REFERENCES
1.Sezer N, Evis Z, Kayhan S-M, Tahmasebifar A, Koç M (2018) Review of magnesium-based biomaterials and their applications. J Magnes Alloy 6:1:23–43. https://doi.org/10.1016/j.jma.2018.02.003
2.Chakraborty Banerjee P, Al-Saadi S, Choudhary L, Harandi S-E, Singh R (2019) Magnesium implants: prospects and challenges. Mater 12(1):136. https://doi.org/10.3390/ma12010136
3.Brar H-S, Platt M-O, Sarntinoranont M, Martin P-I, Manuel M-V (2009) Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61:31–34. https://doi.org/10.1007/s11837-009-0129-0
4.Ma J, Zhao N, Betts L, Zhu D (2016) Bio-adaption between magnesium alloy stent and the blood vessel: a review. J Mater Sci Technol 32:9:815–826. https://doi.org/10.1016/j.jmst.2015.12.018
5.Li Y-Q, Li F, Kang F-W, Du H-Q, Chen Z-Y (2023) Recent research and advances in extrusion forming of magnesium alloys: A review. J Alloys Compd 953:170080. https://doi.org/10.1016/j.jallcom.2023.170080
6.Jain V-K (2012) Microforming. In Microfacturing Processes, 1st ed.; CRC Press, Boca Raton, FL, USA, 2012; pp. 16–18. ISBN: 9781439852903
7.Engel U, Eckstein R (2002) Microforming—From basic research to its realization. J Mater Process Technol 125:35–44. https://doi.org/10.1016/S0924-0136(02)00415-6
8.Marín M, Ortega J, García A, Rubio E-M (2023) A review on micro-forming technologies: characteristics and trends for their industrial application. Procedia CIRP 118:863–866. https://doi.org/10.1016/j.procir.2023.06.148
9.Sharma S-K, Kodli B-K, Saxena K-K (2022) Micro forming and its applications: An overview. Key Eng Mater 924:73–91. https://doi.org/10.4028/p-3u80qc
10.Chaubey S-K, Jain N-K (2018) State-of-art review of past research on manufacturing of meso and micro cylindrical gears. Precis Eng 51:702–728. https://doi.org/10.1016/j.precisioneng.2017.07.014
11.Khalilpourazary S (2021) The effect of the ECAP process on the copper micro gears produced by the forward micro-extrusion process. CIRP J Manuf Sci Technol 35:53–62. https://doi.org/10.1016/j.cirpj.2021.05.010
12.Yan X, Zhang S, Huang K, Yang Y, Wang W, Wu M (2022) Effect of Holding Time on the Extrusion Force and Microstructure Evolution during the Plastic Forming of Ti-6Al-4V Micro-Gears. Mater 15:41507. https://doi.org/10.3390/ma15041507
13.Li J, Liu H, Shen Z, Qian Q, Zhang H, Wang X (2016) Formability of micro-gears fabrication in laser dynamic flexible punching. J Mater Process Technol 234:131–142. https://doi.org/10.1016/j.jmatprotec.2016.03.018
14.Fu M-W, Chan W-L (2012) A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67:2411–2437. https://doi.org/10.1007/s00170-012-4661-7
15.Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125:35–44. https://doi.org/10.1016/S0924-0136(02)00415-6
16.Chan W-L, Fu M-W, Yang B (2011) Study of size effect in micro-extrusion process of pure copper. Mater Des 32:7:3772–3782. https://doi.org/10.1016/j.matdes.2011.03.045
17.Chan W-L, Fu M-W, Lu J (2011) Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater Des 32:2:525–534. https://doi.org/10.1016/j.matdes.2010.08.032
18.Gu C-F, Davies C-H-J (2010) Thermal stability of ultrafine-grained copper during high speed micro-extrusion. Mater Sci Eng A 527:7–8. https://doi.org/10.1016/j.msea.2009.11.005
19.Cao J, Krishnan N, Wang Z, Lu H, Liu W-K, Swanson A (2004) Microforming: experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. J Manuf Sci Eng 126:4:642–652. https://doi.org/10.1115/1.1813468
20.Parasiz S-A, Kinsey B, Krishnan N, Cao J, Li M (2007) Investigation of deformation size effects during microextrusion. J Manuf Sci Eng 129:4:690–697. https://doi.org/10.1115/1.2738107
21.Krishnan N, Cao J, Dohda K (2007) Study of the size effect on friction conditions in microextrusion—part I: microextrusion experiments and analysis. J Manuf Sci Eng 129:4:669–676. https://doi.org/10.1115/1.2386207
22.Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51:5:606–616. https://doi.org/10.1016/j.ultras.2011.01.001
23.Xu L, Lei Y, Zhang H, Zhang Z, Sheng Y, Han G (2019) Research on the Micro-Extrusion Process of Copper T2 with Different Ultrasonic Vibration Modes. Metal 9:111209. https://doi.org/10.3390/met9111209
24.Kim W-J, Sa Y-K (2006) Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scr Mater 54:7:1391–1395. https://doi.org/10.1016/j.scriptamat.2005.11.066
25.Guo K, Liu M, Wang J, Sun Y, Li W, Zhu S, Wang L, Guan S (2020) Microstructure and texture evolution of fine-grained Mg-Zn-Y-Nd alloy micro-tubes for biodegradable vascular stents processed by hot extrusion and rapid cooling. J Magnes Alloys 8:3:873–882. https://doi.org/10.1016/j.jma.2019.09.012
26.Venkatesh B, Panigrahi S-K (2024) A superplastic micro-extrusion technology to develop engineered magnesium micro-components. J Mater Process Technol 327:118350. https://doi.org/10.1016/j.jmatprotec.2024.118350
27.Lou Y, Liu X, He J, Long M (2018) Ultrasonic-Assisted extrusion of ZK60 Mg alloy micropins at room temperature. Ultrasonics 83:194–202. https://doi.org/10.1016/j.ultras.2017.03.012
28.Funazuka T, Takatsuji N, Dohda K, Aizawa T (2018) Effect of Grain Size on Formability in Micro-extrusion—Research on Micro Forward-Backward Extrusion of Aluminum Alloy 1st report. J Jpn Soc Technol Plast 59:8–13. https://doi.org/10.9773/sosei.59.8
29.Funazuka T, Takatsuji N, Dohda K, Mahayotsanun N (2018) Effect of Die Angle and Friction Condition on Formability in Micro Extrusion—Research on Micro Forward-Backward Extrusion of Aluminum Alloy 2nd Report. J Jpn Soc Technol Plast 59:101–106. https://doi.org/10.9773/sosei.59.101
30.Preedawiphat P, Mahayotsanun N, Sucharitpwatskul S, Funazuka T, Takatsuji N, Bureerat S, Dohda K (2020) Finite element analysis of grain size effects on curvature in micro-extrusion. Appl Sci 10:144767. https://doi.org/10.3390/app10144767
31.Singh M, Singh A-K (2019) Magnetorheological finishing of micro-punches for enhanced performance of micro-extrusion process. Mater Manuf Process 34:1646–1657. https://doi.org/10.1080/10426914.2019.1689262
32.Enomoto T, Sugihara T (2010) Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann 59:1:597–600. https://doi.org/10.1016/j.cirp.2010.03.130
33.Gajrani K-K, Sankar M-R (2017) State of the art on micro to nano textured cutting tools. Mater Today Proc 4:2:3776–3785. https://doi.org/10.1016/j.matpr.2017.02.274
34.Patel K, Liu G, Shah S-R, Özel T (2019) Effect of Micro-Textured Tool Parameters on Forces, Stresses, Wear Rate, and Variable Friction in Titanium Alloy Machining. J Manuf Sci Eng 142:1–31. https://doi.org/10.1115/1.4045554
35.Kawasegi N, Ozaki K, Morita N, Nishimura K, Yamaguchi M (2017) Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment. Precis Eng 47:311–320. https://doi.org/10.1016/j.precisioneng.2016.09.005
36.Guo W, Tam H-Y (2012) Effects of extended punching on wear of the WC/Co micropunch and the punched microholes. Int J Adv Manuf Technol 59:955–960. https://doi.org/10.1007/s00170-011-3567-0
37.Aizawa T, Shiratori T, Kira Y, Inohara T (2020) Simultaneous Nano-Texturing onto a CVD-Diamond Coated Piercing Punch with Femtosecond Laser Trimming. Appl Sci 10:2674. https://doi.org/10.3390/app10082674
38.Komori Y, Suzuki Y, Abe K, Aizawa T, Shiratori T (2022) Fine piercing of amorphous electrical steel sheet stack by micro-/nano-textured punch. Mater 15:51682. https://doi.org/10.3390/ma15051682
39.Funazuka T, Dohda K, Shiratori T, Hiramiya R, Watanabe I (2021) Effect of punch surface grooves on microformability of AA6063 backward microextrusion. Micromachines 12:111299. https://doi.org/10.3390/mi12111299
40.Funazuka T, Dohda K, Shiratori T, Horiuchi S, Watanabe I (2022) Effect of Punch Surface Microtexture on the Microextrudability of AA6063 Micro Backward Extrusion. Micromachines 13:112001. https://doi.org/10.3390/mi13112001
41.Funazuka T, Horiuchi S, Dohda K, Shiratori T (2023) Effect of CoCrMo Die and Tool Surface Nano-Texture on Micro Backward Extrusion Formability of AA6063-T6. J Micro Nano-Manuf 11:2:021001–021001. https://doi.org/10.1115/1.4065330
42.Çelik A, Bayrak Ö, Alsaran A, Kaymaz İ, Yetim A-F (2008) Effects of plasma nitriding on mechanical and tribological properties of CoCrMo alloy. Surf Coat Technol 202:11:2433–2438. https://doi.org/10.1016/j.surfcoat.2007.08.030
43.Pourzal R, Catelas I, Theissmann R, Kaddick C, Fischer A (2011) Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions. Wear 271:9–10. https://doi.org/10.1016/j.wear.2010.12.045
44.Chen Y, Li Y, Kurosu S, Yamanaka K, Tang N, Koizumi Y, Chiba A (2014) Effects of sigma phase and carbide on the wear behavior of CoCrMo alloys in Hanks' solution. Wear 310(1–2):51–62. https://doi.org/10.1016/j.wear.2013.12.010
45.Chen Y, Li Y, Kurosu S, Yamanaka K, Tang N, Chiba A (2014) Effects of microstructures on the sliding behavior of hot-pressed CoCrMo alloys. Wear 319:1–2. https://doi.org/10.1016/j.wear.2014.07.022
46.Chen Y, Li Y, Koizumi Y, Haider H, Chiba A (2017) Effects of carbon addition on wear mechanisms of CoCrMo metal-on-metal hip joint bearings. Mater Sci Eng C 76:997–1004. https://doi.org/10.1016/j.msec.2017.03.211
47.Gautam P-C, Biswas S (2021) Effect of ECAP temperature on the microstructure, texture evolution and mechanical properties of pure magnesium. Mater Today Proc 44:2914–2918. https://doi.org/10.1016/j.matpr.2021.01.689