1.99x10° 32.34
(0.1277) | (0.0125) (67.36) (7.15)
30 30 0.6588 0.0548 3.00% 1.99x10° 34.17
(0.1288) | (0.0132) (70.29) (7.50)
30 40 0.6715 0.0571 5.60% 2.00x103 35.46
(0.1396) | (0.0135) (73.43) (7.64)
30 50 0.6672 0.0586 3.60% | 2.00x103 36.26
(0.1243)| (0.0130) (72.38) (7.28)
40 10 0.6550 0.0490 3.20% 1.97x103 31.15
(0.1259) | (0.0119) (74.34) (6.96)
40 20 0.6509 0.0551 3.00% 1.98x10? 34.39
(0.1338) | (0.0135) (74.60) (7.75)
40 30 0.6679 0.0583 4.20% 1.99x10° 36.14
(0.1323) | (0.0139) (76.22) (7.93)
40 40 0.6718 0.0599 4.40% 1.99x103 36.94
(0.1304) | (0.0134) (77.16) (7.64)
40 50 0.6717 0.0620 3.60% 1.99x103 38.00
(0.1282) | (0.0140) (79.08) (7.89)
50 10 0.6555 0.0513 3.00% 1.97x10° 32.38
(0.1278) | (0.0128) (73.14) (7.43)
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50 20 0.6699 0.0575 5.20% 1.97x10? 35.75
(0.1375) | (0.0138) (75.26) (7.86)
50 30 0.6649 0.0594 3.60% 1.98x103 36.63
(0.1310) | (0.0142) (80.44) (7.99)
50 40 0.6787 0.0608 6.00% 1.99x103 37.38
(0.1337) | (0.0141) (79.12) (7.89)
50 50 0.6725 0.0623 2.80% 1.99x10° 38.08
(0.1237) | (0.0143) (79.91) (7.95)
GB1; AA; Medium throughput;
N = 1; Seurat (Louvain)
k.param resolution Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
100 0.4 0.5043 0.0121 0.40% 2.08x10° 8.56
(0.1201) | (0.0032) (69.99) (2.27)
100 0.8 0.4886 0.0143 0.20% 2.10x103 10.02
(0.1081) | (0.0040) (68.17) (2.73)
100 1.2 0.5135 0.0162 0.20% 2.11x103 11.30
(0.1234) | (0.0044) (69.85) (3.05)
100 1.6 0.5378 0.0172 0.60% 2.13x103 12.02
(0.1329) | (0.0052) (73.31) (3.58)
100 2 0.5390 0.0174 0.80% 2.10x103 12.15
(0.1334) | (0.0051) (74.06) (3.54)
200 0.4 0.5089 0.0130 0.20% 2.00x103 9.15
(0.1204) | (0.0035) (44.70) (2.48)
200 0.8 0.5013 0.0135 0.20% 2.03x103 9.52
(0.1145) | (0.0035) (55.73) (2.44)
200 1.2 0.5217 0.0141 0.80% 2.03x10% 9.95
(0.1291) | (0.0041) (58.30) (2.85)
200 1.6 0.5289 0.0157 0.20% 2.05%x10% 11.00
(0.1242) | (0.0048) (54.08) (3.34)
200 2 0.5470 0.0163 0.40% 2.06x103 11.47
(0.1295) | (0.0052) (55.55) (3.59)
300 0.4 0.5006 0.0120 0.20% 2.03x103 8.54
(0.1160) | (0.0031) (41.59) (2.22)
300 0.8 0.5189 0.0133 0.60% 2.05x103 9.36
(0.1254) | (0.0035) (49.05) (2.44)
300 1.2 0.5420 0.0155 0.60% 2.03x10° 10.86
(0.1231) | (0.0041) (55.73) (2.87)
300 1.6 0.5419 0.0161 0.60% 2.03x103 11.30
(0.1325) | (0.0047) (55.95) (3.29)
300 2 0.5586 0.0174 0.80% 2.05x103 12.23
(0.1274) | (0.0054) (52.11) (3.74)
400 0.4 0.4936 0.0118 0.00% 2.02x10% 8.36
(0.1207) | (0.0031) (41.51) (2.23)
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400 0.8 0.5214 0.0135 0.20% 2.04x103 9.50
(0.1302) | (0.0034) (47.90) (2.38)
400 1.2 0.5485 0.0159 0.20% 2.03x103 11.13
(0.1265) | (0.0042) (52.23) (2.91)
400 1.6 0.5338 0.0159 1.20% 2.02x10° 11.11
(0.1265) | (0.0043) (50.12) (2.97)
400 2 0.5326 0.0159 0.40% 2.03x10? 11.12
(0.1209) | (0.0046) (51.14) (3.17)
500 0.4 0.5184 0.0116 0.60% 2.05x103 8.22
(0.1291) | (0.0029) (38.84) (2.11)
500 0.8 0.5091 0.0138 0.20% 2.03x103 9.74
(0.1227) | (0.0035) (47.29) (2.43)
500 1.2 0.5563 0.0160 1.60% 2.05x103 11.27
(0.1367)| (0.0044) (48.16) (3.03)
500 1.6 0.5550 0.0169 1.20% 2.03x103 11.78
(0.1272) | (0.0042) (49.11) (2.89)
500 2 0.5438 0.0164 0.80% 2.02x103 11.46
(0.1302) | (0.0042) (52.24) (2.88)
600 0.4 0.5156 0.0115 0.20% 2.04x103 8.19
(0.1265) | (0.0029) (37.93) (2.09)
600 0.8 0.5041 0.0131 0.60% 2.02x10° 9.27
(0.1250) | (0.0033) (45.34) (2.30)
600 1.2 0.5593 0.0159 1.20% 2.04x10? 11.19
(0.1333) | (0.0046) (48.04) (3.18)
600 1.6 0.5578 0.0167 0.40% 2.05%x10% 11.71
(0.1215) | (0.0044) (43.80) (3.06)
600 2 0.5528 0.0162 1.00% 2.03x103 11.35
(0.1318) | (0.0042) (47.92) (2.93)
700 0.4 0.5353 0.0116 1.20% 2.07x103 8.25
(0.1364) | (0.0029) (29.19) (2.10)
700 0.8 0.5130 0.0132 0.20% 2.01x103 9.34
(0.1183) | (0.0033) (43.31) (2.30)
700 1.2 0.5577 0.0154 1.40% 2.04x103 10.82
(0.1427) | (0.0043) (49.69) (2.99)
700 1.6 0.5544 0.0170 0.40% 2.04x103 11.87
(0.1232) | (0.0045) (45.95) (3.08)
700 2 0.5522 0.0165 1.20% | 2.03x10? 11.56
(0.1276) | (0.0043) (48.30) (2.95)
GB1; Georgiev; Medium throughput;
N =0 (Random sampling); K-means
K, K> Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
0 0 0.4753 0.0092 0.80% 4.71x103 6.60
(0.1352) | (0.0023) (1.12) (1.68)

GB1; Georgiev; Medium throughput;
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N = 3; Ky = K3; K-means

K, K> Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
10 10 0.6118 0.0324 1.60% 4.55x10° 21.50
(0.1384) | (0.0172) (73.02) (10.38)
10 20 0.6309 0.0395 2.00% 4.55x10° 25.51
(0.1422) | (0.0238) (76.35) (13.41)
10 30 0.6468 0.0436 3.80% 4.55x103 27.83
(0.1471) | (0.0260) (75.01) (14.61)
10 40 0.6575 0.0477 2.40% 4.55%10° 30.21
(0.1509) | (0.0264) (73.61) (14.87)
10 50 0.6606 0.0480 3.20% 4.55%10° 30.41
(0.1456) | (0.0256) (71.31) (14.40)
20 10 0.6327 0.0368 1.80% 4.55x10% 23.95
(0.1399) | (0.0210) (63.44) (12.07)
20 20 0.6449 0.0449 2.40% 4.54x103 28.53
(0.1396) | (0.0256) (65.24) (14.26)
20 30 0.6618 0.0478 3.40% 4.54x10% 30.24
(0.1428) | (0.0252) (60.75) (14.05)
20 40 0.6620 0.0495 3.20% 4.54x103 31.18
(0.1415) | (0.0251) (59.18) (13.99)
20 50 0.6683 0.0519 2.20% 4.54x10% 32.48
(0.1434) | (0.0256) (57.13) (14.27)
30 10 0.6473 0.0408 2.80% 4.55x103 26.21
(0.1495) | (0.0246) (62.76) (13.83)
30 20 0.6646 0.0483 3.60% 4.54x10° 30.42
(0.1510) | (0.0280) (60.11) (15.41)
30 30 0.6742 0.0519 3.00% 4.54x10% 32.40
(0.1471) | (0.0283) (56.77) (15.50)
30 40 0.6833 | 0.0539 4.60% | 4.54x103 33.61
(0.1432)| (0.0270) (56.97) (14.77)
30 50 0.6829 0.0539 3.40% 4.55x103 33.56
(0.1471) | (0.0266) (54.20) (14.69)
40 10 0.6407 0.0410 3.00% 4.55x103 26.19
(0.1522) | (0.0262) (63.07) (14.46)
40 20 0.6676 0.0490 2.60% 4.54x103 30.81
(0.1483) | (0.0277) (60.13) (15.20)
40 30 0.6682 0.0506 3.60% 4.54x10% 31.68
(0.1500) | (0.0274) (59.18) (14.97)
40 40 0.6695 0.0517 4.00% 4.55x103 32.39
(0.1494) | (0.0265) (56.67) (14.60)
40 50 0.6767 0.0529 3.00% 4.55x103 33.03
(0.1438) | (0.0262) (55.73) (14.38)
50 10 0.6448 0.0427 3.40% 4.54x10° 27.16
(0.1504) | (0.0244) (68.14) (13.71)
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50 20 0.6583 0.0489 2.80% 4.54x10° 30.64
(0.1456) | (0.0269) (65.49) (14.79)
50 30 0.6585 0.0500 3.20% 4.54x103 31.36
(0.1437) | (0.0255) (60.70) (14.11)
50 40 0.6709 0.0516 4.20% 4.55x103 32.20
(0.1504) | (0.0254) (60.37) (14.11)
50 50 0.6688 0.0517 3.40% 4.55x10° 32.27
(0.1458) | (0.0257) (53.75) (14.25)
PhoQ; AA; Medium throughput;
N =0 (Random sampling); K-means
K1 Ko Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
0 0 0.2256 0.0051 0.00% 2.10x103 3.70
(0.0945) | (0.0011) (23.87) (0.82)
PhoQ; AA; Medium throughput;
N = 3; Ky = K3; K-means
10 10 0.2888 0.0142 0.00% 1.95%x10° 9.38
(0.1117) | (0.0037) (55.37) (2.21)
10 20 0.2899 0.0154 0.00% 1.95%x10° 10.04
(0.1109) | (0.0042) (61.30) (2.43)
10 30 0.2941 0.0160 0.20% 1.96x10° 10.39
(0.1122) | (0.0040) (61.20) (2.29)
10 40 0.2937 0.0163 0.40% 1.96x103 10.53
(0.1137) | (0.0042) (63.06) (2.39)
10 50 0.2957 0.0167 0.60% 1.96x10° 10.77
(0.1171) | (0.0041) (60.82) (2.31)
20 10 0.2889 0.0158 0.00% 1.95x10? 10.25
(0.1077) | (0.0041) (62.64) (2.35)
20 20 0.2877 0.0168 0.20% 1.96x10° 10.79
(0.1057) | (0.0044) (67.68) (2.45)
20 30 0.2923 0.0172 0.00% 1.95%x103 11.02
(0.1049) | (0.0044) (65.91) (2.43)
20 40 0.2950 0.0178 0.20% 1.95%x103 11.32
(0.1103) | (0.0044) (68.93) (2.41)
20 50 0.2949 0.0179 0.20% 1.95%x103 11.41
(0.1121) | (0.0044) (71.86) (2.39)
30 10 0.2864 0.0169 0.20% 1.93x10° 10.84
(0.0990) | (0.0044) (72.50) (2.48)
30 20 0.2852 0.0178 0.20% 1.93x103 11.32
(0.0980) | (0.0045) (74.42) (2.45)
30 30 0.2954 0.0184 0.20% 1.93x10° 11.66
(0.1016) | (0.0044) (75.48) (2.41)
30 40 0.2993 0.0187 0.60% 1.93x10° 11.78
(0.1118) | (0.0046) (75.35) (2.52)
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30 50 0.2956 0.0191 0.40% 1.93x10° 11.98
(0.1054) | (0.0048) (74.61) (2.60)
40 10 0.2951 0.0178 0.40% 1.90x10° 11.30
(0.1115) | (0.0047) (78.49) (2.61)
40 20 0.3003 0.0185 0.00% 1.91x103 11.72
(0.1032) | (0.0047) (79.41) (2.60)
40 30 0.3010 | 0.0189 0.20% | 1.91x102 11.94
(0.1084)| (0.0047) (83.04) (2.56)
40 40 0.3073 0.0193 0.00% 1.90x10? 12.17
(0.1114) | (0.0047) (84.00) (2.60)
40 50 0.2993 0.0195 0.20% 1.90x10° 12.24
(0.1062) | (0.0048) (83.99) (2.61)
50 10 0.2911 0.0181 0.40% 1.91x103 11.47
(0.1027) | (0.0048) (81.69) (2.62)
50 20 0.2992 0.0191 0.60% 1.91x103 12.02
(0.1094) | (0.0047) (80.65) (2.55)
50 30 0.2998 0.0196 0.60% 1.91x103 12.25
(0.1121) | (0.0049) (85.13) (2.69)
50 40 0.3003 0.0199 0.20% 1.91x103 12.41
(0.0978) | (0.0048) (86.03) (2.56)
50 50 0.3020 0.0200 0.40% 1.91x103 12.49
(0.1048) | (0.0048) (87.09) (2.57)
PhoQ; Georgiev; Medium throughput;
N =0 (Random sampling); K-means
K, K> Max Mean Global MFAD MFAD
Fitness Fitness Max (Sequence) (Fitness)
Hitting
Rate
0 0 0.2272 0.0051 0.40% 4.71x10° 3.72
(0.1074) | (0.0012) (1.17) (0.87)
PhoQ; Georgiev; Medium throughput;
N = 3; Ky = K3; K-means
10 10 0.3382 0.0192 1.80% 4.52x103 12.18
(0.1606) | (0.0051) (75.63) (2.92)
10 20 0.3428 0.0212 2.60% 4.52x103 13.18
(0.1644) | (0.0057) (75.68) (3.18)
10 30 0.3569 0.0224 3.00% 4.52x103 13.80
(0.1734)| (0.0060) (73.80) (3.35)
10 40 0.3625 0.0227 2.60% 4.52x103 13.98
(0.1715) | (0.0058) (72.46) (3.18)
10 50 0.3783 0.0231 5.40% 4.52x103 14.16
(0.1987) | (0.0062) (72.27) (3.45)
20 10 0.3285 0.0188 1.60% 4.55%103 11.98
(0.1514) | (0.0049) (55.54) (2.81)
20 20 0.3369 0.0205 2.00% 4.55%103 12.86
(0.1581) | (0.0053) (53.77) (2.97)
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20 30 0.3510 0.0215 2.80% 4.55%103 13.40
(0.1634) | (0.0052) (53.05) (2.88)
20 40 0.3612 0.0221 3.20% 4.55%103 13.70
(0.1684) | (0.0053) (52.47) (2.88)
20 50 0.3778 0.0229 4.20% 4.55%x103 14.14
(0.1849) | (0.0054) (52.37) (2.97)
30 10 0.3305 0.0193 1.60% 4.55x103 12.21
(0.1462) | (0.0055) (56.81) (3.08)
30 20 0.3420 0.0209 2.80% 4.55%10° 13.04
(0.1635) | (0.0058) (55.49) (3.19)
30 30 0.3538 0.0216 3.40% 4.56x103 13.45
(0.1681) | (0.0056) (53.51) (3.05)
30 40 0.3491 0.0218 2.60% 4.56x103 13.53
(0.1599) | (0.0055) (51.19) (3.00)
30 50 0.3617 0.0224 3.40% 4.56x103 13.85
(0.1737) | (0.0055) (51.62) (2.98)
40 10 0.3381 0.0195 1.60% 4.55%103 12.31
(0.1495) | (0.0056) (60.96) (3.14)
40 20 0.3422 0.0209 2.00% 4.55%103 13.09
(0.1534) | (0.0054) (57.10) (3.02)
40 30 0.3461 0.0217 1.80% 4.55%x103 13.47
(0.1494) | (0.0053) (55.50) (2.89)
40 40 0.3641 0.0223 3.20% 4.55x10% 13.81
(0.1668) | (0.0054) (55.01) (2.99)
40 50 0.3492 0.0220 2.60% 4.56x10% 13.65
(0.1583) | (0.0052) (53.95) (2.84)
50 10 0.3477 0.0202 2.00% 4.53x103 12.70
(0.1593) | (0.0055) (63.37) (3.04)
50 20 0.3562 0.0214 2.80% | 4.54x10? 13.37
(0.1697) | (0.0057) (61.04) (3.16)
50 30 0.3536 0.0218 3.00% 4.54x103 13.51
(0.1670) | (0.0055) (61.01) (2.96)
50 40 0.3696 0.0225 4.40% 4.54x10° 13.89
(0.1821) | (0.0056) (60.24) (3.04)
50 50 0.3607 0.0229 3.40% 4.54x103 14.08
(0.1700) | (0.0056) (59.12) (3.01)
PhoQ; Georgiev; Low throughput;
N = 3; Ky = K3; K-means
10 10 0.3351 0.0196 2.00% 4.51x103 12.40
(0.1549) | (0.0051) (77.83) (2.90)
10 20 0.3453 0.0217 2.20% 4.51x10° 13.44
(0.1601) | (0.0056) (75.20) (3.09)
10 30 0.3698 0.0224 4.20% 4.51x103 13.83
(0.1860) | (0.0057) (74.08) (3.19)
10 40 0.3713 | 0.0234 3.40% | 4.51x103 14.35
(0.1765) | (0.0058) (73.10) (3.20)

37




10 50 0.3728 0.0236 4.60% 4.51x10° 14.44
(0.1880) | (0.0057) (72.17) (3.12)
20 10 0.3433 0.0194 2.00% 4.55x%10° 12.30
(0.1598) | (0.0049) (57.16) (2.74)
20 20 0.3718 0.0210 4.80% 4.55%x10° 13.16
(0.1904) | (0.0051) (55.87) (2.85)
20 30 0.3616 0.0222 3.80% 4.55x103 13.75
(0.1792) | (0.0052) (54.16) (2.89)
20 40 0.3686 0.0230 4.00% 4.55x%103 14.12
(0.1797) | (0.0048) (53.13) (2.60)
20 50 0.3680 0.0233 4.20% 4.55x%10° 14.31
(0.1799) | (0.0050) (52.80) (2.71)
30 10 0.3431 0.0201 2.20% 4.55%x10° 12.66
(0.1598) | (0.0053) (56.06) (2.97)
30 20 0.3566 0.0213 3.40% 4.56%x10° 13.30
(0.1719) | (0.0054) (54.30) (3.00)
30 30 0.3491 0.0224 1.60% 4.56x10° 13.81
(0.1478) | (0.0051) (52.25) (2.80)
30 40 0.3639 0.0228 3.80% 4.56x103 14.07
(0.1778) | (0.0052) (52.72) (2.85)
30 50 0.3725 0.0234 3.40% 4.56%x10° 14.36
(0.1750) | (0.0052) (52.79) (2.81)
40 10 0.3382 0.0203 2.00% 4.54x103 12.76
(0.1542) | (0.0051) (62.56) (2.87)
40 20 0.3404 0.0216 2.00% 4.55%103 13.43
(0.1492) | (0.0053) (58.07) (2.85)
40 30 0.3457 0.0222 2.60% 4.55x%10° 13.74
(0.1573) | (0.0052) (56.12) (2.87)
40 40 0.3520 0.0229 3.00% 4.55%x10° 14.08
(0.1646) | (0.0052) (54.76) (2.81)
40 50 0.3589 0.0233 2.80% 4.56x10° 14.30
(0.1610) | (0.0050) (53.41) (2.69)
50 10 0.3493 0.0211 2.00% 4.53x10° 13.21
(0.1555) | (0.0056) (64.40) (3.10)
50 20 0.3696 0.0225 3.40% 4.53%x103 13.95
(0.1734) | (0.0056) (63.02) (3.06)
50 30 0.3763 0.0229 4.20% 4.54%x10° 14.16
(0.1861) | (0.0057) (63.54) (3.11)
50 40 0.3707 0.0235 3.20% 4.54%x10° 14.44
(0.1715) | (0.0053) (60.59) (2.89)
50 50 0.3828 0.0239 4.80% 4.54%103 14.66
(0.1880) | (0.0053) (57.60) (2.87)
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Table S2: Compositions of CLADE training data. Two datasets, GB1 and PhoQ, were tested. Two encoding methods,
AA and Georgiev, were used. Medium- and low-throughput systems were simulated. Two clustering methods, K-means and
Louvain, were used. The training data consists of 384 variants. All metrics were evaluated on 500 independent repeats (Note:
A few repeats (less than 10/500) in deep hierarchical clustering (N = 3) with Georgiev encoding may have issue that a cluster
contains fewer variants than the number of its clusters at next hierarchy. These simulations were discarded and more simulations
with different random seeds were performed until 500 successful simulations were collected.). Both expectations and standard
deviations (in parenthesis) were shown for max fitness, mean fitness, sequence MFAD, and fitness MFAD in training data.
The sequence MFAD and the fitness MFAD quantify sequence diversity and fitness diversity, respectively. In each clustering
architecture, the case with best expected max fitness shown in Table 1 was highlighted by bold font.
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Training Errors

K, K> R, (CV) RMSE R, RMSE
(CV) (testing) (testing)
0 0 0.940 4.04x10™ 0.541 1.50%x103
K, K R, (CV) RMSE R, RMSE
(CV) (testing) (testing)
10 0 0.955 4.77x104 0.602 1.33x1073
20 0 0.957 5.40x10™ 0.618 1.29%1073
30 0 0.957 5.49x10™ 0.623 1.27x1073
40 0 0.958 5.59x 10 0.624 1.27x103
50 0 0.960 5.60x 10 0.625 1.27x103
60 0 0.960 5.78x10™ 0.627 1.26x1073
70 0 0.965 5.45%10™ 0.624 1.26x1073
80 0 0.966 5.56x 107 0.628 1.26x1073
90 0 0.966 5.50x10™%| 0.632 1.24x1073
100 0 0.967 5.63x10™ 0.627 1.26x1073
150 0 0.972 5.28x 10 0.626 1.26x1073
200 0 0.976 5.07x10™ 0.627 1.26x1073
250 0 0.977 4.90x10% 0.623 1.27x10°°
300 0 0.981 4.59x10™ 0.622 1.29%103
350 0 0.981 4.48x10% 0.622 1.28x103
400 0 0.983 4.31x10™ 0.616 1.30x1073
450 0 0.984 4.02x10% 0.610 1.32x103
500 0 0.985 3.93x10% 0.605 1.33x1073
550 0 0.985 3.94x10% 0.598 1.35%1073
600 0 0.987 3.49x10% 0.601 1.36x1073
650 0 0.987 3.52x10% 0.597 1.35%1073
700 0 0.987 3.63x10% 0.594 1.38x1073
750 0 0.988 3.42x10™* 0.584 1.39%1073
800 0 0.988 3.40x10% 0.582 1.41x103
850 0 0.988 3.34x104 0.584 1.41x103
900 0 0.989 3.20x10% 0.575 1.43x107°
950 0 0.989 3.04x104 0.574 1.44%x103
1000 0 0.989 3.01x10% 0.581 1.41x103
K K> R, (CV) RMSE R, RMSE
(CV) (testing) (testing)
10 10 0.961 5.47x10™ 0.622 1.27x103
10 20 0.962 5.70x10™ 0.622 1.27x1073
10 30 0.965 5.61x10™ 0.630 1.24%10°3
10 40 0.968 5.56x10™ 0.630 1.24x103
10 50 0.968 5.38x10™ 0.631 1.24x103
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20 10 0.967 5.42x 10 0.628 1.25x103
20 20 0.971 5.23x10™ 0.634 1.23x103
20 30 0.972 5.28 %10 0.635 1.23x103
20 40 0.974 5.13x10™ 0.638 1.22x103
20 50 0.976 5.06x10™ 0.638 1.22x103
30 10 0.970 5.56x10™ 0.631 1.24%103
30 20 0.974 5.31x10* 0.634 1.23x103
30 30 0.974 5.38x10™ 0.635 1.22x103
30 40 0.978 5.02x10% 0.637 1.22x103
30 50 0.978 5.09x10™ 0.634 1.23x103
40 10 0.974 5.12x 10 0.630 1.24x103
40 20 0.977 5.10x 10 0.631 1.24x103
40 30 0.978 5.11x10™% 0.635 1.23x1072
40 40 0.980 4.85x10™ 0.632 1.23x103
40 50 0.980 4.86x10™ 0.634 1.23x103
50 10 0.975 5.12x10™ 0.628 1.25%1073
50 20 0.979 4.84x10™ 0.628 1.24%103
50 30 0.980 4.54x10* 0.633 1.24%103
50 40 0.981 4.64x10™* 0.633 1.23x103
50 50 0.982 4.36x10™ 0.634 1.23%x103
GB1; AA; Medium throughput;
N = 3; Ks = K3; K-means
10 10 0.969 5.38x10™ 0.622 1.26x103
10 20 0.974 5.30x10™* 0.624 1.25%x1073
10 30 0.978 4.98x10™ 0.631 1.23%x10%
10 40 0.979 5.01x10* 0.629 1.23%x103
10 50 0.981 4.77x10™* 0.630 1.23x103
20 10 0.978 4.68x10* 0.629 1.24%1073
20 20 0.980 4.63x10™* 0.631 1.23x103
20 30 0.982 4.52x10™ 0.635 1.21x103
20 40 0.983 4.68x10™* 0.633 1.22x103
20 50 0.985 4.11x10™ 0.632 1.23x103
30 10 0.980 4.77x10™ 0.625 1.25x10™3
30 20 0.982 4.72x10™* 0.629 1.24%103
30 30 0.983 4.68x10™ 0.628 1.24x103
30 40 0.985 4.42x10% 0.633 1.23x1073
30 50 0.985 4.41x10* 0.627 1.25%x103
40 10 0.982 4.51x10™* 0.625 1.25x1073
40 20 0.984 4.58x10™ 0.625 1.25%x103
40 30 0.985 4.31x10™* 0.629 1.24x103
40 40 0.987 4.14x10™ 0.628 1.24x103
40 50 0.987 4.18x10™* 0.628 1.24x103
50 10 0.983 4.43x10™ 0.622 1.26x103
50 20 0.984 4.42x10™ 0.621 1.26x103
50 30 0.985 4.29%10™ 0.626 1.25%103
50 40 0.986 4.23x10™ 0.623 1.26x103
50 50 0.988 3.89x10™ 0.628 1.25%10%
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GB1; AA; Low throughput;

N = 3; Ky = K3; K-means

K, Ks R, (CV) RMSE R, RMSE

(CV) (testing) (testing)
10 10 0.971 5.29x10™ 0.624 1.26x1073
10 20 0.973 5.37x10™ 0.632 1.23%x103
10 30 0.977 5.39x10™ 0.634 1.22x103
10 40 0.980 4.94x10™* 0.639 1.20%x103
10 50 0.981 5.01x10™ 0.637 1.21x1073
20 10 0.976 5.02x10™% 0.636 1.22x103
20 20 0.980 4.91x10™ 0.640 1.20x1073
20 30 0.982 4.75x10™ 0.641 1.20x103
20 40 0.983 4.79x10™ 0.645 1.19%x103
20 50 0.984 4.61x10* 0.646 1.19%x10°3
30 10 0.978 5.25x10™ 0.634 1.22x103
30 20 0.982 4.91x10* 0.637 1.21x103
30 30 0.983 4.98x10™ 0.637 1.21x103
30 40 0.985 4.77x10™ 0.639 1.20x103
30 50 0.985 4.81x10% 0.638 1.21x103
40 10 0.981 4.94x10% 0.628 1.24%103
40 20 0.984 4.74x10™ 0.635 1.22x103
40 30 0.985 4.65x10™ 0.635 1.22x1073
40 40 0.986 4.48x10™ 0.637 1.22x1073
40 50 0.987 4.30x10™ 0.638 1.21x103
50 10 0.983 4.58x10* 0.629 1.24x103
50 20 0.985 4.60x10™ 0.636 1.22x103
50 30 0.986 4.46x10% 0.637 1.22x103
50 40 0.986 4.67x10™ 0.638 1.22x103
50 50 0.987 4.40x10™ 0.639 1.21x103

GB1; AA; Medium throughput;
N = 1; Seurat (Louvain)

k.param resolution R, (CV) RMSE Rp RMSE

(CV) (testing) (testing)
100 0.4 0.949 4.06x10™ 0.555 1.46x1073
100 0.8 0.953 3.90x10™* 0.564 1.43%x1073
100 1.2 0.957 4.04x10™ 0.573 1.40x103
100 1.6 0.958 4.33x10* 0.573 1.41x103
100 2 0.957 4.48x10™ 0.567 1.42x103
200 0.4 0.954 3.94x10™ 0.535 1.50x1073
200 0.8 0.952 3.85x10™ 0.548 1.46x103
200 1.2 0.953 3.97x10™ 0.549 1.46x1073
200 1.6 0.958 4.09x10™ 0.558 1.45%103
200 2 0.961 4.06x10™ 0.564 1.44%x103
300 0.4 0.946 4.34x10™ 0.537 1.49%103
300 0.8 0.948 4.33x10™ 0.553 1.45%1073
300 1.2 0.957 4.19x10™* 0.567 1.42x1073
300 1.6 0.954 4.44x10% 0.561 1.44%103
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300 2 0.960 4.44x10™ 0.570 1.43%x1073
400 0.4 0.948 4.06x10™ 0.529 1.52x1073
400 0.8 0.952 4.11x10™* 0.550 1.47%x103
400 1.2 0.954 4.60x10™ 0.571 1.42x1073
400 1.6 0.955 4.51x10™ 0.573 1.41x1073
400 2 0.956 4.41x10™ 0.572 1.41x103
500 0.4 0.949 4.10x10™ 0.533 1.51x103
500 0.8 0.954 3.97x10™ 0.554 1.45%103
500 1.2 0.952 4.73x10%| 0.568 1.43x1073
500 1.6 0.956 4.80x10™ 0.580 1.39%x103
500 2 0.955 4.53x10™ 0.569 1.41x1073
600 0.4 0.947 4.16x10™ 0.534 1.51x103
600 0.8 0.951 4.00x10™ 0.548 1.47x103
600 1.2 0.957 4.38x10™ 0.569 1.43%x1073
600 1.6 0.956 4.75x10™ 0.587 1.37x103
600 2 0.957 4.61x10™ 0.581 1.39%103
700 0.4 0.949 4.39x10™ 0.543 1.49%103
700 0.8 0.950 4.14x10™ 0.545 1.47x103
700 1.2 0.951 4.85x10™ 0.567 1.43%x103
700 1.6 0.956 4.89x10™ 0.585 1.38x1073
700 2 0.953 4.93x10™ 0.585 1.38x103

GB1; Georgiev; Medium throughput;

N =0 (Random sampling); K-means
K1 K, R, (CV) RMSE R, RMSE

(CV) (testing) (testing)

0 0 0.945 4.84x10™ 0.46 1.66x103

GB1; Georgiev; Medium throughput;

N = 3; K3 = K3; K-means
K Ko R, (CV) RMSE R, RMSE
(CV) (testing) (testing)

10 10 0.979 4.25x10™ 0.467 1.73x10°3
10 20 0.981 4.27x10™ 0.472 1.74%x1073
10 30 0.982 4.24x10™ 0.464 1.77%x103
10 40 0.982 4.38x10™ 0.468 1.77x1073
10 50 0.984 4.18x10™ 0.468 1.78%103
20 10 0.980 4.39x10™ 0.476 1.72x103
20 20 0.983 4.20x10™ 0.478 1.73%x103
20 30 0.983 4.39x10™ 0.476 1.74x103
20 40 0.985 4.09x10™ 0.480 1.74x103
20 50 0.986 4.18x10™ 0.485 1.73x103
30 10 0.982 4.06x10™ 0.485 1.68x103
30 20 0.985 3.87x10™ 0.486 1.68x103
30 30 0.985 4.01x10™* 0.484 1.70x103
30 40 0.986 4.15x10%| 0.493 1.69x103
30 50 0.986 4.18x10™* 0.497 1.68x1073
40 10 0.982 3.79x10™ 0.493 1.63x103
40 20 0.985 3.89x10™ 0.486 1.68x103
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40 30 0.985 3.84x10% 0.494 1.66x1073
40 40 0.986 3.86x10% 0.497 1.67x107°
40 50 0.986 4.00x104 0.499 1.67x1073
50 10 0.984 3.61x10% 0.487 1.66x1073
50 20 0.985 3.78x104 0.492 1.66x1073
50 30 0.985 3.80x10% 0.495 1.65x1073
50 40 0.986 3.77x104 0.498 1.64x1073
50 50 0.986 3.84x10% 0.500 1.64x1073
K K> R, (CV) RMSE R, RMSE
(CV) (testing) (testing)
0 0 0.825 2.30x10™ 0.381 4.54x104
K, K> R, (CV) RMSE R, RMSE
(CV) (testing) (testing)

10 10 0.865 4.16x10* 0.437 4.26x104
10 20 0.865 4.37x10% 0.439 4.25x104
10 30 0.867 4.49%x104 0.440 4.25%104
10 40 0.869 4.43x10% 0.440 4.24x104
10 50 0.867 4.57x104 0.436 4.27x104
20 10 0.875 4.14x10% 0.433 4.30x104
20 20 0.875 4.26x10™ 0.433 4.29%10™
20 30 0.866 4.57x10% 0.433 4.29%104
20 40 0.866 4.72x104 0.434 4.29x104
20 50 0.872 4.66x10% 0.434 4.29x10*
30 10 0.871 4.31x10% 0.430 4.30x104
30 20 0.875 4.37x10% 0.432 4.29%104
30 30 0.871 4.66x10% 0.429 4.32x104
30 40 0.873 4.67x10% 0.431 4.31x104
30 50 0.869 4.84x10% 0.432 4.29x104
40 10 0.874 4.46x104 0.429 4.32x104
40 20 0.87 4.75x10% 0.429 4.30x10%
40 30 0.87 4.83x10% 0.432 | 4.30x10™*
40 40 0.871 4.99x10% 0.431 4.31x10%
40 50 0.870 4.96x104 0.431 4.31x104
50 10 0.872 4.53x10% 0.430 4.30x104
50 20 0.869 4.83x10% 0.428 4.31x104
50 30 0.868 4.90x10% 0.427 4.32x104
50 40 0.870 4.92x10% 0.426 4.33x104
50 50 0.872 4.98x10™ 0.429 4.32x10™

K K R, (CV) RMSE Ry RMSE
(CV) (testing) (testing)
0 0 0.899 1.88x10™ 0.378 4.56x104




PhoQ; Georgiev; Medium throughput;

N = 3; Ky = K3; K-means

K, K> R, (CV) RMSE R, RMSE

(CV) (testing) (testing)
10 10 0.909 4.80x10% 0.384 4.74x104
10 20 0.910 4.93x10™ 0.386 4.70x10™
10 30 0.907 | 5.60x10%| 0.383 | 4.77x10™*
10 40 0.900 5.89x10™ 0.383 4.75x104
10 50 0.902 6.07x10% 0.384 4.76x104
20 10 0.900 4.89%10™ 0.387 4.68x10™
20 20 0.900 5.34x10™ 0.388 4.70x10%
20 30 0.894 5.68x10™ 0.388 4.70x104
20 40 0.892 6.06x10* 0.387 4.70x104
20 50 0.892 6.38x10% 0.388 4.75x104
30 10 0.901 4.87x10% 0.390 4.61x104
30 20 0.896 5.46x10™ 0.392 4.62x104
30 30 0.893 5.81x10™ 0.387 4.66x104
30 40 0.887 5.93x10™ 0.392 4.61x104
30 50 0.895 5.89x10™ 0.392 4.66x10™
40 10 0.894 5.25%x 107 0.388 4.61x10%
40 20 0.893 5.51x10™ 0.390 4.62x104
40 30 0.889 5.73x10™% 0.391 4.63x10%
40 40 0.888 6.15x10% 0.39 4.66x10
40 50 0.892 5.72x10™ 0.394 4.60x104
50 10 0.894 5.56x 10 0.387 4.61x104
50 20 0.890 5.99x 10 0.388 4.63x104
50 30 0.886 5.95%10™ 0.390 4.63x104
50 40 0.884 6.44x10% 0.390 4.66x104
50 50 0.882 6.25x10% 0.392 4.65x10%

PhoQ; Georgiev; Low throughput;
N = 3; Ky = K3; K-means

K, K> R, (CV) RMSE R, RMSE

(CV) (testing) (testing)
10 10 0.912 4.69x10* 0.386 4.72x104
10 20 0.907 5.23x10™ 0.386 4.75x104
10 30 0.904 5.72x10™ 0.384 4.77x104
10 40 0.895 6.27x10"% 0.384 | 4.77x10™*
10 50 0.893 6.37x10% 0.385 4.76x104
20 10 0.906 4.94x10% 0.388 4.69x104
20 20 0.896 5.87x 10 0.385 4.74x104
20 30 0.899 5.74x10™ 0.390 4.73x104
20 40 0.897 5.98x 10 0.392 4.70x104
20 50 0.892 6.25x10% 0.391 4.71x104
30 10 0.900 5.39x10™ 0.393 4.61x104
30 20 0.895 5.75%x 107 0.393 4.66x10
30 30 0.888 6.02x104 0.397 4.60x104
30 40 0.883 6.64x10% 0.396 4.62x104
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30 50 0.888 6.51x10™ 0.398 4.59x104
40 10 0.894 5.46x10™ 0.394 4.57x10™
40 20 0.891 5.77x10™ 0.394 4.59x104
40 30 0.891 5.78x104 0.394 4.59x10™
40 40 0.886 6.21x10™ 0.398 4.58x104
40 50 0.887 6.23x10™ 0.397 4.62x10™
50 10 0.894 5.65x10™ 0.388 4.64x104
50 20 0.888 6.38x10™ 0.386 4.66x104
50 30 0.889 6.55x 10 0.390 4.66x10™
50 40 0.883 6.78x10™ 0.390 4.65x104
50 50 0.888 6.66x10 0.394 4.64x10

Table S3: Training errors of CLADE. All metrics were evaluated on 500 independent repeats. Two datasets, GB1 and
PhoQ, were tested. Two encoding methods, AA and Georgiev, were used. Medium- and low-throughput systems were simulated.
Two clustering methods, K-means and Louvain, were used. Root mean square errors (RMSE) and Pearson correlations (Rp)
were used to evaluate the performance of CLADE models on both 5-fold cross validation (CV) and testing set (i.e. Full
dataset excluding training data). In each clustering architecture, the case with best expected max fitness shown in Table 1 was
highlighted by bold font.
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Dataset Encoding Architecture Expected Expected Global max
method max fitness | mean fitness | hitting rate
GB1 AA N=0 0.774 0.305 18.6%
GB1 AA N=3 0.888 0.423 50.8%
GB1 AA N =3 (low 0.904 0.431 55.6%
throughput)
GB1 Georgiev N=0 0.747 0.272 8.2%
GB1 Georgiev N =3 0.860 0.367 30.6%
PhoQ AA N=0 0.299 0.072 1.0%
PhoQ AA N=3 0.357 0.093 3.0%
PhoQ Georgiev N=0 0.371 0.077 7.2%
PhoQ Georgiev N=3 0.503 0.096 20.6%
PhoQ Georgiev N =3 (low 0.501 0.099 21.0%
throughput)

Table S4: CLADE performance with different encoding methods on different datasets. Two datasets, GB1 and
PhoQ, were performed. Two encoding methods, AA and Georgiev, were used to compare their effects on CLADE. Clustering
architectures N = 0 and N = 3 were shown. N = 0 indicates randomly sampled training data which is equivalent to the MLDE
approach. Parameters for deep CLADE with N = 3 were explored (Table S1-S3), and the case with highest expected max
fitness was presented in this table. All cases used K-means for clustering method. TUnless explicitly indicated, the batch size
is taken as 96 to simulate the medium-throughput systems. All statistics were obtained from 500 independent repeats including
sampling and training. Expected max fitness and expected mean fitness were evaluated on top 96 variants from supervised
learning model. The global maximum hitting rate was evaluated on the union of the top 96 variants from supervised learning
model and the 384 variants in training data.
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Amino Acid Molecular Hydropathy | Surface Area | Volume (A?)
Mass (Da) index (A?)
A 89.094 1.8 115 88.6
R 174.203 -4.5 225 173.4
D 133.104 -3.5 150 111.1
N 132.119 -3.5 160 114.1
C 121.154 2.5 135 108.5
E 147.131 -3.5 190 138.4
Q 146.146 -3.5 180 143.8
G 75.067 -0.4 75 60.1
H 115.156 -3.2 195 153.2
1 131.175 4.5 175 166.7
L 131.175 3.8 170 166.7
K 146.189 -3.9 200 168.6
M 149.208 1.9 185 162.9
F 165.192 2.8 210 189.9
P 115.132 -1.6 145 112.7
S 105.093 -0.8 115 89.0
T 119.120 -0.7 140 116.1
W 204.228 -0.9 255 227.8
Y 181.191 -1.3 230 193.6
\% 117.148 4.2 155 140.0
AAlIndex FASG760101 | KYTJ820101 | CHOC760101 [10]
Entry [9] or
Reference

Table S5: Physicochemical descriptors for sequence encoding. Amino acids are given by the one letter codes.

ModelClass SpecificModel Rounds of Hyperopt
Keras NoHidden 10
Keras OneHidden 10
Keras TwoHidden 10
Keras OneConv 10
Keras TwoConv 10

XGBoost Tree 100
XGBoost Tree-Tweedie 100
sklearn GradientBoostingRegressor 100
sklearn RandomForestRegressor 100
sklearn ARDRegression 100
sklearn BaggingRegressor 100
sklearn LassoLarsCV 100
sklearn DecisionTreeRegressor 100
sklearn SGDRegressor 100
sklearn KNeighborsRegressor 100
sklearn ElasticNet 100

Table S6: List of models used in the ensemble supervised learning model. NHyperopt shows the rounds of hyper-
parameter optimizations performed for the regression model.
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Model Specific Tunable Default Hyperopt Hyperopt Description
Class Model parameter value Search Space Search
Method
Keras NoHidden dropout 0.2 0~0.5 uniform Dropout value
. dropout 0.2 0~0.5 uniform Dropout value
e Omatidldan sizel 0.25 0.25~0.75 uniform Size of the hidden layer: fraction of
the encoding dimension
dropout 0.2 0~0.5 uniform Dropout value
sizel 0.25 0.25~0.75 uniform Size of the first hidden layer: frac-
Keras TwoHidden tion of the encoding dimension
size2 0.0625 0.03125~0.25 uniform Size of the second hidden layer:
fraction of the encoding dimension
dropout 0.2 0~0.5 uniform Dropout value
filter_choice 0.5 0.25; 0.5; choice Width of the 1D convolutional win-
0.75; 1 dow: fraction of the number of mu-
tation sites
n_filtersl 0.0625 0.0625~0.25 uniform First layer; Number of filters: frac-
e OueClomy tion of the encoding dimensionality
of an amino acid
flatten_choice Average| Flatten; choice Flatten or pooling layer to ob-
Max; tain fully connected layer. Flatten:
Average Flatten layer. M
dropout 0.2 0~0.5 uniform Dropout value
filter_arch (0.5,0.5 (1,0.25); choice Widths of the two 1D convolutional
(0.75,0.5); windows: fraction of the number of
(0.75,0.25); mutation sites, given as a tuple
(0.5,0.5);
(0.5,0.25)
n_filtersl 0.0625 0.0625~0.25 uniform First layer; Number of filters used
in the first convolutional layer:
fraction of the encoding dimension-
ality of an amino acid
n_filters2 1/128 1/256~0.0625 uniform Second layer; Number of filters
used in the first convolutional layer:
Keras TwoConv fraction of the encoding dimension-
ality of an amino acid
flatten_choice Average Flatten; choice The method of flattening post con-
Max; volution
Average
eta 0.3 0.01~0.5 uniform
max_depth 6 2~10 quniform;
q=1
KBt e lambda 1 0~10 uniform
alpha 0 0~10 uniform
eta 0.3 0.01~0.5 uniform
XGBoost Tree- A max_depth 6 2~10 qunform;
Tweedie q=1
Lambda 1 0~10 uniform
alpha 0 0~10 uniform
learning_rate 0.1 0.01~1 uniform
n_estimators 100 10~500 quniform;
Gradient- q=1
sklearn Boosting- min_samples_split 2 0.005~0.03 uniform
Regressor min_samples_leaf 1 0.002~0.03 uniform
max_depth 3 3~10 quniform;
q=1
n_estimators 100 10~500 quniform;
q=1
Random- min_samples_split 2 0.005~0.03 uniform
sklearn Forest min_samples_leaf 1 0.002~0.03 uniform
max_depth None 3~10 quniform;
q=1
tol 1073 105 ~107° uniform
alpha_1 1076 1077 ~107° uniform
sklearn ARD- i alpha 2 107 1077 ~107° uniform
ficeression lambda 1 100 107 ~107 uniform
lambda,_2 1076 1077 ~107° uniform
n_estimators 10 10~500 quniform;
Bagging- q=1
sklearn Re:fesfion max_samples 1.0 0.1~1 uniform
max_iter 500 10~1000 quniform;
q=1
cv 5 2~10 quniform;
sklearn Lasso- q=1
LY max_n_alphas 1000 10~2000 quniform;
q=1
. max_depth None 3~10 quniform;
Decision- q=1
sklearn Tree- min_samples_split 2 0.005~0.03 uniform
Regressor min_samples_leaf 1 0.002~0.03 uniform
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alpha, 1074 107 ~10 uniform
SGD- 11_ratio 0.15 0~1 uniform
dlleemm Regressor tol 1073 107°~1073 uniform
n_neighbors 5 1~30 quniform;
q=1
KNeighbors- weights uniform uniform; choice
sklearn '
Regressor distance
leaf size 30 1~50 quniform;
q=1
) 2 1~2 uniform
. 11_ratio 0.5 0~1 uniform
el D alpha 1.0 10% ~10 uniform

Table S7: Tunable parameters in regression models and their search ranges in hyperopt. Hyperopt Search Method
indicates the sampling method in the given search space.

the search range.
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“uniform” is a value from uniform random sampling in the given
range low high. “quiniform” is a round-off value from uniformly random sampling in the given range low high with parameter
q: if the sampled value is a, then the round-off value is round(a/q)*q. “choice” returns one of the options in the list given in
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