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I. Details of neural network

1.1 Details of Generative Frameworks
In this work, we apply diffusion and flow matching models in PXRDGen to jointly generate the lattice
matrices (L) and fractional coordinates (F;) of crystal structures in a condition of chemical composition

(A) and PXRD pattern, which are adapted from DiffCSP! and FlowMM?.

1.1.1 Diffusion Models
The lattice diffusion is applied via the standard DDPM? process, which includes a forward diffusion
process and a backward generation process. The forward process gradually adds noise to L, towards
a Gaussian prior as
q(L¢|Lo) = N(Lt|\/67—tL0' A —-apl),

where @; = [1521(1 — Bs), Bs € (0,1) determines the standard deviation of each step.
And the backward process progressively denoises from the Gaussian prior via

P(Le1IMy) = N (Le_q|u(My), 0 (M)
where M; is the intermediate state of timestep ¢, and the time-dependent mean and stardard

deviation u(M,) and o?(M,) are defined by
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where the denoising term é;(M,,t) is predicted by the model. And the training objective is
defined as
Ly aiffusion = Eep~w(o,n,e~va,mlller — €L (M, O3]
The diffusion process of fractional coordinates utilizes score matching® on the wrapped normal

distribution. The forward process is defined as
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)T_1 is the noise scale at timestep t. The generation process is constructed via

t—1
where o; = 0y (ﬂ
01

the predictor-corrector algorithm® as
Fi_os = w(F, + (6f — 0f1)ép + 0r_1€p)
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where w(-) projects fractional coordinates back to RI®V, and ey, €' as Gaussian noises, ép

is yielded by the model with training objective as

L dif fusion = EF~q(F|Fo) t~U(1,T) [/1zr||VFt log q(F;|Fy) — ér (M, t)”z]

1.1.2 Flow Matching Models
As the lattices are defined in the Euclidean space, the flow path can be simply constructed as
q(L¢lLo) = N (Le|(1 — t) Lo, tI).
The training objective is defined as
Ly riow = Ee,~none~umlller — €L (Mg, O3],
The generative ODE process follows
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For the fractional coordinates, we first sample F; from the uniform distribution on the torus,
and connect the shortest path from the data F, to F; via the logarithmic map
logg, F; = w(F; — Fy +0.5) — 0.5. We also reduce the overall translation to acquire the final
target as vp(F, F1) = logg, F; — Mean(logg, F1). The training objective on coordinates is
Le flow = Ee~v,m),m~v(00) 1Er(Me, t) — ve(Fo, F)II3].
Inspired by FlowMM?, we apply the anti-annealing strategy during the generative ODE as
Fr_ar = Fe + (1 + 10t)€RAL



1.2 Details of Backbone Models

1.2.1 Decoder in Generating Structures in PXRDGen

We adapt CSPNet in DiffCSP! as the backbone decoder model, which is a graph neural network to
jointly model L and F;. It takes atom types furom(a;), time embeddings f,,s(t), and XRD features
fxrp from the XRD encoder as inputs, and acquires the initial atom representations via multi-layer
©
i

perceptron (MLP)as h; ' = p( fatom (@), fpos(£), fxr D). The message passing mechanism is modeled

as

mlgjs) . (hl(s—l)’h](s—l)’LTL’ ver(f _fi)>:
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where ¢y, ¢, are MLPs, and Ygr is the Fourier transformation. For the final output layer, we have
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where ¢, pr are MLPs.

1.2.2 Decoder in Generating Lattice in CellNet of PXRDGen
We adopt diffusion model to generate L in the CellNet, which means that the L can be generated given

only the XRD data. It takes time embeddings f,,5(t), XRD features fygp from the XRD encoder as

inputs, and is modeled as

€, = L¢L(fpos(t)'fXRD);
where ¢; is MLP.

1.3 Details of training neural networks

All the networks are implemented in Pytorch and Pytorch Lightning framework, and trained on
NVIDIA A100-PCIE-40GB GPUs.

In contrastive learning module, the batch size is set as 256, and the Adam optimizer is employed with a
learning rate of 1e-3 for XRDEncoder-CNN and le-4 for XRDEncoder-T, with a CosineAnnealingLR
scheduler. The training epoch is set as 400.

In crystal structure or lattice generation, the batch size is set as 256, and the Adam optimizer is employed
with a learning rate of 1e-3, with a ReduceLROnPlateau scheduler. The training epoch is set as 1000
for both diffusion model and flow model. Diffusion model samples crystal structures or lattices in 1000

steps, while flow model can generate structures in less steps, here 200 steps are chosen.
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II. Figures and Tables
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Figure S1. Visualization of the pre-trained contrastive learning module results. Panels (a)-(d)
display the heatmap of similarity metrics for a random selection of 100 samples from the test dataset
using XRDEncoder-T (t=1.0), XRDEncoder-CNN (t=1.0), XRDEncoder-T (t=0.05), and XRDEncoder-
CNN (t=0.05) respectively. Darker colors indicate higher matches.
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Figure S2. CellNet in PXRDGen. (a) Screen the best L from multiple L generated by CellNet. (b) The
demonstration of FastDTW. Dynamic Time Warping is used to describe the similarity of different
lengths of sequences. This scenario frequently occurs in XRD patterns when minor alterations in cell
parameters result in variations in peak numbers, as illustrated by the provided examples. Therefore,

utilizing FastDTW to determine the optimal L from multiple options is a logical approach.
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Figure S3. Examples of PXRDGen in Solving Challenging Structures. Demonstrating the
application of PXRDGen in resolving peak overlap to determine the structure of YsPd;Brio.
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Figure S4. Comparison of RMSE values before and after Rietveld refinement using the flow-CNN-
Ltruth module in the MP-20 dataset.



Table S1. Diffusion model combined with various pre-trained XRD encoders in MP-20 dataset.

Diffusion + Sample 1 Sample 20
fix

pretrained XRD encoder Match rate (%) RMSE  Matchrate (%) RMSE
origin * - 52.42 0.0639 77.69 0.0504
origin + ground truth - 67.74 0.0700 87.68 0.0431
XRDEncoder-T w/o CL - 50.93 0.0605 78.29 0.0505
XRDEncoder-T (t=1.0) yes 52.43 0.0569 78.92 0.0478
XRDEncoder-T (t=1.0) no 50.45 0.0646 78.33 0.0516
XRDEncoder-T (t=0.05) yes 60.09 0.0620 81.87 0.0457
XRDEncoder-T (t=0.05) no 49.44 0.0618 78.07 0.0540
XRDEncoder-CNN w/o CL - 58.76 0.0555 80.36 0.0422
XRDEncoder-CNN (t=1.0) yes 55.59 0.0582 78.80 0.0463
XRDEncoder-CNN (t=1.0) no 66.01 0.0601 84.04 0.0402
XRDEncoder-CNN (t=0.05) yes 56.85 0.0634 78.73 0.0502
XRDEncoder-CNN (t=0.05) no 65.56 0.0617 83.87 0.0422

* The origin result of DiffCSP shows 51.49% match rate, 0.0631 RMSE in one sample, and 77.93%
match rate, 0.0492 RMSE in 20 samples. Our test result is slightly better than the origin version.



Table S2. Flow model combined with various pre-trained XRD encoders in MP-20 dataset.

Flow + Sample 1 Sample 20
fix

pretrained XRD encoder Match rate (%) RMSE  Matchrate (%) RMSE
origin * - 58.25 0.0675 80.23 0.0540
origin + ground truth - 76.33 0.0746 87.97 0.0454
XRDEncoder-T w/o CL - 59.20 0.0674 80.17 0.0534
XRDEncoder-T (t=1.0) yes 60.78 0.0660 80.85 0.0517
XRDEncoder-T (t=1.0) no 59.99 0.0662 79.88 0.0525
XRDEncoder-T (t=0.05) yes 67.84 0.0724 83.63 0.0473
XRDEncoder-T (t=0.05) no 60.13 0.0732 80.13 0.0538
XRDEncoder-CNN w/o CL - 68.47 0.0724 84.16 0.0476
XRDEncoder-CNN (t=1.0) yes 60.32 0.0682 81.27 0.0538
XRDEncoder-CNN (t=1.0) no 68.07 0.0711 85.02 0.0495
XRDEncoder-CNN (t=0.05) yes 60.86 0.0761 81.45 0.0570
XRDEncoder-CNN (t=0.05) no 68.68 0.0707 85.37 0.0489

* This version is inspired and adapted by FlowMM, and the training epoch is set to 1000. When training
in 2000 epochs, it shows 61.80% match rate, 0.0605 RMSE in one sample, and 79.18% match rate,
0.0472 RMSE in 20 samples. Although the performance in one sample increases, the ability in 20
samples dose not gain more. So the training epoch of flow is set to 1000 to save time and to keep align

with diffusion model.
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Table S3. Results of CellNet in lattice generation in MP-20 dataset.

MAPE (Mean Absolute Percentage Error) /%

Cell
parameters L, Ly Lioo Ly Lsoo Liooo
a 6.3792 3.4658 2.6598 2.4584 2.0846 1.8750
b 4.8907 2.7106 2.1520 1.9053 1.6789 1.4781
c 6.0874 2.7942 2.1202 1.8803 1.5651 1.3780
o 7.4524 1.5136 0.7798 0.6213 0.4341 0.3424
B 5.3369 1.2756 0.7475 0.5939 0.4158 0.3440
v 6.6226 1.4259 0.7547 0.5318 0.3810 0.2828
A% 12.8206 6.9605 5.3762 4.9635 4.1894 3.5727
Cell RMSE (Root Mean Square Error)
parameters L, Ly Lioo Lo Lsoo Liooo
a 0.6555 0.4276 0.3505 0.3398 0.2959 0.2729
b 0.6274 0.4265 0.3579 0.3203 0.2906 0.2615
c 2.5196 0.8553 0.7079 0.6652 0.5221 0.4625
o 14.5805 4.9690 3.2510 2.6570 2.2032 1.7897
B 10.9401 4.2835 3.1762 2.6958 2.0387 1.8461
Y 13.9864 5.1898 3.4696 2.6341 2.0887 1.5966
\% 61.2992 42.7034 33.6405 34.0600 28.9132 26.5617

L refers to screen out the best lattice from N predicted lattice from CellNet, and the screening method is to
calculate the MAPE between the predicted cell and the target cell, which represents the upper capability of
the CellNet.
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Table S4. Performance of flow-CNN module given the predicted L by CellNet.

Generate structures given L Screen Method One sample One sample
Match rate (%) RMSE
flow-CNN - 68.68 0.0707
flow-CNN + Lirutn - 75.32 0.0726
flow-CNN + L, Compare with Liym 61.96 0.0694
flow-CNN + Lo Compare with Liym 71.05 0.0735
flow-CNN + Lo Compare with Liym 72.40 0.0743
flow-CNN + Lo Compare with L 72.92 0.0746
flow-CNN + Lsgo Compare with L 73.71 0.0752
flow-CNN + Liggo Compare with L 74.46 0.0744
flow-CNN + Ly FastDTW 67.80 0.0687
flow-CNN + Lo FastDTW 69.40 0.0680
flow-CNN + Lo FastDTW 69.57 0.0707
flow-CNN + Lsgo FastDTW 70.24 0.0693
flow-CNN + Liooo FastDTW 70.39 0.0707
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Ly represents to screen out the best lattice from N predicted lattice from CellNet.



