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Figure 1: Interfacial Stress Rheometer Sketch of interfacial stress rheometer (ISR). Dense colloidal monolayer sits on
water-oil interface that is bounded by two upright parallel glass walls. A thin magnetic needle cyclically shears the monolayer
using Helmholtz coils. Accurate rheometry is obtained by tracking needle position as a function of forcing; particle tracking
is used to characterize material microstructure.

6 Supplemental materials1

6.1 Discussion of systems2

Here we make a few comments on the breadth of properties covered by our systems (as summarized in table 4).3

First, we note that the systems studied span a large range of disorder, ranging from crystalline regions of several4

hundred particles (Fig. 2a) to merely a few (Fig. 2d). Second we note that, Lennard-Jones potentials are attractive5

at long distances. So our results hold for systems where some of the particles experience attraction, as long as the6

system is jammed. Finally, our systems span a wide range of length scales. Lennard-Jones systems are atomic scale.7

Lennard-JonesHertzianDipole-Dipole

a) b) c) d)

Dipole-Dipole

Figure 2: Disorder increasing left to right Crystalline regions visualized via sixfold bond orientation order,  6,
measured from particle positions. Size of crystals decreases from left to right, indicating an increase in disorder. Colors help
to indicate the lattice director (orientation) as a guide for the eye to help discern ordered and disordered domains. Dots with
large size indicate | 6| > 0.9, and small dot size indicates | 6| < 0.9. (Scale bars: 100µm). a) Mono-disperse, dipole-dipole,
experimental system B. b) Bi-disperse, dipole-dipole, experimental system A. c) Bi-disperse, Hertzian, simulation system D.
d) Bi-disperse, Lennard-Jones, simulation system C.

14



! "

#$ [%N]
Figure 3: Imposed force scales with fraction of dissipative events. Within the linear rheology regime studied,
the fraction of particles undergoing non-a�ne, disspative events scales linearly with the imposed force on the system. The
dashed lines (- - -) are added to guide the eye.

Dipole-dipole systems are colloidal scale. Hertzian systems are granular scale. One further di↵erence among our8

systems is that our experiments include an intermediary fluid and an interface, whereas our simulations do not. This9

serves to explore the role of specific energy dissipation (viscous drag in the experiments) versus unspecific dissipation10

(the simulations).11

6.2 Scaling of imposed force and non-a�ne events12

In the main text we identify that the entropic ratio s2,h varies as a quadratic in figure 4a. Our model, (main body13

equation 2), makes no prediction about the form of the scaling unless we know how force amplitude, F0, and the14

fraction of particles undergoing dissipative events, f
d

, scale with each other. These values scale linearly with each15

other in our experiments (Fig. 3), which results in a quadratic scaling. This is an approximation, as at very high16

strain amplitudes it is expected that the fraction of non-a�ne events will plateau at unity. But within the linear17

rheological regime studied here, this limit is not reached.18

6.3 Experimental potentials19

In this section we describe our method of estimating the mean inter-particle potential of our experimental systems20

A and B. Sulfate latex spheres of D
l

= 5.6µm and D

s

= 4.1µm are adsorbed at an interface of decane and water.21

The sulfate latex groups cover the surfaces of the particles, providing a charge. The charges and the presence of the22

interface cause the particles to experience dipole-dipole repulsion with each other. The dipole-dipole form is:23

u(r)

k

B

T

= a2
1

r

3
(1)

where u is the potential, k
B

is Boltzmann’s constant, T is the thermal temperature, a2 is the scaling constant, and24

r is the center to center distance of the particles. In our bi-disperse system, the average separation between small25

particles is r
ss

= 7.53µm. Separation between large particles is r
ll

= 8.74µm.26

This system is often used to study interfacial colloids; Park et al. [1] published a study that precisely measures the27

form of the interparticle potential quantitatively using Monte Carlo methods and optical tweezers. We used particles28

from the same manufacturer (Invitrogen Corporation, Carlsbad, CA) as Park et al. and followed the same particle29

cleaning procedure. They report that for particles of sizeD
P

= 3.1µm, the mean value of ha2,P i = 5.1±2.4⇥10�13
m

3,30

where P subscripts indicate Park et al.’s values.31
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Within our bi-disperse system, the osmotic pressure is the same between large-large and small-small particles.32

Here the osmotic pressure is �d

2
u(r)
dr

2 . This allows us to write:33

ha2,si
r

5
ss

=
ha2,li
r

5
ll

=
ha2,pi
r

5
pp

(2)

These equations are not linearly independent, so we extrapolate from our diameter-separation information ([D
s

, r

ss

]34

and [D
l

, r

ll

]) to determine r
pp

using D

P

. We find r

pp

= 6.72µm, ha2,si = 9.0⇥ 10�13
m

3, and ha2,li = 1.8⇥ 10�12
m

3.35

For the main body of the text we use the average weighted by particle numbers of ha2,si and ha2,li for the entire36

suspension as ha2i. Forces are calculated as F
el.

(r) = �du

dr

= 3ha2ikBT

r

4 .37

6.4 Phenomenological Derivation38

This section begins with the energy balance introduced in the main body (Eq. 1). In the first subsection we show39

how this equation is expanded to include the particulars of oscillatory shear. The second section lays out the details40

for quantifying bulk mechanical properties, such as yield.41

6.4.1 Specifics of oscillatory shear42

Briefly, as discussed in the main text, equation 1 quantifies energy accumulated in the system, TdS on the left hand43

side and the contributions from reversibly transferred and dissipated energy on the right hand side. Our experiments44

and simulations indicate that:45

T�S = F

⇤
x/2 + f

d

Fx. (3)

Here T is a fit constant that converts changes in entropy to changes in energy. S is the entropy of the entire system.46

F

⇤ is a property of the material that quantifies how jammed the particles are via the total force experienced by a47

typical particle with its neighbors. It is calculated as: F ⇤ = ⇢

R R
(�@u

@r

)g(x, y)dxdy, where ⇢ is the number density48

of particles, u is the inter-particle potential, and g(x,y) is the radial distribution function. Here f

d

is the fraction49

of particles undergoing dissipative events detected via non-a�ne rearrangements. Non-a�ne events are detected via50

D

2
min

. See Refs [2–4] for details on this calculation. Specifically, f
d

= N

d

/N , where N

d

is the number of particles51

experiencing non-a�ne events and N is the number of total particles observed. The proscribed shear force and52

resultant displacement of the shearing surface are F and x respectively. We define the � operation as the di↵erence53

between entropy at time t and the average entropy over an entire cycle of shear: �S = S(t)� S(t).54

We next summarize the specifics of our systems: most notably oscillatory shear and excess entropy. To apply55

equation 3 to the oscillatory shear cases considered in this paper, substitute in the time signals for shear surface56

displacement (x(t) = x0sin(!t + �)) and force (F (t) = F0sin(!t)) on the right-hand-side. On the left-hand-side,57

multiply by Nk

B

/Nk

B

:58

Nk

B

T�(
S

Nk

B

) =
F

⇤
x0

2
sin(!t+ �) +

N

d

N

F0sin(!t)x0sin(!t+ �) (4)

where ! is the frequency of the imposed force and � is the resulting time lag between the imposed force and the59

resulting displacement. � is an important physical parameter in rheology; it helps us to distinguish between solids,60

fluids, and everything in between. A fully elastic material has a � = 0[rad]; stress and strain are in phase as is seen61

from Hooke’s law. A fully viscous material has a � = ⇡/2[rad]; stress and strain are fully out of phase as is seen from62

Newton’s law of viscosity5.63

In our experiments, changes in pressure are negligible. Therefore, changes in absolute entropy are approximately64

the same as those for excess entropy (ds2 ⇠ ds � ds

I.G.

⇠ ds

total

); the ideal gas entropy is not expected to change.65

Notice, entropy has changed to lower case ’s’ to represent quantities that are normalized by N and in units of k
B

,66

which is convention. In simulations, entropy harmonics are directly calculated on TS = E + PV because pressure,67

P , volume, V , and energy, E, are accessible6–8. Additionally, here we implement the product-to-sum trigonometric68

identity (sin(u)sin(v) = (1/2)[cos(u� v)� cos(u+ v)]). Reorganizing gives:69

�s2 =
F

⇤
x0

2Nk

B

T

sin(!t+ �) +
N

d

F0x0

2N2
k

B

T

{cos(�)� cos(2!t+ �)}. (5)

16



Equation 5 describes the evolution of a jammed system as it undergoes oscillatory shear and is fully non-dimensional.70

It is now apparent that the second term on the right-hand side (with N

d

) has the second harmonic of the forcing71

frequency 2!; this relation reproduces the frequency shift of the entropy signals in our simulations and experiments72

(main body Fig. 3a). The appearance of the second harmonic in the entropy signal captures well the transition to73

plasticity.74

6.4.2 Connection to Rheology75

We investigate the yield transition further by taking the ratio of the first and second harmonics within frequency76

domain of s2, (s2,h ⌘ FFTs2 (2!)
FFTs2 (!) ), which follows from equation 4 as:77

s

2
2,h =

N

d

N

F0

F

⇤ . (6)

Equation 6 is visualized in figure 4a of the main text. This scaling is quadratic because N
d

and F0 scale linearly with78

each other (Fig. 3). The square of s2,h in equation 6, is included so that linear relationships are retained throughout.79

From here we revisit an idea posited by Falk and Langer (Ref.[9]): relaxation events are due to a local buildups of80

elastic energy that suddenly release (i.e. G

00 / N

d

G

0). Recently quantified for above yield cases in Ref.[3] and here81

expanded to below yield, G00 = 2a2

⇡A

N

d

G

0, where a is the first peak distance of g(r) and A is the area of observation.82

Substituting this equation into equation 6 for N
d

gives:83

G

00

G

0 =
2Na

2

⇡A

F

⇤

F0
s

2
2,h =

2�

⇡

2

F

⇤

F0
s

2
2,h (7)

which allows us to relate the bulk material response directly to measurable microstructural properties without the84

use of fitting parameters. Equation 7 is visualized in Fig. 4b&c. � quantifies particle density as � = ⇡Na

2
/A,85

which implicitly takes a as an e↵ective particle diameter. This relation reveals that the yielding transition of86

jammed materials is specified by four dimensionless groups based on imposed force, particle density, a memory based87

dimensionless entropy, and the bulk response.88
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