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I. Details of neural network 

 

1.1 Details of Generative Frameworks 

In this work, we apply diffusion and flow matching models in PXRDGen to jointly generate the lattice 

matrices (L) and fractional coordinates (Fi) of crystal structures in a condition of chemical composition 

(A) and PXRD pattern, which are adapted from DiffCSP1 and FlowMM2. 

 

1.1.1 Diffusion Models 

The lattice diffusion is applied via the standard DDPM3 process, which includes a forward diffusion 

process and a backward generation process. The forward process gradually adds noise to 𝐿0 towards 

a Gaussian prior as 

𝑞(𝐿𝑡|𝐿0) = 𝒩(𝐿𝑡|√𝛼̅𝑡𝐿0, (1 − 𝛼̅𝑡)𝐼), 

where 𝛼̅𝑡 = ∏ (1 − 𝛽𝑠), 𝛽s ∈ (0,1)𝑡
𝑠=1  determines the standard deviation of each step. 

And the backward process progressively denoises from the Gaussian prior via  

𝑝(𝐿𝑡−1|𝑀𝑡) = 𝒩(𝐿𝑡−1|𝜇(𝑀𝑡), 𝜎2(𝑀𝑡)𝐼) 

where 𝑀𝑡  is the intermediate state of timestep 𝑡 , and the time-dependent mean and stardard 

deviation 𝜇(𝑀𝑡) and 𝜎2(𝑀𝑡) are defined by 

𝜇(𝑀𝑡) =
1

√𝛼𝑡

(𝐿𝑡 −
𝛽t

√1 − 𝛼̅𝑡

𝜖𝐿̂(𝑀𝑡, 𝑡)) 
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𝜎2(𝑀𝑡) = 𝛽t

1 − 𝛼̅𝑡−1

1 − 𝛼̅𝑡
 

where the denoising term 𝜖𝐿̂(𝑀𝑡, 𝑡) is predicted by the model. And the training objective is 

defined as 

ℒ𝐿,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝔼𝜖𝐿~𝒩(0,𝐼),𝑡~𝑈(1,𝑇)[‖𝜖𝐿 − 𝜖𝐿̂(𝑀𝑡, 𝑡)‖2
2] 

The diffusion process of fractional coordinates utilizes score matching 4 on the wrapped normal 

distribution. The forward process is defined as 

𝑞(𝐹𝑡|𝐹0) ∝ ∏ exp (−
‖𝐹𝑡 − 𝐹0 + 𝑍‖2

2𝜎𝑡
2 )

𝑍∈ℤ3×𝑁
 

where 𝜎𝑡 = 𝜎1 (
𝜎𝑇

𝜎1
)

𝑡−1

𝑇−1
 is the noise scale at timestep 𝑡. The generation process is constructed via 

the predictor-corrector algorithm5 as 

𝐹𝑡−0.5 = 𝑤(𝐹𝑡 + (𝜎𝑡
2 − 𝜎𝑡−1

2 )𝜖𝐹̂ + 𝜎𝑡−1𝜖𝐹) 

𝐹𝑡−1 = 𝑤(𝐹𝑡−0.5 + 𝛾
𝜎𝑡−1

𝜎𝑡
𝜖𝐹̂ + √2𝛾

𝜎𝑡−1

𝜎𝑡
𝜖′𝐹) 

where 𝑤(⋅) projects fractional coordinates back to ℝ[0,1), and 𝜖𝐹 , 𝜖′𝐹 as Gaussian noises, 𝜖𝐹̂ 

is yielded by the model with training objective as  

ℒ𝐹,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝔼Ft~𝑞(𝐹𝑡|𝐹0),𝑡~𝑈(1,𝑇) [𝜆𝑡‖∇Ft
log 𝑞(𝐹𝑡|𝐹0) − 𝜖𝐹̂(𝑀𝑡, 𝑡)‖

2

2
] 

 

1.1.2 Flow Matching Models 

As the lattices are defined in the Euclidean space, the flow path can be simply constructed as  

𝑞(𝐿𝑡|𝐿0) = 𝒩(𝐿𝑡|(1 − 𝑡)𝐿0, 𝑡𝐼). 

The training objective is defined as 

ℒ𝐿,𝑓𝑙𝑜𝑤 = 𝔼𝜖𝐿~𝒩(0,𝐼),𝑡~𝑈(1,𝑇)[‖𝜖𝐿 − 𝜖𝐿̂(𝑀𝑡 , 𝑡)‖2
2]. 

The generative ODE process follows 

𝐿𝑡−Δ𝑡 = 𝐿𝑡 −
𝜖𝐿̂ − 𝐿𝑡

1 − 𝑡
Δ𝑡 

For the fractional coordinates, we first sample 𝐹1 from the uniform distribution on the torus, 

and connect the shortest path from the data 𝐹0  to 𝐹1  via the logarithmic map 

logF0
𝐹1  = 𝑤(𝐹1 − 𝐹0 + 0.5) − 0.5. We also reduce the overall translation to acquire the final 

target as 𝑣𝐹(𝐹0, 𝐹1) = log𝐹0
𝐹1 − 𝑀𝑒𝑎𝑛(log𝐹0

𝐹1). The training objective on coordinates is 

ℒ𝐹,𝑓𝑙𝑜𝑤 = 𝔼𝑡~𝑈(1,𝑇),𝐹1~𝑈(0,1)[‖𝜖𝐹̂(𝑀𝑡, 𝑡) − 𝑣𝐹(𝐹0, 𝐹1)‖2
2]. 

Inspired by FlowMM2, we apply the anti-annealing strategy during the generative ODE as 

𝐹𝑡−Δ𝑡 = 𝐹𝑡 + (1 + 10𝑡)𝜖𝐹̂Δ𝑡. 
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1.2 Details of Backbone Models 

1.2.1 Decoder in Generating Structures in PXRDGen 

We adapt CSPNet in DiffCSP1 as the backbone decoder model, which is a graph neural network to 

jointly model L and Fi. It takes atom types 𝑓𝑎𝑡𝑜𝑚(𝑎𝑖), time embeddings 𝑓𝑝𝑜𝑠(𝑡), and XRD features 

𝑓𝑋𝑅𝐷 from the XRD encoder as inputs, and acquires the initial atom representations via multi-layer 

perceptron (MLP) as ℎ𝑖
(0)

= 𝜌(𝑓𝑎𝑡𝑜𝑚(𝑎𝑖), 𝑓𝑝𝑜𝑠(𝑡), 𝑓𝑋𝑅𝐷). The message passing mechanism is modeled 

as 

𝑚𝑖𝑗
(𝑠)

= 𝜙𝑚 (ℎ𝑖
(𝑠−1)

, ℎ𝑗
(𝑠−1)

, 𝐿⊤𝐿, 𝜓𝐹𝑇(𝑓𝑗 − 𝑓𝑖)), 

𝑚𝑖
(𝑠)

= ∑ 𝑚𝑖𝑗
(𝑠)

𝑁

𝑗=1
, 

ℎ𝑖
(𝑠)

= ℎ𝑖
(𝑠−1)

+ 𝜙ℎ (ℎ𝑖
(𝑠−1)

+ 𝑚𝑖
(𝑠)

), 

where 𝜙ℎ, 𝜙𝑚 are MLPs, and 𝜓𝐹𝑇 is the Fourier transformation. For the final output layer, we have 

𝜖𝐿̂ = 𝐿𝜙𝐿 (
1

𝑁
∑ ℎ𝑖

(𝑆)
𝑁

𝑖=1
), 

𝜖𝐹̂[: , 𝑖] = 𝜙𝐹 (ℎ𝑖
(𝑆)

), 

where 𝜙𝐿, 𝜙𝐹 are MLPs. 

 

1.2.2 Decoder in Generating Lattice in CellNet of PXRDGen 

We adopt diffusion model to generate L in the CellNet, which means that the L can be generated given 

only the XRD data. It takes time embeddings 𝑓𝑝𝑜𝑠(𝑡), XRD features 𝑓𝑋𝑅𝐷 from the XRD encoder as 

inputs, and is modeled as  

𝜖𝐿̂ = 𝐿𝜙𝐿(𝑓𝑝𝑜𝑠(𝑡), 𝑓𝑋𝑅𝐷), 

where 𝜙𝐿 is MLP. 

 

 

1.3 Details of training neural networks 

All the networks are implemented in Pytorch and Pytorch_Lightning framework, and trained on 

NVIDIA A100-PCIE-40GB GPUs. 

In contrastive learning module, the batch size is set as 256, and the Adam optimizer is employed with a 

learning rate of 1e-3 for XRDEncoder-CNN and 1e-4 for XRDEncoder-T, with a CosineAnnealingLR 

scheduler. The training epoch is set as 400. 

In crystal structure or lattice generation, the batch size is set as 256, and the Adam optimizer is employed 

with a learning rate of 1e-3, with a ReduceLROnPlateau scheduler. The training epoch is set as 1000 

for both diffusion model and flow model. Diffusion model samples crystal structures or lattices in 1000 

steps, while flow model can generate structures in less steps, here 200 steps are chosen. 
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Ⅱ. Figures and Tables 

 

 

Figure S1. Visualization of the pre-trained contrastive learning module results. Panels (a)-(d) 

display the heatmap of similarity metrics for a random selection of 100 samples from the test dataset 

using XRDEncoder-T (t=1.0), XRDEncoder-CNN (t=1.0), XRDEncoder-T (t=0.05), and XRDEncoder-

CNN (t=0.05) respectively. Darker colors indicate higher matches. 
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Figure S2. CellNet in PXRDGen. (a) Screen the best L from multiple L generated by CellNet. (b) The 

demonstration of FastDTW. Dynamic Time Warping is used to describe the similarity of different 

lengths of sequences. This scenario frequently occurs in XRD patterns when minor alterations in cell 

parameters result in variations in peak numbers, as illustrated by the provided examples. Therefore, 

utilizing FastDTW to determine the optimal L from multiple options is a logical approach. 
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Figure S3. Examples of PXRDGen in Solving Challenging Structures. Demonstrating the 

application of PXRDGen in resolving peak overlap to determine the structure of Y6Pd1Br10. 
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Figure S4. Comparison of RMSE values before and after Rietveld refinement using the flow-CNN-

Ltruth module in the MP-20 dataset. 
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Table S1. Diffusion model combined with various pre-trained XRD encoders in MP-20 dataset. 

Diffusion +  

pretrained XRD encoder 
fix 

Sample 1 Sample 20 

Match rate (%) RMSE Match rate (%) RMSE 

origin * - 52.42 0.0639 77.69 0.0504 

origin + ground truth - 67.74 0.0700 87.68 0.0431 

XRDEncoder-T w/o CL - 50.93 0.0605 78.29 0.0505 

XRDEncoder-T (t=1.0) yes 52.43 0.0569 78.92 0.0478 

XRDEncoder-T (t=1.0) no 50.45 0.0646 78.33 0.0516 

XRDEncoder-T (t=0.05) yes 60.09 0.0620 81.87 0.0457 

XRDEncoder-T (t=0.05) no 49.44 0.0618 78.07 0.0540 

XRDEncoder-CNN w/o CL - 58.76 0.0555 80.36 0.0422 

XRDEncoder-CNN (t=1.0) yes 55.59 0.0582 78.80 0.0463 

XRDEncoder-CNN (t=1.0) no 66.01 0.0601 84.04 0.0402 

XRDEncoder-CNN (t=0.05) yes 56.85 0.0634 78.73 0.0502 

XRDEncoder-CNN (t=0.05) no 65.56 0.0617 83.87 0.0422 

 

* The origin result of DiffCSP shows 51.49% match rate, 0.0631 RMSE in one sample, and 77.93% 

match rate, 0.0492 RMSE in 20 samples. Our test result is slightly better than the origin version. 
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Table S2. Flow model combined with various pre-trained XRD encoders in MP-20 dataset. 

Flow +  

pretrained XRD encoder 
fix 

Sample 1 Sample 20 

Match rate (%) RMSE Match rate (%) RMSE 

origin * - 58.25 0.0675 80.23 0.0540 

origin + ground truth - 76.33 0.0746 87.97 0.0454 

XRDEncoder-T w/o CL - 59.20 0.0674 80.17 0.0534 

XRDEncoder-T (t=1.0) yes 60.78 0.0660 80.85 0.0517 

XRDEncoder-T (t=1.0) no 59.99 0.0662 79.88 0.0525 

XRDEncoder-T (t=0.05) yes 67.84 0.0724 83.63 0.0473 

XRDEncoder-T (t=0.05) no 60.13 0.0732 80.13 0.0538 

XRDEncoder-CNN w/o CL - 68.47 0.0724 84.16 0.0476 

XRDEncoder-CNN (t=1.0) yes 60.32 0.0682 81.27 0.0538 

XRDEncoder-CNN (t=1.0) no 68.07 0.0711 85.02 0.0495 

XRDEncoder-CNN (t=0.05) yes 60.86 0.0761 81.45 0.0570 

XRDEncoder-CNN (t=0.05) no 68.68 0.0707 85.37 0.0489 

 

* This version is inspired and adapted by FlowMM, and the training epoch is set to 1000. When training 

in 2000 epochs, it shows 61.80% match rate, 0.0605 RMSE in one sample, and 79.18% match rate, 

0.0472 RMSE in 20 samples. Although the performance in one sample increases, the ability in 20 

samples dose not gain more. So the training epoch of flow is set to 1000 to save time and to keep align 

with diffusion model. 
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Table S3. Results of CellNet in lattice generation in MP-20 dataset. 

Cell 

parameters 

MAPE （Mean Absolute Percentage Error）/ % 

L1 L20 L100 L200 L500 L1000 

a 6.3792 3.4658 2.6598 2.4584 2.0846 1.8750 

b 4.8907 2.7106 2.1520 1.9053 1.6789 1.4781 

c 6.0874 2.7942 2.1202 1.8803 1.5651 1.3780 

α 7.4524 1.5136 0.7798 0.6213 0.4341 0.3424 

β 5.3369 1.2756 0.7475 0.5939 0.4158 0.3440 

γ 6.6226 1.4259 0.7547 0.5318 0.3810 0.2828 

V 12.8206 6.9605 5.3762 4.9635 4.1894 3.5727 

 

 

Cell 

parameters 

RMSE（Root Mean Square Error） 

L1 L20 L100 L200 L500 L1000 

a 0.6555 0.4276 0.3505 0.3398 0.2959 0.2729 

b 0.6274 0.4265 0.3579 0.3203 0.2906 0.2615 

c 2.5196 0.8553 0.7079 0.6652 0.5221 0.4625 

α 14.5805 4.9690 3.2510 2.6570 2.2032 1.7897 

β 10.9401 4.2835 3.1762 2.6958 2.0387 1.8461 

γ 13.9864 5.1898 3.4696 2.6341 2.0887 1.5966 

V 61.2992 42.7034 33.6405 34.0600 28.9132 26.5617 

 

LN refers to screen out the best lattice from N predicted lattice from CellNet, and the screening method is to 

calculate the MAPE between the predicted cell and the target cell, which represents the upper capability of 

the CellNet. 

  



 12 

Table S4. Performance of flow-CNN module given the predicted L by CellNet. 

Generate structures given L Screen Method 
One sample 

Match rate (%) 

One sample 

RMSE 

flow-CNN - 68.68 0.0707 

flow-CNN + Ltruth - 75.32 0.0726 

flow-CNN + L1 Compare with Ltruth 61.96 0.0694 

flow-CNN + L20 Compare with Ltruth 71.05 0.0735 

flow-CNN + L100 Compare with Ltruth 72.40 0.0743 

flow-CNN + L200 Compare with Ltruth 72.92 0.0746 

flow-CNN + L500 Compare with Ltruth 73.71 0.0752 

flow-CNN + L1000 Compare with Ltruth 74.46 0.0744 

flow-CNN + L20  FastDTW 67.80 0.0687 

flow-CNN + L100 FastDTW 69.40 0.0680 

flow-CNN + L200 FastDTW 69.57 0.0707 

flow-CNN + L500 FastDTW 70.24 0.0693 

flow-CNN + L1000 FastDTW 70.39 0.0707 

 

LN represents to screen out the best lattice from N predicted lattice from CellNet. 

 

 

 
 


