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Supplementary Information

1. Supplementary Text
1A. Formation heights of Ho and Ca IRT lines in the chromosphere

All three targets in this study have small vsini values (Table S1). Consequently, the
unpolarized, disk-integrated profiles we observed closely approximate the mean pro-
files derived from all disk pixels. We observed that all Ha profiles display a well-known
two-peak structure, consistent with predictions from Non-local Thermodynamic
Equilibrium (NLTE) atmospheric models [1, 2].

For solar active regions, longitudinal magnetic fields detected through Ha line
wings originate from the bottom of the chromosphere, whereas the line core emanates
from the mid-to-upper chromosphere, similar to the core of Ca IRT [3]. Figure S2
shows an example of the two-peak structure of Ha in Stokes I and corresponding V
profiles. We use standard indicators for the structure: the line-center depression (Ha:3),
the violet and red emission peaks (Ha2v and Ha2r), and the flux minima (Halv and
Halr). The wings of the profile are between Halx and Ha2x (x can be v or 1).

To evaluate the strength of the circular polarization signal, we calculated the aver-
age absolute ratio between V' and I profiles (|V/I|) for both the wings and core of the
line profile. We found that the average |V/I| of the wings is at least twice that of the
core, suggesting that the Stokes V' signal in Ha is predominantly detected within the
wings of the Stokes I profiles. Hence, the detected magnetic field in the Ha profiles
should be attributed to a lower height in the chromosphere.

According to solar observations [3], the core of Ca IRT is formed in the middle
chromosphere and its polarization profiles can be used to detect the fields there.

1B. Variation of the measured longitudinal magnetic field with height

The variation patterns of the longitudinal magnetic field (B)) measurements shown in
Figure 2 are predominantly influenced by the large-scale magnetic field structures[4].
As shown in Figure S3, the measurements of YZ CMi in the selected epoch generally
form one repeating pattern in the phase-folded diagram, indicating that the large-scale
magnetic fields are generally stable in one epoch by neglecting the differential rotation
of the stars. For AD Leo EV Lac, their patterns are less clear than YZ CMi, but they
can be fitted by a double sine function as shown in Figure 2. The large-scale magnetic
fields in the photosphere of all three targets generally exhibited a dipole structure[4—6].
However, the magnetic axis for these stars was not precisely aligned with the rotational
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axis, particularly for YZ CMi and EV Lac. Additionally, the inclination angle between
the rotational axis and the line-of-sight from Earth is significantly larger for YZ CMi
and EV Lac compared to AD Leo (Table S1).

Figure S4(a) presents possible scenarios that may explain the field with opposite
polarities at different heights. We see two magnetic field lines originating from
the same region but reaching different locations. For one large-scale magnetic loop,
if the direction of the loop sharply changes with height, the measured longitudinal
field at different heights can have different polarities. These scenarios may explain the
different strengths of average longitudinal magnetic fields at different heights, and the
sign of the middle chromospheric field can be opposite to that of the photospheric
field. As a test, we applied the photospheric field of AD Leo in Potential Field Source
Surface (PFSS) modeling[7] to extrapolate the large-scale field at a typical height
of the chromosphere of 1.003R, according to the Sun. As shown in Figure S5, with
the inclination of i« = 20° and 60°, although the radial field has very tiny variation,
it is still possible to result in a decrease of (B)) or even an opposite sign. We also
made simple simulations (details in Supplement Text 1C) to reproduce the observed
anti-correlations between layers. Note that the chromosphere should be much thinner
than shown in the figures, meaning that large-scale magnetic loops are highly curved
and lie very close to the stellar surfaces. Although actual situations are much more
complex, these toy models can already explain our observed field variation with height,
highlighting the strongly varying magnetic topologies with height.

Figures S6 to S8 present correlation analyses of all our measurements of longi-
tudinal fields between different atmospheric layers, along with corresponding linear
fittings for each correlation. Although the correlations between longitudinal fields in
different layers vary within each epoch, there is an overall global correlation with all
observations. For instance, in panel (a) of Figure S8, the photospheric magnetic field
strengths of EV Lac in 2016 are weak but aligned with the linear fitting derived from
the 2007 measurements, which exhibits a broader range of field variations. Similarly,
the single observation of YZ CMi in 2009 fits the trend observed in 2007. Even though
the field strength of AD Leo is relatively stable, a universal slope can still be observed
in Figure S6 (c). These linear relationships suggest an intrinsic connection between the
large-scale magnetic field structures from layer to layer, e.g., sharing the same mag-
netic loops. The numerical Pearson coefficient r and its two-tailed p-value are listed in
Table S5, indicating a highly significant correlation for all data between photospheric
and chromospheric fields, especially for YZ CMi and EV Lac.

1C. Complexity of the large-scale magnetic field structure

The complexity of the large-scale magnetic field close to the surface in our work
is evaluated by the correlation between layers. Zeeman-Doppler Imaging (ZDTI)
reconstruction of the 2-D chromospheric magnetic field map can poten-
tially provide information on field complexity. It is unclear whether the
small number of available chromospheric lines can be used to create a
reliable map. Nevertheless, some ideas from ZDI can still be useful for
testing the field complexity. For a model of magnetic field topology, we can define
the complexity of the large-scale magnetic field by the degree (¢) of the spherical



harmonics decomposition of the field [8]. The radial field is defined by B, (6,¢) =
SL 2t ReloumYem (0, ¢)], where (0, ¢) are the colatitude and longitude on the stel-
lar surface, Yo, = com Pem (cos0)e™® with cep = /(20 + 1(€ —m)!) /(47 (€ + m)!) and
Py, the associated Legendre polynomial. m gives the order of the spherical harmon-
ics mode and describes the azimuthal variation or symmetry of the field. In practice,
Qum 1s a complex coefficient corresponding to the radial poloidal field with specific £
and m. We examined dipole (¢ = 1), quadrupole (¢ = 2), and octupole (£ = 3) fields,
constructed from a photospheric field with slight asymmetry (give equal energy to
m=0 and m > 0) and extrapolated to the upper layers via Potential Field Source Sur-
face (PFSS) modeling[7]. We set an inclination of ¢ = 40° (Figure S9), the correlation
between the By of the photosphere and a layer outside at 1.05 R, is high with £ =1
and 2, but moderate for /=3. These extrapolations indicate that a more complex mag-
netic field structure results in a lower correlation between magnetic fields at different
layers. Our complexity ranking for the targets is as follows: AD Leo is the most com-
plex, YZ CMi is the most organized, and EV Lac is intermediate. These simulations
can also be used to explain the opposite polarities and anti-correlation between
different layers in our observations. In Figure S9 (b), opposite polarity frequently
happens, indicating that the quadrupole of the magnetic field is enough to generate
this phenomenon. In Figure S9 (c), we show a possible situation with an anti-correlated
pattern together with opposite polarities between the surface and outer layers,
suggesting that the octupole mode can account for both two phenomena. Note that
the solar chromosphere is located at only around 0.3% R above the surface, which is
about an order of magnitude lower than the layer we take in the simulation. This is
because the topology of the extrapolated field with PFSS does not vary too much from
the surface to such a low height, resulting in a correlation coefficient value close to 1.
The magnetic loops in the model (black lines in the middle panels of Figure S9) need
to be at a higher layer to achieve the degree of bending to reproduce the phenomena.

1D. Flare Frequency Distributions

Flare Frequency Distributions (FFDs) describe the relationship between the occurring
frequency of stellar flares and their energy or intensity. Specifically, FFDs quantify
how often flares of varying energies occur over a given period. We extracted the flares
from TESS Sector 1-57, with the state-of-the-art method dedicated to TESS flare
detection developed by [9]. Figure S9 presents FFDs for our three targets, using data
from the Transiting Exoplanet Survey Satellite (TESS) from 2018 to 2024, including
three sectors for each star. We see a trend that stars with more low-energy flares have
fewer high-energy flares. Figure S9 shows that stars with more complex fields tend to
exhibit more high-energy flares and fewer low-energy ones. In the solar case, it is well-
known that more complex magnetic field structures in active regions produce more
flares[10], which is similar to the occurrence of high-energy flares in our observations.
Fewer low-energy flares in the situation of more complex fields can be attributed to
the rich small-scale field on the surface of these M dwarfs, which can convert the
low-energy flares to increased magnetic dissipation and prune the FFD.
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2. Extended Data: Figures
S1. Modeling the photospheric component of Ca IRT in Stokes I €V

(a) A Lorentzian model (blue curve) is used to fit the broad wing (20-100 km/s) of
the Ca IRT LSD Stokes I profile (black dots). (c) The residual I profile (subtraction
of the Lorentzian model from the Stokes I profile) is used for (B.y) estimation. (b)
The corresponding circular polarization model (blue curve) with fixed (B,). The black
dots with error bars are the measured Stokes V profile. (d) The residual V profile
(subtraction of the circular polarization model from the Stokes V profile) is used for
(Beum) estimation.
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231 S2.An example of the Stokes-I and V profiles of YZ CMi from the
232 observation on 2007-12-29.

233 Blue and red vertical lines indicate the positions of emission peaks Ha2v and Ha2r.
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S3. Repeating pattern of measurements in the selected epoch of YZ CMia. 277

The measurements are the same as in Fig. 2; the color shows the day difference from 278
HJD = 2454500. For reference, the solid line represents the fit of the data using a 279

double sine function. 280
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S4. A cartoon showing a possible scenario of magnetic field with
opposite polarities at different heights

For example, we take a minimized magnetic field structure on the surface of AD Leo.
Two magnetic field lines originate from region A and then reach B and C, respec-
tively. The layers with red, orange and blue colors indicate the photosphere, lower
chromosphere and middle chromosphere, respectively. The angle between the line-of-
sight and rotation axis is set to be ¢ = 20°, with the shadow part of the star invisible
for observation. The visible parts of magnetic field lines are shown in the same col-
ors as layers. The arrows with different colors indicate the polarities of the measured
magnetic fields at corresponding layers.




S5. PFSS modeling experiment for AD Leo

We take the radial field of AD Leo in (a) for PFSS modeling, and obtain the extrap-
olated field at 1.003R, in (b). The corresponding line-of-sight mean field (B;) vs.
rotation phase with different inclinations of ¢ = 20° and 60° are shown in (c) and (d),

respectively.
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S6. Correlation among photospheric, lower and middle chromospheric

longitudinal magnetic fields for AD Leo

(a) The correlation between (Bp,) and (Bg,) for all data. The original values and
corresponding uncertainties can be found in Table S4. Each epoch legend has the start
date and is shown with a different color. For the epochs with over three observations,
a linear regression is presented by a line with the same color. A linear regression for all
observations is presented with the gray dashed line. (b,c) Same as panel (a), but for the
correlation between (Bov) and (Bp) (b), (Ber) (c), respectively. The corresponding
Pearson correlation coefficient for each linear fitting is presented in the table in the
upper-right panel with the same color selection as the other panel for each epoch.
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S7. Same as Fig. S6 but for YZ CMi:.

The original values and corresponding uncertainties can be found in Table S2.
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507 S8. Same as Fig. S6, but for EV Lac.
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S9. PFSS modeling with { =1, 2, and 3

Panels on the left show radial field distribution on the photosphere and corresponding
PFSS modeling results. The blue and red areas indicate the strengths of the magnetic
field, with the color bar shown in Gauss. Blue and red lines represent the negative-
and positive-polarity open field lines, respectively. The black lines are closed field lines.
Panels on the right present the variation of the average line-of-sight magnetic field
strength of the photosphere (black dashed lines, R = 1R,) and a higher layer (blue
lines, R = 1.05R,) as a function of the rotation phase. The corresponding correlation
coefficients p between the magnetic fields of the two layers are presented on the left
panels.
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599 S10. Cumulative Flare Frequency Distributions of the three stars, derived
600 from TESS observations.

601 The corresponding slope (red lines) 3 gives the power-law fitting for the middle-to-high

28§ energy part (1032 — 10335 erg), the value can be found in Table S1.
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3. Extended Data: Tables 645
S1. Stellar parameters of the observed M-dwarfs gjg
648
649
650
651
652
653
Values AD Leo YZ CMi EV Lac 654
Mass (Mg) 0.42 0.31 0.32 655
Radius (Rg) 0.38 0.29 0.30 656
Spec Type M3 M4.5 M3.5 657
log(Age) [yr] -0.764 -0.092 -0.052 658
Period (d) 2.22 2.77 4.378 659
RV (km/s) 12.3 26.6 -1.5 660
vsin ¢ (km s™1) 3.0 5.2 4.0 661
INCL (°) 20 60 60 662
(Bv)/(Br) 5.8% 13.3% 10.2% 663
B8 —0.79+0.09 —1.0244+0.0016 —0.67=+0.09 664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Most of the parameters are taken from [4], including stellar mass, radius, spectral
type, period, radial velocity (RV), vsin 4, and the inclination angle (INCL) between
the rotational axis and the line-of-sight from Earth. Stellar age are taken from [11],
the percentage of large-scale field (By)/(By) are taken from [12]. § gives the slope of
power-law fitting of FFD (Fig. S10).
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S2. Journal of observations for YZ CMi.

This is the information of the measurements plotted in Figure 2. Columns 1-3, respec-
tively, list the observation UT date, the heliocentric Julian date (HJD), and the
rotational phase calculated from the ephemeris in the Method section. Column 4
presents the total exposure time of the Stokes V' sequence. Columns 5-7 provide the
peak signal-to-noise ratio per 1.8 km s~! velocity bin measured in the unprocessed
spectra for the Ha line, the Ca II infrared triplet, and the full multi-line LSD pro-
file. Columns 8-10 list the disk-integrated longitudinal magnetic field derived with the
center-of-gravity method for the photosphere ((Bp)), the lower chromosphere ((Ber,),
from Hea), and the middle chromosphere ({(Bcy ), from Ca IRT ), all in gauss. Epoch-
by-epoch Pearson correlation coefficients between these three layers are compiled in
Table S5.

ObsDate JD Phase ExpTime SNR SNR SNR (By) (Ber) (Bemr)
(s) Ha CalIRT LSD (Gauss) (Gauss) (Gauss)
2006-1-13 2453748.9279  0.4108 1200 75 263 1918 -14 £22 0 2227 £ 30 -242 £ 57

2006-2-7 2453773.9434  0.4416 1800 127 431 2972 13+£15 -80+18 40 + 38

2007-1-26  2454127.4387  0.0573 3600 131 315 2766 -340 £ 23 -134 £+ 21 -13 £ 26
2007-1-27  2454128.4794  0.4330 3600 139 367 3289 664 £24 -455 4+ 20 -213 £42
2007-1-29 2454130.474  0.1531 3600 183 439 4106 -420 £ 18 -237 £16 -141 442
2007-2-1 2454133.5001  0.2455 3600 143 346 3002 -579 £30 -6354 18 -755 £ 38
2007-2-3 2454135.4944  0.9655 3600 150 364 3227 -86 £ 18 -199 £ 19 -315 &+ 40
2007-2-4 2454136.462  0.3148 3600 140 362 3230 -659 £27 -361 £ 21  -63 £ 46
2007-2-8 2454140.4775  0.7644 3600 137 333 2959 2+19 46 £22 94 + 46

2007-12-28  2454462.6263  0.0637 4800 157 378 3335 -215+£18 -804+ 19 49 £ 39
2007-12-29  2454463.6563  0.4355 4800 177 445 4183 -436 £19 -201 £ 17 61 + 40
2007-12-31  2454465.6705  0.1626 3600 122 307 2708  -126 £ 20 20 £22 206 £ 59
2008-1-1 2454466.6638  0.5212 4400 170 456 4079 -595 £23 -377 £ 15 -114 £ 34
2008-1-3 2454468.6611  0.2423 4400 149 342 3103 -49 £18 18 £19 257 £45
2008-1-20  2454485.9373  0.4792 880 104 347 2806 -466 20 -357 26  -33 £ 62
2008-1-22 2454488.52  0.4116 4800 156 386 3643 -349 £18 -106 £ 18 220 £ 35
2008-1-23  2454489.4511  0.7477 4800 143 355 3184 518 £23 -309 £21  -59 £ 50
2008-1-24  2454490.5339  0.1386 4800 161 386 3593 -189 &£ 17  -70 £ 18 111 +43
2008-1-25  2454491.4654 0.4749 4800 138 352 3192 -470 £ 22 -261 £ 21 69 + 48
2008-1-26  2454492.4536  0.8316 4800 179 431 4008 -413 £ 18 -229 £ 16 37+ 28
2008-1-27  2454493.4657  0.1970 4800 176 422 3946 -80 £ 15 27 £ 17 239 £ 42
2008-1-28  2454494.5307  0.5815 4800 139 390 3296 643 £26 -437 17 -94 £ 32
2008-1-29  2454495.4789  0.9238 4800 163 399 3474 484 £24 2017 124 £ 31
2008-2-2 2454499.4786  0.3677 4800 157 379 3412 -218 £17 -133 £ 18 194 £ 37
2008-2-4 2454501.4594  0.0828 4800 114 300 2432 -304 £24 -89+ 24 95 + 54
2008-2-5 2454502.4614  0.4446 4800 163 406 3748 -359 &£ 18 -230 &£ 16 100 % 29
2008-2-6 2454503.4964  0.8182 4800 171 430 3948 -405 £ 17 -251 £ 16 8 4+ 40
2008-2-9 2454506.4677  0.8909 4800 62 192 1397 -382 40 -304 £ 21 96 + 72
2008-2-11  2454508.4698  0.6136 4800 156 426 3904 581 £21 -350 £ 18 193 £ 48
2008-2-12  2454509.4742  0.9763 4800 173 432 3949 370 £17 -199 £ 17 108 £ 40
2008-2-13  2454510.4699  0.3357 4800 144 354 3207 -110 £ 17 18 £21 358 + 58
2008-2-14  2454511.4864 0.7027 4800 152 394 3636 -542 £21 -620 &£ 18 -362 £ 44
2008-2-15  2454512.4716  0.0583 4800 177 426 3950 -354 £17 -2214+16 151 £ 34
2008-2-16  2454513.4711  0.4192 4800 183 442 4098  -289 £ 15  -81 £ 17 498 £ 48

2009-1-30  2454862.4925  0.4197 4800 118 299 2594 -204 £21 -184 + 25 -1 £60
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S3

Same as Table S2, but for EV Lac.

ObsDate JD Phase ExpTime SNR SNR SNR (By) (Ber) (Beomr)

(s) Ha CalIRT LSD (Gauss) (Gauss) (Gauss)
2005-7-17  2453569.1119  0.0392 4800 289 946 9180 197+ 7 40+£7 528 + 20
2005-8-23  2453606.1478  0.4949 800 130 365 3245 -333 £ 15 -286 =29 -111 + 54
2005-9-18  2453631.9065 0.3759 3000 264 718 6646 18+7 -86+13 -100 + 31
2005-9-18  2453631.9447  0.3846 3000 259 705 6537 719 +£8 153 £ 12 421 + 26
2005-9-18  2453631.9828  0.3933 3000 286 729 7292 -3+ 80 £ 11 341 £ 24
2006-8-5 2453953.0731  0.7016 1200 176 551 5081 -537 £ 15 -253 =15 80 £ 15
2006-8-7 2453955.0663  0.1567 1200 201 557 5313 358 £12 157 =18 83 £ 40
2006-8-8 2453956.06 0.3836 1600 218 674 6390 -385 + 11 -234 £ 18 359 + 61
2006-8-9 2453957.0597  0.6118 920 169 491 4629 -448 £13 -208 £+ 24 794 £ 118
2006-8-10  2453958.0723  0.8430 1000 165 484 4467 -295 £ 12 -204 =19 254 + 40
2006-8-11  2453959.0728  0.0714 1000 189 514 4818 330 £ 12 126 =20 48 £ 45
2006-8-12  2453960.0761  0.3005 1000 175 455 4272 -152 + 12  -31+24 272 + 59
2007-7-28  2454309.5464 0.0882 3600 283 549 5999 669 -34+15 -13 + 48
2007-7-29  2454310.5661  0.3210 3600 229 558 6118 -423 £ 13 -208 = 16 195 £+ 38
2007-7-30  2454311.5937  0.5556 3600 198 515 5562 -540 =16 -216 = 14 627 £ 59
2007-7-31  2454312.5937  0.7840 2400 202 410 4386 83 + 13 -188 + 17 635 + 76
2007-8-1 2454313.5958  0.0127 2400 169 352 3688 272 + 16 85 + 23 19 + 57
2007-8-3 2454315.6018  0.4707 2400 171 402 4304 483 £ 17 -239 = 22 443 £ 80
2007-8-4 2454316.5998  0.6986 2400 201 418 4441 -244 £ 14 -250 £ 18 1081 + 105
2007-8-5 2454317.6712  0.9432 2400 162 356 3649 400 £ 18  -H4 £ 24 43 +£ 73
2007-8-10  2454322.5952  0.0674 2400 189 374 3930 99 £ 14  -16 £ 23 -43 + 64
2007-8-11  2454323.5977  0.2963 2400 140 307 3109 -376 £ 18 -195+ 36 234 + 117
2007-8-15  2454327.5882  0.2074 2400 188 396 4258 -322 £ 15 -242 + 23 220 £ 63
2007-8-18  2454330.5813  0.8907 2400 184 414 4465 434 + 16 37+£19 182 £+ 62
2007-8-18  2454331.5149  0.1039 2400 218 424 4577 -56 £ 12 -182 = 22 -196 = 91
2009-6-4 2454986.5995  0.6666 2400 163 384 3862 290 + 14 90 £ 23 74 + 90
2009-6-12  2454994.6321  0.5005 2400 146 320 3139 3+ 17 -215+£ 26 298 + 68
2009-6-13  2454995.5842  0.7179 2400 79 176 1558 277 £31 248 £ 52 -88 + 165
2009-8-15  2455059.3898  0.2853 2400 166 354 3429 74+£15 119 +£29 -120 &+ 102
2012-8-14 2456153.6218  0.1100 2400 155 351 3644 -403 £ 17 -287 =19 -145 + 32
2012-8-15 2456155.5086  0.5408 2400 138 316 3249 265 + 17 169 + 27 277 £ 78
2012-8-16  2456156.4857 0.7639 2400 131 287 2910 -119 +£18  -92 4+ 26 365 + 64
2012-8-17  2456157.5074 0.9971 2400 155 340 3534 267 = 16 75+ 19 -328 + 44
2012-8-22  2456161.6002 0.9315 2400 174 375 3946 -17 + 15 10 £ 19 67 £ 39
2016-7-15 2457584.5642  0.8092 2400 178 418 4173 -106 £ 12 -90 = 21 28 + 68
2016-7-16  2457585.5742  0.0398 2400 163 370 3624 71+ 16 132 £ 20 297 4+ 28
2016-7-18  2457587.6371  0.5108 2400 167 398 3947 292+ 12 -273 £ 22 152 £+ 51
2016-7-19  2457588.5683  0.7234 2400 188 444 4498 -16 £ 11 -134 £ 21 -133 £ 74
2016-7-20  2457589.5501  0.9475 2400 154 360 3554 -151 £ 14  -45 + 26 35 + 87
2016-7-21  2457590.5214  0.1693 2400 174 398 4001 26 + 12 =27 +£ 18 274 + 33
2016-7-26  2457595.5856  0.3255 2400 180 433 4371 S92+ 11 -254+19 182 £+ 47
2016-7-27  2457596.6157  0.5607 2400 185 447 4538 3111 -407 £20 -12 £ 56
2016-7-28  2457597.5553  0.7752 2400 193 442 4472 -90 £ 11 -101 £ 19 -50 + 49
2016-8-3 2457603.5542  0.1448 2400 173 369 3902 -20 £ 13 -86 + 22 22 £ 67
2016-8-7 2457608.4675  0.2665 2400 205 462 4721 -82+ 12 -182+ 14 28 £18
2016-8-9 2457609.5398  0.5114 2400 182 413 4222 -6 £12 -106 £ 19 215 £ 43
2016-8-12  2457612.5894  0.2076 2400 154 368 3629 -36 £ 14 -66 £ 24 111 + 66

17

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
e
775
776
T
778
779
780
781
782



783 84

784 Same as Table S2, but for AD Leo.

785
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ObsDate JD Phase ExpTime SNR SNR SNR (By) (Ber) (Ben)

(s) Ho CalIRT LSD (Gauss) (Gauss)  (Gauss)
2006-1-11 2453747.0876  0.5980 1200 105 342 2381  -261 £ 19 -43 + 33 120 £+ 28
2006-1-13 2453748.8868  0.4085 1200 149 414 3809 -270 £12 -132 £33 169 £ 38
2006-2-13 2453780.0705  0.4552 1200 174 509 4417 -284 £ 11 -27 £ 28 154 £+ 30
2006-6-9 2453895.8047  0.5877 2400 218 619 6127 -293 £ 9 -73+£22 192 £+ 26
2006-6-10 2453896.8124  0.0416 2400 298 985 9395 2877 -134£13 45 £ 13
2006-6-11 2453897.8005  0.4867 2400 315 1036 10092 -276 £ 6 -80 £ 13 121 £ 12
2006-6-12 2453898.7785  0.9272 2400 280 983 9386 315 £ 7 -121 £+ 12 86 + 12
2007-1-27 2454127.5975  0.9989 2400 178 382 4200 -303 + 13 -93 + 31 74 + 35
2007-1-28 2454128.6088  0.4544 2400 266 549 6336 239 +£9 -134+£21 81 £ 27
2007-1-29 2454129.5717  0.8881 2400 244 543 6281 -307 £ 10 -108 + 20 91 + 24
2007-1-30 2454130.6084  0.3551 2400 301 662 7855 -260 £ 8 -126 £ 16 54 £ 20
2007-2-2 2454133.6312  0.7167 2400 260 591 6835 -278 £9 -155 £ 18 20 £ 25
2007-2-3 2454134.6112  0.1582 2400 259 549 6345 273 +£9  -125 £ 18 63 + 22
2007-2-4 2454135.6217  0.6134 2400 266 565 6542 -250 £ 9 -155 + 19 -9+ 24
2007-2-5 2454136.5925  0.0507 2400 220 470 5497  -306 £ 11 -168 £ 22 79 + 27
2007-6-25  2454276.7715  0.1944 4000 330 998 8904  -261+7 -98+10 178 £15
2008-1-19 2454485.5177  0.2242 3200 206 436 4892  -286 + 11 -63 £ 28 169 + 36
2008-1-24 2454489.5683  0.0488 2400 253 551 6381 -253 £ 9 -85 +£21 142 + 30
2008-1-27 2454492.5379  0.3864 2400 259 582 6896 -296 £ 9 -82+£20 144 £+ 30
2008-1-28 2454493.5486  0.8417 2400 262 542 6208 224+ 9 -99 £+ 21 13 + 24
2008-1-30 2454495.5611  0.7482 2400 226 457 5231 -217+10 -88+ 23 93 + 27
2008-2-3 2454499.5675  0.5529 2400 247 524 6047 -266 £ 9 -66 =20 145 £+ 25
2008-2-5 2454501.5473  0.4447 2400 235 491 5606  -295 £ 10 -5 £ 23 141 £ 27
2008-2-6 2454502.5475  0.8953 2400 277 561 6570 -214 £ 8 -97 + 20 53 + 23
2008-2-10 2454506.5576  0.7016 2400 271 573 6654 -232+9 -58 £20 193 + 24
2008-2-12 2454508.5516  0.5998 2400 247 547 6259 -261 £ 9 -56 £ 21 230 £+ 26
2008-2-13 2454509.5564  0.0524 2400 258 567 6225 -240 £ 10 -100 + 21 61 + 26
2008-2-14 2454510.5523  0.5010 2400 181 375 4115 -279 £ 13 -58 + 33 269 + 43
2008-2-15 2454511.5694  0.9592 2400 261 522 5988 -203 £ 9 -71 +£23 102 £+ 28
2008-2-16 2454512.5537  0.4026 2400 255 576 6675 292+ 9 -81 £ 19 166 + 22
2011-12-1 2455896.756  0.9171 2400 212 488 5767 -240+£9 -1314+£24 101 + 34
2012-1-8 2455934.6407  0.9823 2400 259 611 7145 -239+£8 -113+£17 146 + 24
2012-1-9 2455935.6765  0.4489 2400 256 617 7149 -234 £ 8 -82 £ 17 109 £ 22
2012-1-10 2455936.605  0.8671 2400 222 530 6081 -233+£9 -123+£20 108 + 27
2012-1-11 2455937.7575  0.3863 2400 218 530 5959 -240 £ 9 -15+£ 16 211 + 16
2012-1-12 2455938.6659  0.7955 2400 260 661 7730 2407 11217 93+ 21
2012-1-13 2455939.6031  0.2176 2400 215 529 6034 -226 £9 -185 £ 21 76 + 27
2012-1-14 2455940.6416  0.6854 2400 261 615 7145 207 £ 8  -124 £+ 17 33 + 20
2012-1-15 2455941.6411  0.1356 2400 242 587 6902 -233+£8 -118 £ 16 56 + 21
2012-1-16 2455942.6256  0.5791 2400 233 534 6182 224 £9 135+ 20 81 £ 28
2016-2-17 2457435.7957  0.1782 2400 388 1467 7691 -199 £ 5 -56 =10 144 £+ 10
2016-2-18 2457436.8831  0.6681 2400 381 1314 7696 -170 + 4 10 £ 11 188 + 13
2016-2-23 2457441.8954  0.9259 2400 392 1443 7920 201 £ 5 -36 = 10 114+ 9
2016-2-24 2457443.0074  0.4268 2400 409 1470 8079 -178 £ 4 4+10 131 +£10
2016-2-29 2457447.9103  0.6353 1200 311 1072 5872 -166 + 5 42 £ 14 135+ 14
2016-3-1 2457449.0011  0.1266 1200 270 928 5105 -196 £ 6 =25+ 17 157 £ 15
2016-3-2 2457449.9154  0.5385 1200 308 1057 5844 -162 £ 5 -34 £ 13 153 £13
2016-3-3 2457450.8328  0.9517 1200 290 1027 5592 -203 £ 6 -63 £ 14 118 £ 12
2016-4-17 2457495.8253  0.2186 2400 238 920 4388 208+ 7 19415 77T+ 13
2016-4-20 2457498.7442  0.5334 2400 349 1317 6999 -184 £ 5 -82 + 12 74+ 11
2019-11-15  2458803.0577  0.0620 1200 280 1059 8882 2246 -189£12 -71+10
2019-11-16  2458804.0967  0.5300 1200 275 1003 8396 -200 £ 6 -107 £14 105+ 13
2019-11-19  2458807.089  0.8779 1200 180 647 4350 -183 £10 -83 £+ 21 43 +£19
2019-11-19  2458807.1062  0.8857 1200 190 596 4955 183 £ 9 -138 £23 51 £ 21
2019-11-19  2458807.1223  0.8929 1200 215 688 5753 -174 £ 8 -86 £ 20 33 £18
2019-11-21  2458809.1547  0.8084 1200 317 1048 9045 173 £ 5 -148 +£ 13 11+ 13
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S5. Epoch-by-epoch statistical information of each star

For each observing epoch defined in Tables S2-S4, the correlations between the disk-
integrated longitudinal magnetic fields measured in the three atmospheric layers.
Column 1 gives the UTC start date of the epoch and Column 2 its end date; Col-
umn 3 lists the number of individual Stokes V spectra acquired during that epoch
(ObsCount). Columns 4-6 provide the Pearson correlation coefficient 7, between the
epoch-averaged fields of two layers—photosphere (ph), lower chromosphere (cL) and
middle chromosphere (cM)—with the two-tailed probability p. Columns 7-9 list the
epoch-averaged longitudinal magnetic fields themselves, in gauss, for the photosphere
(mean (By)), the lower chromosphere (mean (Br,)) and the middle chromosphere
(mean (Benp)), respectively. Within each stellar block an “Overall” line combines all
epochs of that star and gives the correlation coefficients and mean fields derived from
the full decade-long data set.

StartDate ~ EndDate ObsCouut‘ rp(ph,cL)  rp(ph,cM)  rp(cL,cM) ‘ mean((B,)) mean((Bc)) mean((Ber))

AD Leo

2006-1-11 2006-6-12 7 (0.33,0.46) (0.25,0.59) (0.42,0.35) -284 -87 127
2007-1-27  2007-6-25 9 (-0.14,0.71)  (-0.13,0.74)  (0.62,0.08) =275 -129 70
2008-1-19  2008-2-16 14 (-0.22,0.45)  (-0.57,0.03)  (0.83,0.00) -254 -78 137
2011-12-1  2012-1-16 10 (-0.40,0.26)  (-0.69,0.03)  (0.74,0.02) -231 -114 101
2016-2-17  2016-4-20 10 (0.27,0.46)  (0.49,0.15)  (0.52,0.12) -187 -34 129
2019-11-15  2019-11-21 6 (0.61,0.20) (0.47,0.34) (0.73,0.10) -190 -125 29
Overall Overall 56 (0.26,0.05) (-0.19,0.17)  (0.64,0.00) -238 -91 106
YZ CMi

2006-1-13  2006-2-7 2 - - - 0 -1563 -100
2007-1-26  2007-2-8 7 (0.79,0.03)  (0.36,0.43)  (0.82,0.02) -392 -295 -201
2007-12-28  2008-2-16 25 (0.84,0.00)  (0.65,0.00)  (0.79,0.00) -358 -193 100
2009-1-30 2009-1-30 1 - - - -204 -184 -1
Overall Overall 35 (0.76,0.00)  (0.36,0.03)  (0.76,0.00) -340 -211 26
EV Lac

2005-7-17  2005-9-18 5 (0.59,0.29)  (0.60,0.28)  (0.84,0.07) -54 -19 216
2006-8-5 2006-8-12 7 (0.98,0.00) (-0.53,0.22)  (-0.50,0.26) -161 -92 270
2007-7-28  2007-8-18 13 (0.84,0.00) (-0.45,0.12)  (-0.57,0.04) -83 -131 257
2009-6-4 2009-8-15 4 (0.75,0.25)  (-0.45,0.55)  (-0.92,0.08) 161 60 41
2012-8-14  2012-8-22 5 (0.97,0.01)  (0.00,1.00)  (0.18,0.77) -1 -24 47
2016-7-15  2016-8-12 13 (-0.18,0.55)  (0.09,0.77)  (0.37,0.21) -54 -126 88
Overall Overall 47 (0.69,0.00)  (-0.35,0.02) (-0.18,0.22) -54 -84 167
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