Supplementary materials

Functional validation of somatic variability in *TP53* and *KRAS* for prediction of platinum sensitivity and prognosis in epithelial ovarian carcinoma patients

Mohammad Al Obeed Allah¹, Esraa Alli¹, Ivona Krus², Petr Holý^{1,2}, Vojtěch Haničinec¹, Filip Ambrozkiewicz¹, Lukáš Rob³, Martin Hruda³, Marcela Mrhalová⁴, Kateřina Kopečková⁵, Alena Bartáková⁶, Jiří Bouda⁶, Pavel Souček^{1,2}, and Radka Václavíková^{1,2}*

¹Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic;

²Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic;

³Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic;

⁴Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic;

⁵Department of Oncology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic;

⁶Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic.

^{*}Correspondence: Radka Václavíková, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen 306 05, Czech Republic; email: radka.vaclavikova@lfp.cuni.cz, phone: +420 267 082 711; ORCID: 0000-0002-0451-4725

List of supplementary materials

Figure S1: Associations between stage (A), residuum after surgery (B), and chemosensitivity status (C) and overall survival of EOC patients

Figure S2: Representative chromatograms of *KRAS* mutations assessed in EOC patients by direct Sanger sequencing

A – codon 12 in exon 2, B – codon 61 in exon 3

Figure S3: Representative chromatograms of *TP53* mutations assessed in EOC patients by direct Sanger sequencing

A – p.Arg175His, B – p.His179Gln, C – p.His214Arg, D – p.Tyr220Cys, E – p.Glu198Ter, F – p.Arg213Ter, G – p.Asp259Tyr, H – p.Arg273His, I – p.Arg282Trp, J – p.Arg248His/Trp.

Figure S4: Differences in TP53 transcript levels between patients divided by functional classifications of *TP53* mutations

Gain-of-function vs. loss-of-function (A), non-functional vs. functional transactivation (B), and DNA binding loop affecting vs. other (C)

Figure S5: Association between subtype and platinum-free (A) and overall (B) survival of EOC patients **Figure S6**: Association between *TP53* mutation status and platinum-free interval of nonHGSC EOC patients

Table S1: List of primers used for *KRAS* and *TP53* mutation analysis in EOC patients by direct Sanger sequencing

Table S2: Associations between EOC subtype and disease stage

Figure S1: Associations between stage (A), residuum after surgery (B), and chemosensitivity status (C) and overall survival of EOC patients

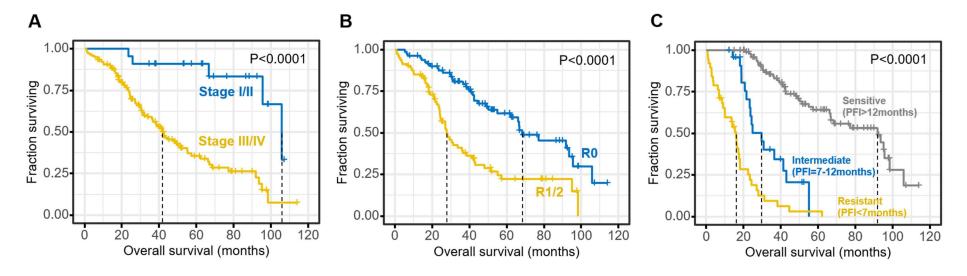


Figure S2: Representative chromatograms of KRAS mutations assessed in EOC patients by direct Sanger sequencing

A – codon 12 in exon 2, B – codon 61 in exon 3

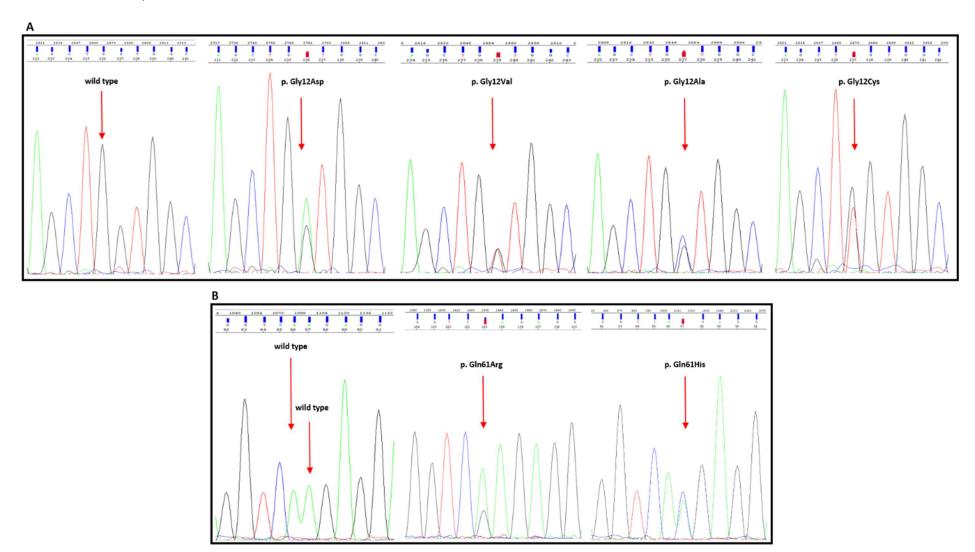
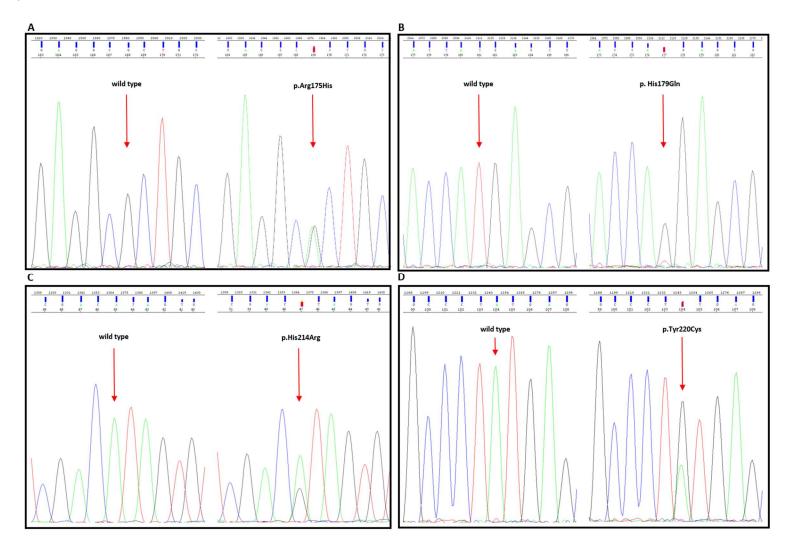
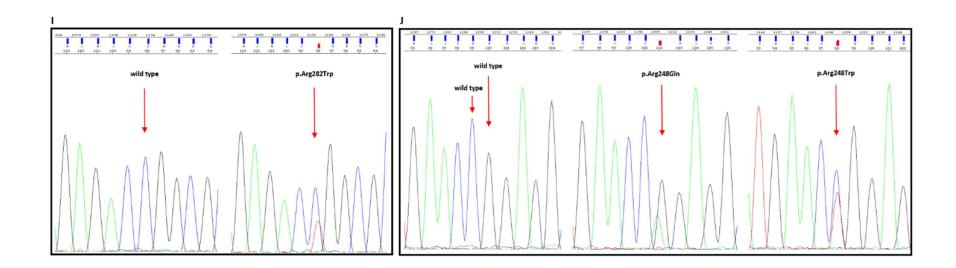




Figure S3: Representative chromatograms of TP53 mutations assessed in EOC patients by direct Sanger sequencing

A – p.Arg175His, B – p.His179Gln, C – p.His214Arg, D – p.Tyr220Cys, E – p.Glu198Ter, F – p.Arg213Ter, G – p.Asp259Tyr, H – p.Arg273His, I – p.Arg282Trp, J – p.Arg248His/Trp.

Figure S4: Differences in TP53 transcript levels between patients divided by functional classifications of *TP53* mutations Gain-of-function vs. loss-of-function (A), non-functional vs. functional transactivation (B), and DNA binding loop affecting vs. other (C)

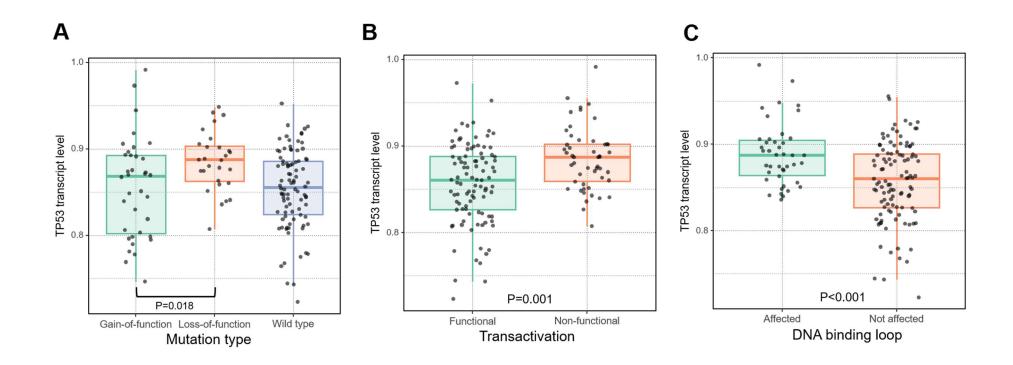
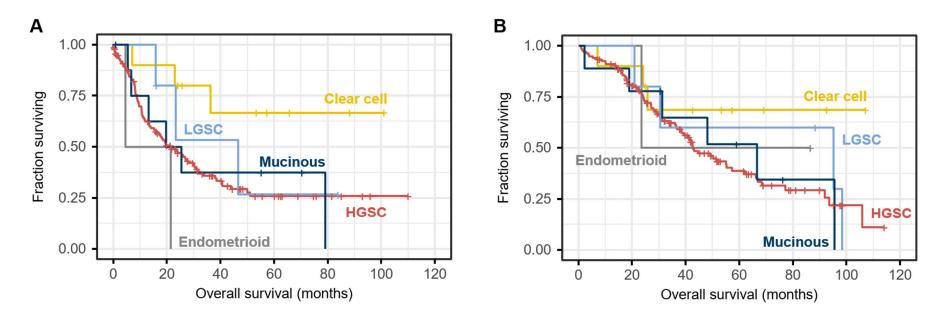
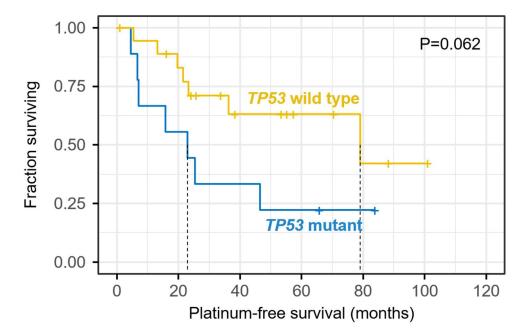




Figure S5: Association between subtype and platinum-free (A) and overall (B) survival of EOC patients

Figure S6: Association between *TP53* mutation status and platinum-free interval of nonHGSC EOC patients

Table S1: List of primers used for *KRAS* and *TP53* mutation analysis in EOC patients by direct Sanger sequencing

Gene	Exon	Sequencing primers (5'->3')	
		Forward	Reverse
TP53			
	5	CACTTGTGCCCTGACTTTCA	AGAGACGACAGGGCTGGTT
	6	CAGGCCTCTGATTCCTCACT	CTCTGGGAGGAGGGGTTAAG
	7	CCACAGGTCTCCCCAAGG	CTGCACACTGGCCTGCTG
	8	GCCTCTTGCTTCTCTTTTCC	GGAGACCAAGGGTGCAGTTA
	9	AGCACTAAGCGAGGTAAGCA	CCAGGAGCCATTGTCTTTGA
	10	TGCATGTTGCTTTTGTACCGT	GGCTGGGACCCAATGAGAT
KRAS			
	2	AAGCGTCGATGGAGGAGTTT	GAATGGTCCTGCACCAGTAAT
	3	AGGTGCACTGTAATAATCCAGACT	TGCATGGCATTAGCAAAGACTC

 Table S2: Associations between EOC subtype and disease stage

Characteristics	HGSC subtype*	nonHGSC subtypes*	p-value
Stage I/II	13	13	<0.001
Stage III/IV	132	8	

Footnotes:

^{*}Numbers of patients; for some patients clinical data were not available.