Needle

Figure 1: Interfacial Stress Rheometer Sketch of interfacial stress theometer (ISR). Dense colloidal monolayer sits on
water-oil interface that is bounded by two upright parallel glass walls. A thin magnetic needle cyclically shears the monolayer
using Helmholtz coils. Accurate rheometry is obtained by tracking needle position as a function of forcing; particle tracking
is used to characterize material microstructure.

6 Supplemental materials

6.1 Discussion of systems

Here we make a few comments on the breadth of properties covered by our systems (as summarized in table 4).
First, we note that the systems studied span a large range of disorder, ranging from crystalline regions of several
hundred particles (Fig. 2a) to merely a few (Fig. 2d). Second we note that, Lennard-Jones potentials are attractive
at long distances. So our results hold for systems where some of the particles experience attraction, as long as the
system is jammed. Finally, our systems span a wide range of length scales. Lennard-Jones systems are atomic scale.

a) b) c) d)

Dipole-Dipole Dipole-Dipole Hertzian  Lennard-Jones

Figure 2: Disorder increasing left to right Crystalline regions visualized via sixfold bond orientation order, ¥,
measured from particle positions. Size of crystals decreases from left to right, indicating an increase in disorder. Colors help
to indicate the lattice director (orientation) as a guide for the eye to help discern ordered and disordered domains. Dots with
large size indicate |¥g| > 0.9, and small dot size indicates |¥g| < 0.9. (Scale bars: 100um). a) Mono-disperse, dipole-dipole,
experimental system B. b) Bi-disperse, dipole-dipole, experimental system A. ¢) Bi-disperse, Hertzian, simulation system D.
d) Bi-disperse, Lennard-Jones, simulation system C.
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Figure 3: Imposed force scales with fraction of dissipative events. Within the linear rheology regime studied,
the fraction of particles undergoing non-affine, disspative events scales linearly with the imposed force on the system. The
dashed lines (- - -) are added to guide the eye.

Dipole-dipole systems are colloidal scale. Hertzian systems are granular scale. One further difference among our
systems is that our experiments include an intermediary fluid and an interface, whereas our simulations do not. This
serves to explore the role of specific energy dissipation (viscous drag in the experiments) versus unspecific dissipation
(the simulations).

6.2 Scaling of imposed force and non-affine events

In the main text we identify that the entropic ratio sa varies as a quadratic in figure 4a. Our model, (main body
equation 2), makes no prediction about the form of the scaling unless we know how force amplitude, Fy, and the
fraction of particles undergoing dissipative events, fg4, scale with each other. These values scale linearly with each
other in our experiments (Fig. 3), which results in a quadratic scaling. This is an approximation, as at very high
strain amplitudes it is expected that the fraction of non-affine events will plateau at unity. But within the linear
rheological regime studied here, this limit is not reached.

6.3 Experimental potentials

In this section we describe our method of estimating the mean inter-particle potential of our experimental systems
A and B. Sulfate latex spheres of D; = 5.6um and Dy = 4.1um are adsorbed at an interface of decane and water.
The sulfate latex groups cover the surfaces of the particles, providing a charge. The charges and the presence of the
interface cause the particles to experience dipole-dipole repulsion with each other. The dipole-dipole form is:

u(r) 1

= Qo — 1
kBT az’l"3 ( )

where v is the potential, kg is Boltzmann’s constant, 7" is the thermal temperature, as is the scaling constant, and
r is the center to center distance of the particles. In our bi-disperse system, the average separation between small
particles is rgs = 7.53um. Separation between large particles is r; = 8.74um.

This system is often used to study interfacial colloids; Park et al. [1] published a study that precisely measures the
form of the interparticle potential quantitatively using Monte Carlo methods and optical tweezers. We used particles
from the same manufacturer (Invitrogen Corporation, Carlsbad, CA) as Park et al. and followed the same particle
cleaning procedure. They report that for particles of size Dp = 3.1um, the mean value of (as p) = 5.1£2.4x10713m3,
where P subscripts indicate Park et al.’s values.
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Within our bi-disperse system, the osmotic pressure is the same between large-large and small-small particles.
d?u(r)
dr?

Here the osmotic pressure is — . This allows us to write:

(a2,s) _ (azp) _ (azp)
5 = 5 = .5 (2)

Tss Tll rpp
These equations are not linearly independent, so we extrapolate from our diameter-separation information ([Dy, 7ss]
and [Dy,ry]) to determine 7, using Dp. We find rp,, = 6.72um, (a2 s) = 9.0 x 1073m?, and (az;) = 1.8 x 107 2m?3.
For the main body of the text we use the average weighted by particle numbers of (ag ) and (ag ;) for the entire

o du __ 3(a2>kBT

suspension as (az). Forces are calculated as F (1) = — 5% = s

6.4 Phenomenological Derivation

This section begins with the energy balance introduced in the main body (Eq. 1). In the first subsection we show
how this equation is expanded to include the particulars of oscillatory shear. The second section lays out the details
for quantifying bulk mechanical properties, such as yield.

6.4.1 Specifics of oscillatory shear

Briefly, as discussed in the main text, equation 1 quantifies energy accumulated in the system, T'dS on the left hand
side and the contributions from reversibly transferred and dissipated energy on the right hand side. Our experiments
and simulations indicate that:

TAS = F*x/2 + fqFx. (3)

Here T is a fit constant that converts changes in entropy to changes in energy. S is the entropy of the entire system.
F* is a property of the material that quantifies how jammed the particles are via the total force experienced by a
typical particle with its neighbors. It is calculated as: F* =p [ [ (—%)g(m, y)dzdy, where p is the number density
of particles, u is the inter-particle potential, and g(x,y) is the radial distribution function. Here fy is the fraction
of particles undergoing dissipative events detected via non-affine rearrangements. Non-affine events are detected via
D2 . . See Refs [2-4] for details on this calculation. Specifically, f4 = N4/N, where N, is the number of particles
experiencing non-affine events and N is the number of total particles observed. The proscribed shear force and
resultant displacement of the shearing surface are F' and x respectively. We define the A operation as the difference
between entropy at time ¢ and the average entropy over an entire cycle of shear: AS = S(t) — S(¢).

We next summarize the specifics of our systems: most notably oscillatory shear and excess entropy. To apply
equation 3 to the oscillatory shear cases considered in this paper, substitute in the time signals for shear surface
displacement (z(t) = xgsin(wt + §)) and force (F'(t) = Fpsin(wt)) on the right-hand-side. On the left-hand-side,
multiply by Nkg/Nkp:

S F*J)o

N,
sin(wt + §) + WdFosin(wt)xosin(wt +9) (4)

where w is the frequency of the imposed force and § is the resulting time lag between the imposed force and the
resulting displacement. § is an important physical parameter in rheology; it helps us to distinguish between solids,
fluids, and everything in between. A fully elastic material has a § = O[rad]; stress and strain are in phase as is seen
from Hooke’s law. A fully viscous material has a § = w/2[rad]; stress and strain are fully out of phase as is seen from
Newton’s law of viscosity®.

In our experiments, changes in pressure are negligible. Therefore, changes in absolute entropy are approximately
the same as those for excess entropy (dss ~ ds — dsr.g. ~ dstotar); the ideal gas entropy is not expected to change.
Notice, entropy has changed to lower case ’s’ to represent quantities that are normalized by N and in units of kg,
which is convention. In simulations, entropy harmonics are directly calculated on T'S = E + PV because pressure,
P, volume, V, and energy, E, are accessible’ 8. Additionally, here we implement the product-to-sum trigonometric
identity (sin(u)sin(v) = (1/2)[cos(u — v) — cos(u + v)]). Reorganizing gives:

NgFyxg

A ey
52 2N2kBT{

sin(wt + 0) + cos(d) — cos(2wt + 6)}. (5)

N F*l‘o
~ 9NkgT
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Equation 5 describes the evolution of a jammed system as it undergoes oscillatory shear and is fully non-dimensional.
It is now apparent that the second term on the right-hand side (with N;) has the second harmonic of the forcing
frequency 2w; this relation reproduces the frequency shift of the entropy signals in our simulations and experiments
(main body Fig. 3a). The appearance of the second harmonic in the entropy signal captures well the transition to
plasticity.

6.4.2 Connection to Rheology

We investigate the yield transition further by taking the ratio of the first and second harmonics within frequency
. _ FFT,,(2w) . .
domain of sg, (s2,5, = ﬁ), which follows from equation 4 as:
s2

Ny Iy
S5 = N (6)

Equation 6 is visualized in figure 4a of the main text. This scaling is quadratic because Ny and Fj scale linearly with
each other (Fig. 3). The square of sy 5, in equation 6, is included so that linear relationships are retained throughout.

From here we revisit an idea posited by Falk and Langer (Ref.[9]): relaxation events are due to a local buildups of
elastic energy that suddenly release (i.e. G” o< NgG’'). Recently quantified for above yield cases in Ref.[3] and here
expanded to below yield, G" = %NdG’, where a is the first peak distance of g(r) and A is the area of observation.
Substituting this equation into equation 6 for Ny gives:

G" 2Na®F* , 20 F*

&= = s 7

G TA FO e F[)
which allows us to relate the bulk material response directly to measurable microstructural properties without the
use of fitting parameters. Equation 7 is visualized in Fig. 4b&c. ¢ quantifies particle density as ¢ = wNa?/A,
which implicitly takes a as an effective particle diameter. This relation reveals that the yielding transition of

jammed materials is specified by four dimensionless groups based on imposed force, particle density, a memory based
dimensionless entropy, and the bulk response.
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