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Experimental Section
Synthesis of the Ce(OH)3/CeO2 nanorods
Initially, 5 mL of aqueous Ce(NO3)3 solution (0.8 mmol mL-1) was added into 75 mL of aqueous NaOH solution (6.4 mmol mL-1) with continuous stirring at room temperature. After 30 min, the mixture was transferred to a Pyrex bottle (100 mL) for a hydrothermal process at 100 °C for 24 h. Finally, the Ce(OH)3/CeO2 pre-catalysts were washed alternatively with H2O and ethanol for three times and dried overnight at 60 ℃.
[bookmark: _Hlk159412228]Synthesis of the Ni-CeO2 catalysts
The Ni-CeO2 catalysts were prepared by hydrothermal of the Ni-Ce(OH)3/CeO2 catalysts at 180 °C for 12 h. Then, the solids were collected by centrifugation and washed with copious of H2O. Finally, the catalysts were dried overnight at 60 ℃. 
Synthesis of the reconstructed Ni-Ce(OH)3/CeO2 and H2-treated Ni-Ce(OH)3/CeO2 catalysts
The Ni-Ce(OH)3/CeO2 per-catalysts were treated by a flow of H2:CO2 (a ratio of 3:1, 50 mL min-1) at 600 ℃ for 2 h, resulting in the reconstructed Ni-Ce(OH)3/CeO2 catalysts.
The Ni-Ce(OH)3/CeO2 per-catalysts were treated by H2/Ar (10 vol.%, 50 mL min-1) at 600 ℃ for 2 h, giving the H2-treated Ni-Ce(OH)3/CeO2 catalysts.
Characterizations
Transmission electron microscope (TEM) characterizations were conducted using a JEOL2100F instrument operating an accelerating voltage of 200 kV. The high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and element mapping analyses were performed on a FEI Tecnai F30 microscope operated at 300 kV. X-ray photoelectron spectroscopy (XPS) profiles were acquired from a Thermo Electron Model K-Alpha with Al Ka as the excitation source. The Ni contents in various catalysts were determined by inductively coupled plasma optical emission spectrometer (ICP-OES). Alpha300R micro confocal Raman spectrometer (Raman) produced by German WITec Company was used to analyze the surface defects.
Experimental details of hydrogen temperature programmed reduction (H2-TPR) 
H2-TPR measurements were performed on the Auto Chem 2920 chemisorbent. Initially, 100 mg of catalyst was loaded into the sample tube, and then pretreated at 350 ℃ in an Ar atmosphere for 1 h (50 mL min-1). Once the temperature was lowered to 50 ℃, the gas was switched to a mixture of 10 vol.% H2/Ar (50 mL min-1). Subsequently, the temperature was gradually increased from 50 ℃ to 800 ℃ with a ramping rate of 10 ℃ min-1. Thermal conductivity detection (TCD) was used to monitor the consumption of hydrogen during the reduction process.
Experimental details of CO2 and CO temperature programmed reduction (TPD) 
The CO2-TPD experiments were conducted on the Auto Chem 2920 Chemisorbent. Typically, 100 mg of sample was pretreated at 200 ℃ in an Ar atmosphere for 0.5 h (50 mL min-1). After cooling down to 50 ℃, the gas was switched to CO2 (50 mL min-1) for adsorption of 0.5 h, and then purged with He (50 mL min-1) for 1 h. Under the He atmosphere, the temperature was raised from 50 ℃ to 800 °C with a heating rate of 10 °C min-1. 
The CO-TPD experiments were also performed using the Auto Chem 2920 Chemisorbent. Initially, 100 mg of sample was pre-treated at 200 ℃ in Ar atmosphere for 0.5 h (50 mL min-1). After cooling down to 50 ℃, the gas was switched to CO (50 mL min-1) for a 0.5 h adsorption period, and then purged with (50 mL min-1) He for 1 h. Under the He atmosphere, the temperature was gradually increased from 50 ℃ to 800 °C with a ramping rate of 10 °C min-1.
Calculations of reaction equilibrium
The gas-phase thermochemical data of reactants at various temperatures are obtained from the NIST Chemistry WebBook. According to the equation of the RWGS reaction, H and S of reactants and products at different temperatures are used to calculate ΔH and ΔS. Then, the thermodynamic state function ΔG is calculated using the formula of ΔG=ΔH–T×ΔS. Afterwards, the reaction equilibrium constant (K) is derived from the following formula.


Where R is the gas constant and T is the absolute temperature.
The chemical equilibrium at each temperature is calculated according to the ratio of hydrogen and carbon dioxide (H2: CO2 =3:1) in the reaction conditions. The specific equation used for the calculations is as follows:


Here, CO, H2O, H2 and CO2 represent the concentrations of CO, H2O, H2 and CO2 at the specific temperature, respectively.
Reaction order calculations
The reaction orders of different reactants are determined by the reaction rate equation of RWGS, as follows:


In the formula, rCO represents the rate of the CO generation, k is the reaction rate constant, PCO2 represents the partial pressure of CO2 under the reaction conditions, PH2 represents the partial pressure of H2 under the reaction conditions, α represents the reaction order of CO2, β represents the reaction order of H2.
Computational Methods
All the spin-polarized density functional theory (DFT) calculations were performed by using the Vienna ab initio simulation package (VASP).1,2 To accurately treat the Ce 4f orbital, a correction for Coulomb and exchange interactions (DFT+U) was employed by setting Ueff = 5.0 eV (Ueff = coulomb U – exchange J) applied to the Ce 4f state, according to previous studiy.3 The D3 correction method (DFT-D3) was employed in order to include van der Waals (vdW) interations.4 The projector-augmented wave (PAW) method was used to represent core-valence interations.5 Valence electrons were described by a plane wave basis with an energy cutoff of 400 eV. The generalized gradient approximation with the Perdew-Burke-Ernzerhof (GGA-PBE) functional was used to model electronic exchange and correlation.6 Electron smearing was employed via Gaussian smearing method with a smearing width consistent to 0.05 eV. The conjugate gradient algorithm was used in geometry optimization calculations. The force convergence criteria and energy convergence criteria were set to 0.03 eV/Å and 10-5 eV, respectively. The Brillouin zone was sampled at the Γ-point. A fluorite face-centered cubic Ce4O8 cell with Fmm space group was used to model the CeO2 unit cell. The calculated lattice parameter for CeO2 was 5.437 Å, which well matches the experimental value (5.412 Å).7
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[bookmark: OLE_LINK1]Figure S1. Adsorption behaviors of reactants on the ideal CeO2(110) surface. The optimized adsorption configurations of (a) CO2 and (b) H2 on the ideal CeO2(110) surface.
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[bookmark: OLE_LINK3]Figure S2. Adsorption behaviors of reactants on the FLP sites of CeO2(110) surface. The optimized adsorption configurations of (a) CO2 and (b) H2 on the FLP sites of CeO2(110) surface.
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Figure S3. Adsorption behaviors of reactants on the FLP sites of CeO2(110)-Nisurf surface. The optimized adsorption configurations of (a) CO2 and (b) H2 on the FLP sites of CeO2(110)-Nisurf surface.
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Figure S4. Adsorption behaviors of reactants on the FLP sites of CeO2(110)-Nisub surface. The optimized adsorption configurations of (a) CO2 and (b) H2 on the FLP sites of CeO2(110)-Nisub surface.
[image: ]
Figure S5. Adsorption behaviors of reactants on Ni4 cluster of Ni4/CeO2(110) surface. The optimized adsorption configurations of (a) CO2 and (b) H2 on Ni4 cluster of Ni4/CeO2(110) surface.
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Figure S6. Catalytic performance of PN-CeO2 and Nicluster/PN-CeO2 for RWGS reaction. (a) CO2 conversions and CO selectivity. (b) CO yields. Note: The PN-CeO2 catalysts have been demonstrated with the abundant FLP sites in our previous reports8,9. The Nicluster/PN-CeO2 catalysts exhibited the dual-active sites of Ni clusters and FLP sites. Reaction conditions: catalysts (50 mg), WHSV (72,000 mL gcat-1 h-1), H2:CO2:N2 of 3:1:8.
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Figure S7. Adsorption behaviors of CO on various catalysts. The optimized adsorption configurations of CO on the (a) Ni4/CeO2(110)-2OV and (b) carburized Ni4/CeO2(110)-2OV surfaces. 
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Figure S8. Characterizations of the Ce(OH)3/CeO2 pre-catalysts. (a) XRD pattern and (b) HR-TEM image.
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Figure S9. XRD analysis. (a) XRD and (b) locally magnified XRD patterns of the Ce(OH)3/CeO2, Ni-CeO2 and Ni-Ce(OH)3/CeO2 catalysts before and after the RWGS reaction. 
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Figure S10. TEM image of the Ni-Ce(OH)3/CeO2 pre-catalysts.
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Figure S11. Catalytic performance of Ni-Ce(OH)3/CeO2 with various Ni loading for RWGS. (a) CO2 conversions, (b) CO selectivity and (c) CO yields of various Ni-Ce(OH)3/CeO2 catalysts for the RWGS reaction. Reaction conditions: catalysts (50 mg), WHSV (72,000 mL gcat-1 h-1), H2:CO2:N2 of 3:1:8.


[image: ]
Figure S12. Characterizations of the Ni-CeO2 catalysts. (a) XRD pattern and (b) HR-TEM image.
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Figure S13. Catalytic performance of the Ni-Ce(OH)3/CeO2, Ni-CeO2 and Ce(OH)3/CeO2 catalysts for RWGS reaction. Reaction conditions: catalysts (50 mg), WHSV (72,000 mL gcat-1 h-1), H2:CO2:N2 of 3:1:8.
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Figure S14. Catalytic stability of Ni-Ce(OH)3/CeO2 for the RWGS reaction at 550 ℃ temperatures. Reaction conditions: Ni-Ce(OH)3/CeO2 (50 mg), WHSV (72,000 mL gcat-1 h-1), H2:CO2:N2 of 3:1:8, 550 °C.
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Figure S15. XPS analysis. XPS analysis of (a) Ni 3d and (b) C 1s peaks for the Ni-Ce(OH)3/CeO2, reconstructed Ni-Ce(OH)3/CeO2 and Ni-CeO2 catalysts.
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Figure S16. XPS analysis. XPS analysis of (a) Ce 3d and (b) O 1s peaks for reconstructed Ni-Ce(OH)3/CeO2, Ni-CeO2, reconstructed Ce(OH)3/CeO2 and Ni-Ce(OH)3/CeO2 catalysts.
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Figure S17. Kinetic measurements of the reconstructed Ni-Ce(OH)3/CeO2, Ni-CeO2 and reconstructed Ce(OH)3/CeO2 catalysts. Test results of the reconstructed Ni-Ce(OH)3/CeO2 catalyst at (a) 300 °C and (b) 500 °C. Test results of the Ni-CeO2 catalyst at (c) 300 °C and (d) 500 °C. Test results of the reconstructed Ce(OH)3/CeO2 catalyst at (e) 300 °C and (f) 500 °C. Note: The CO production rate serves as a function of CO2 and H2 concentrations on different catalysts. Reaction conditions: catalysts (40 mg), 100 mL min-1 of a gas flow (H2+CO2+N2), WHSV=150,000 mL g-1 min-1.

[image: ]
Figure S18. H2-TPR of the reconstructed Ni-Ce(OH)3/CeO2, Ni-CeO2 and reconstructed Ce(OH)3/CeO2 catalysts.
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Figure S19. H2/D2 isotope experiments on the reconstructed Ni-Ce(OH)3/CeO2 and Ni-CeO2 catalysts for the RWGS reaction. Reaction conditions: 50 mg of catalysts, 20 mL min-1 of a gas flow (H2/D2: 15 mL min-1 + CO2: 5 mL min-1), WHSV=24,000 mL g-1 min-1.
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Figure S20. Catalytic performance of the reconstructed Ni-Ce(OH)3/CeO2, Ni-CeO2 and reconstructed Ce(OH)3/CeO2 catalysts for RWGS reaction. (a) CO2 conversions and (b) selectivity of CO as function of reaction temperatures. Reaction conditions: 10 mg of catalysts, 100 mL min-1 gas flow (H2: 75 mL min-1 + CO2: 25 mL min-1), WHSV=600,000 mL g-1 min-1.
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Figure S21. CO2-TPD of the reconstructed Ni-Ce(OH)3/CeO2, Ni-CeO2 and reconstructed Ce(OH)3/CeO2 catalysts.
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Figure S22. In situ DRIFTS analysis. In situ DRIFTS spectra of (a) reconstructed Ni-Ce(OH)3/CeO2 and (b) Ni-CeO2 under the flowing of CO2. Note: The catalysts underwent pre-treatment by a flow of 50 vol.% CO2/Ar (50 mL min-1) for 1 h. After removing excess CO2 by a flow of Ar (50 mL min-1), a flow of 50 vol.% H2/Ar (50 mL min-1) was introduced, and the DRIFTS signals were collected at 450 °C every 20 s during a period of 15 mins. 
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Figure S23. In-situ DRIFTS spectra of the reconstructed Ni-Ce(OH)3/CeO2 under the flowing of CO2 and H2. The reconstructed Ni-Ce(OH)3/CeO2 catalysts were pretreated by a flow of 50 vol.% H2/Ar (50 mL min-1) for 1 h. After removing of the free H2 by a flow of Ar (50 mL min-1) in the catalytic environments, a flow of 50 vol.% CO2/Ar (50 mL min-1) was introduced. The DRIFTS signals were collected at 450 °C every 20 s for a period of 15 mins. Subsequently, the flow of 50 vol.% CO2/Ar gas (50 mL min-1) was switched to a flow of 50 vol.% H2/Ar (50 mL min-1), which was kept for another 30 mins to collect the DRIFTS signal every 20 s.




Table S1. Summary of the catalytic performance of RWGS reaction.
	Catalysts
	Temp
(℃)
	WHSV
(mL g-1 h-1)
	CO2 Conv.
(%)
	CO Sel.
(%)
	CO formation rate
(molCO gNi-1 h-1)
	Ref.

	Reconstructed Ni-Ce(OH)3/CeO2
	350
	72,000
	4.4
	99.9
	2.2
	This work

	Reconstructed Ni-Ce(OH)3/CeO2
	400
	72,000
	15.5
	99.4
	7.6
	This work

	Reconstructed Ni-Ce(OH)3/CeO2
	450
	72,000
	27.9
	99.5
	13.6
	This work

	Reconstructed Ni-Ce(OH)3/CeO2
	500
	72,000
	41.7
	99.6
	20.2
	This work

	Reconstructed Ni-Ce(OH)3/CeO2
	550
	72,000
	55.0
	99.9
	27.3
	This work

	Reconstructed Ni-Ce(OH)3/CeO2
	600
	72,000
	60.2
	99.9
	29.4
	This work

	15-Ni-CeO2
	300
	60,000
	52
	22.1
	0.2
	10

	2.4-Ni/nSiO2
	600
	/
	59.5
	98.2
	0.2
	11

	13.9-NiCuSap
	600
	15,000
	65.2
	82.2
	0.1
	12

	14.9-NiCoSap
	600
	15,000
	52.1
	65.1
	0.8
	12

	Ni/CeO2
	400
	300,000
	27.5
	95.2
	3.7
	13

	1.0-Ni-CeO2-NC
	400
	/
	18.1
	99.9
	0.04
	14

	1.0-NiO-CeO2-NC
	400
	/
	11.2
	99.9
	0.1
	15

	5.9-Ni@S16C
	500
	/
	20.2
	93.1
	2.5
	16

	SpNi
	250
	15,000
	40.2
	5.0
	0.5
	17

	1.0-Ni-CeO2
	350
	18,000
	99.9
	10.9
	1.4
	18

	1.0-Ni-CeO2
	400
	60,000
	99.9
	15.9
	6.2
	18

	NiMgO
	350
	/
	99.9
	/
	0.1
	19

	Ni@N-CNTs
	350
	12,000
	99.0
	/
	0.4
	20

	Ni@N-CNTs
	400
	12,000
	99.0
	/
	1.0
	20

	Ni@N-CNTs
	450
	12,000
	98.0
	/
	1.4
	20

	Ni@N-CNTs
	500
	12,000
	97.0
	/
	1.7
	20

	NiMgO
	300
	30,000
	89.0
	45.0
	2.7
	21

	Ni-Mg/SBA-15
	350
	30,000
	87.0
	62.0
	3.6
	21

	Ni-Mg/SBA-15
	400
	30,000
	80.0
	64.0
	3.6
	21

	15.1-Ni2P/CeO2
	400
	150,000
	66.0
	50.0
	7.3
	22

	15.1-Ni2P/CeO2
	450
	150,000
	71.0
	55.0
	8.9
	22

	15.1-Ni2P/CeO2
	500
	150,000
	82.0
	70.0
	14.2
	22

	15.1-Ni2P/CeO2
	550
	150,000
	85.0
	78.0
	18.9
	22

	15.1-Ni2P/CeO2
	600
	150,000
	94.0
	90.0
	24.6
	22

	Ni/CeO2
	400
	12,000
	62.0
	12.0
	0.2
	23

	Ni/CeO2
	500
	12,000
	72.0
	17.0
	0.3
	23

	Ni/CeO2
	600
	12,000
	74.0
	18.0
	0.3
	23

	Ni-1Mo
	400
	10,000
	80.0
	82.0
	8.0
	24

	Ni-MgO-CexZr1–xO2
	300
	50,000
	8.0
	80.0
	0.1
	25

	Ni-MgO-CexZr1–xO2
	350
	50,000
	18.0
	57.0
	0.2
	25

	Ni-MgO-CexZr1–xO2
	400
	50,000
	42.0
	20.0
	0.2
	25

	NiO/CeO2
	400
	/
	5.0
	99.9
	0.5
	26

	NiO/CeO2
	500
	/
	20.0
	99.9
	1.6
	26

	NiO/CeO2
	600
	/
	33.0
	99.9
	4.8
	26

	1%Ni-CeO2
	400
	
	4.5
	90.1
	0.9
	27

	l%Ni-CeO2
	600
	120,000
	35.0
	99.9
	1.7
	28

	Ni/CeO2-Al2O3
	500
	800,000
	62.0
	18.0
	0.3
	29

	Ni-CeZrOx
	700
	/
	50.1
	95.0
	6.5
	30

	Ni/Al2O3
	500
	240,000
	28.0
	50.0
	12.1
	31

	Ni/Al2O3
	550
	240,000
	33.0
	64.0
	18.0
	31

	Ni/Al2O3
	600
	240,000
	36.0
	78.0
	24.2
	31

	Ni/Al2O3-CeO2
	700
	50,000
	50.0
	80.0
	3.5
	32





Table S2. The assignment of IR bands occurred in the DRIFTS experiments
	Wavenumber from the 
literature (cm-1)
	Wavenumber in the 
experiment(cm-1)
	Species
	Ref.

	2163
	2175
	COads
	18

	2064
	2125
	Ni-(CO)2/3
	19

	2030-2020
	2057
	Ni-CO
	19

	1930
	1930
	Bridge Ni3-CO
	19

	1850
	1840
	Carbided Ni-CO 
	33
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