
Appendix B. Full proofs for the theorems in the mathematical

framework

Theorem 1 (Simplified marginal estimated posterior with uniform prior). The marginal estimated
posterior distribution q(θi | c) given class c is proportional to the product of the marginal likelihood
p(c | θi) and the marginal assumed prior q(θi), i.e.,

q(θi | c) ∝ p(c | θi)q(θi) for − 3 ≤ θi ≤ 3

Proof.

q(θi | c) =
∫

· · ·
∫

q(Θ | c) dΘ\i (marginal estimated posterior, Definition 8)

=

∫
· · ·
∫

p(c | Θ)q(Θ)

p(c)
dΘ\i (estimated posterior using Bayes’ theorem, Definition 7)

=
q(Θ)

p(c)

∫
· · ·
∫

p(c | Θ) dΘ\i (since q(Θ) is a non-zero constant within [−3, 3], Definition 2)

=
q(Θ)

p(c)
p(c | θi) (marginal likelihood, Definition 6)

=
q(θi)

d

p(c)
p(c | θi) (dimensional power scaling of uniform PDF, Definition 2)

=
q(θi)

d−1

p(c)
p(c | θi)q(θi) (splitting the marginal priors)

By considering q(θi)
d−1

p(c) as a normalization factor, we obtain:

q(θi | c) ∝ p(c | θi)q(θi) for − 3 ≤ θi ≤ 3

as desired.

Theorem 2 (Simplified marginal true posterior under diagonal covariance matrices assumption). The
approximated marginal true posterior distribution p̂(θi | c) for each component θi, under the assumption
of diagonal covariance matrices for both the true prior p(Θ) and the likelihood p(c | Θ), is proportional
to the product of the marginal true prior p(θi) and the marginal likelihood p(c | θi):

p̂(θi | c) ∝ p(c | θi)p(θi).
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Proof.

p̂(θi | c) =
∫

· · ·
∫

p(Θ | c) dΘ\i

(marginal true posterior, Definition 10)

=

∫
· · ·
∫

p(c | Θ)p(Θ)

p(c)
dΘ\i

(true posterior using Bayes’ theorem)

=
1

p(c)

∫
· · ·
∫

p(c | Θ)p(Θ) dΘ\i

(rearranging terms)

=
1

p(c)

∫
· · ·
∫ n∏

j=1

p(c | θj)
n∏

j=1

p(θj) dΘ\i

(diagonal covariance assumption, Definition 11)

=
1

p(c)

∫
· · ·
∫ n∏

j=1

p(c | θj)p(θj) dΘ\i

(associativity of multiplication)

=
1

p(c)

∫
· · ·
∫

p(c | θi)p(θi)
∏
j ̸=i

p(c | θj)p(θj) dΘ\i

(associativity of multiplication)

=
1

p(c)
p(c | θi)p(θi)

∫
· · ·
∫ ∏

j ̸=i

p(c | θj)p(θj) dΘ\i

(since p(c | θi) and p(θi) are constant with respect to the marginalization over Θ\i)

=

∫
· · ·
∫ ∏

j ̸=i p(c | θj)p(θj) dΘ\i

p(c)
p(c | θi)p(θi)

(rearranging terms)

By considering
∫
···

∫ ∏
j ̸=i p(c|θj)p(θj) dΘ\i

p(c) as a normalization factor, we obtain:

p̂(θi | c) ∝ p(c | θi)p(θi).

Thus, the proportionality relationship is established as desired.

Theorem 3 (Marginal estimated posterior as univariate Gaussian). The marginal estimated posterior
q(θi | c) for each parameter θi is a univariate Gaussian distribution with mean µℓ and covariance σℓ:

q(θi | c) = N (θ | µℓ, σℓ
2) for − 3 ≤ θi ≤ 3

Proof. From Definition 6, we have that the marginal likelihood p(c | θi) follows a Gaussian distribution
with mean µℓ and variance σ2

ℓ , i.e.,

p(c | θi) = N (θ | µℓ, σℓ
2)

From Theorem 1, we know that, within the parameter plausible range, the marginal posterior distri-
bution q(θi | c) given class c and a uniform prior q(θi) is proportional to the product of the marginal
likelihood p(c | θi) and the marginal prior q(θi), i.e.,
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q(θi | c) ∝ p(c | θi)q(θi) for − 3 ≤ θi ≤ 3

Substituting the expression for p(c | θi) into the proportionality, we get:

q(θi | c) ∝ N (θ | µℓ, σℓ
2) · q(θi) for − 3 ≤ θi ≤ 3

Since q(θi) is a non-zero constant within the region, we can drop the proportionality sign. Therefore,

q(θi | c) = N (θ | µℓ, σℓ
2) for − 3 ≤ θi ≤ 3

Thus, the theorem is proved.

Theorem 4 (Approximated marginal true posterior as univariate Gaussian). The approximated marginal
true posterior p̂(θi | c) for each parameter θi is a univariate Gaussian distribution represented as:

p̂(θi | c) = N (θi | µϕ, σ
2
ϕ)

where µϕ =
µpσ

2
ℓ+µℓσ

2
p

σ2
ℓ+σ2

p
is the mean value of the posterior and σ2

ϕ =
σ2
pσ

2
ℓ

σ2
p+σ2

ℓ
is the variance of the

posterior.

Proof. From Definition 4, we know that the marginal true prior p(θi) follows a Gaussian distribution
with mean µp and variance σ2

p, i.e.,

p(θi) = N (θi | µp, σ
2
p)

From Definition 6, we know that the marginal likelihood p(c | θi) also follows a Gaussian distribution
with mean µℓ and variance σ2

ℓ , i.e.,

p(c | θi) = N (θ | µℓ, σ
2
ℓ )

Now, using Definition 11, the approximated marginal true posterior p̂(θi | c) is proportional to the
product of the marginal likelihood and the marginal true prior:

p̂(θi | c) ∝ p(c | θi)p(θi)

Substituting the expressions for p(c | θi) and p(θi), we get:

p̂(θi | c) ∝ N (θ | µℓ, σ
2
ℓ )N (θi | µp, σ

2
p)

The product of two Gaussian functions results in another Gaussian function, as shown in Choudhary
et al. [2021], which provides the general form for this product. Here, the mean µϕ and the variance σ2

ϕ

of the approximated marginal true posterior p̂(θi | c) is given by:
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µϕ =
µpσ

2
ℓ + µℓσ

2
p

σ2
ℓ + σ2

p

σ2
ϕ =

σ2
pσ

2
ℓ

σ2
p + σ2

ℓ

Thus, we conclude that the approximated marginal true posterior p̂(θi | c) for each parameter θi is a
univariate Gaussian distribution, represented as:

p̂(θi | c) = N (θi | µϕ, σ
2
ϕ)

as desired.

Lemma 1 (Kullback-Leibler divergence between a normal distribution and a uniform distribution).
The Kullback-Leibler divergence (KLD) between a normal distribution x(θ) = N (θ | µ, σ2) and a
uniform distribution y(θ) = Uniform(−a, a) over the interval [−a, a] is given by:

DKL(x(θ) ∥ y(θ)) = log

(
1

σ

)
+ log (2a)

(
Φ

(
a− µ

σ

)
− Φ

(
−a− µ

σ

))
−
(
1

2
+ log

(√
2π
))

where Φ denotes the cumulative distribution function (CDF) of the standard normal distribution.

Proof. Starting with the definition of KLD, we have:

DKL(x(θ) ∥ y(θ)) =
∫
θ

x(θ) log

(
x(θ)

y(θ)

)
dθ

Substituting the expressions for x(θ) and y(θ):

DKL(x(θ) ∥ y(θ)) =
∫
θ

N (θ | µ, σ2) log

(
N (θ | µ, σ2)

U(θi | −a, a)

)
dθ

Breaking the integral into two parts:

DKL(x(θ) ∥ y(θ)) =
∫
θ

N (θ | µ, σ2) log
(
N (θ | µ, σ2)

)
dθ −

∫ a

−a

N (θ | µ, σ2) log

(
1

2a

)
dθ

Evaluating each term separately:
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∫
θ

N (θ | µ, σ2) log
(
N (θ | µ, σ2)

)
dθ = E

[
log

(
1

σ
√
2π

exp

(
−1

2

(
θ − µ

σ

)2
))]

= log

(
1

σ
√
2π

)
+ E

[
−1

2

(
θ − µ

σ

)2
]

= log

(
1

σ
√
2π

)
− 1

2

And:

∫ a

−a

N (θ | µ, σ2) log

(
1

2a

)
dθ = log

(
1

2a

)∫ a

−a

N (θ | µ, σ2)dθ

= log

(
1

2a

)(∫ a

−∞
N (θ | µ, σ2)dθ −

∫ −a

−∞
N (θ | µ, σ2)dθ

)
= log

(
1

2a

)(
Φ

(
a− µ

σ

)
− Φ

(
−a− µ

σ

))

Combining these results:

DKL(x(θ) ∥ y(θ)) = log

(
1

σ
√
2π

)
− 1

2
− log

(
1

2a

)(
Φ

(
a− µ

σ

)
− Φ

(
−a− µ

σ

))
= log

(
1

σ

)
− log

(√
2π
)
− 1

2
+ log (2a)

(
Φ

(
a− µ

σ

)
− Φ

(
−a− µ

σ

))
= log

(
1

σ

)
+ log (2a)

(
Φ

(
a− µ

σ

)
− Φ

(
−a− µ

σ

))
−
(
1

2
+ log

(√
2π
))

Hence, we have proven the expression for DKL(x(θ) ∥ y(θ)) as desired.

Theorem 5 (KLD between marginal true prior and marginal assumed prior). The KLD DKL(p(θi) ∥ q(θi))
between the marginal true prior p(θi) and the marginal assumed prior q(θi) is given by:

DKL(p(θi) ∥ q(θi)) = log

(
1

σp

)
+ log (6)

(
Φ

(
3− µp

σp

)
− Φ

(
−3− µp

σp

))
−
(
1

2
+ log

(√
2π
))

where Φ denotes the cumulative distribution function (CDF) of the standard normal distribution.

Proof. Using the result from Lemma 1, we know the KLD between a normal distribution and a uniform
distribution. Here, the marginal true prior p(θi) is a normal distribution N (θi | µp, σ

2
p) and the

marginal assumed prior q(θi) is a uniform distribution over [−3, 3].

Substituting µ = µp, σ = σp, and a = 3 into the lemma’s result, we get:
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DKL(p(θi) ∥ q(θi)) = log

(
1

σp

)
+ log (6)

(
Φ

(
3− µp

σp

)
− Φ

(
−3− µp

σp

))
−
(
1

2
+ log

(√
2π
))

Thus, we have proven the expression for DKL(p(θi) ∥ q(θi)) as desired.

Lemma 2 (The KLD of one normal distribution from another normal distribution). The Kull-
back–Leibler divergence of one normal distribution x(θ) = N (θ | µx, σx

2) from another y(θ) = N (θ |
µy, σy

2) is given by

DKL(x(θ) ∥ y(θ)) = log

(
σy

σx

)
+

σx
2 + (µx − µy)

2

2σy
2

− 1

2

Proof. Starting with the definition of KLD, we have:

DKL(x(θ) ∥ y(θ)) =
∫
θ

x(θ) log

(
x(θ)

q(θ)

)
dθ

=

∫
θ

x(θ) log (x(θ)) dθ −
∫
θ

x(θ) log (y(θ)) dθ

= E [log (x(θ))]x(θ) − E [log (y(θ))]x(θ)

Substituting the given expressions for x(θ) and y(θ), we get:
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DKL(x(θ) ∥ y(θ)) = E [log (N (θ, µx, σx))]x(θ) − E [log (N (θ, µy, σy))]x(θ)

= E

[
log

(
1

σx

√
2π

exp

(
−1

2

(
θ − µx

σx

)2
))]

x(θ)

− E

[
log

(
1

σy

√
2π

exp

(
−1

2

(
θ − µy

σy

)2
))]

x(θ)

= E
[
log

(
1

σx

√
2π

)]
x(θ)

+ E

[
log

(
exp

(
−1

2

(
θ − µx

σx

)2
))]

x(θ)

− E

[
log

(
1

σy

√
2π

)]
x(θ)

− E

[
log

(
exp

(
−1

2

(
θ − µy

σy

)2
))]

x(θ)

= log

(
1

σx

√
2π

)
− log

(
1

σy

√
2π

)
+ E

[(
−1

2

(
θ − µx

σx

)2
)]

x(θ)

− E

[(
−1

2

(
θ − µy

σy

)2
)]

x(θ)

= log

(
σy

σx

)
− 1

2σx
2
E
[
(θ − µx)

2
]
x(θ)

+
1

2σy
2
E
[
(θ − µy)

2
]
x(θ)

= log

(
σy

σx

)
− σx

2

2σx
2
+

E
[
θ2 − 2θµy + µy

2
]
x(θ)

2σy
2

= log

(
σy

σx

)
− 1

2
+

E
[
θ2
]
x(θ

− 2E [θ]x(θ) µy + µy
2

2σy
2

= log

(
σy

σx

)
+

E
[
θ2
]
x(θ

− 2µxµy + µy
2

2σy
2

− 1

2

= log

(
σy

σx

)
+

(
E
[
θ2
]
x(θ

− µ2
x

)
+
(
µ2
x − 2µxµy + µy

2
)

2σy
2

− 1

2

= log

(
σy

σx

)
+

σ2
x + (µx − µy)

2

2σy
2

− 1

2

Hence, we have proven the expression for DKL(x(θ) ∥ y(θ)) as desired.

Theorem 6 (KLD between approximated marginal true posterior and marginal estimated posterior).
The KLD DKL(p̂(θi | c) ∥ q(θi | c)) between the approximated marginal true posterior p̂(θi | c) and the
marginal estimated posterior q(θi | c) is given by:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σℓ

σϕ

)
+

σϕ
2 + (µϕ − µℓ)

2

2σℓ
2

− 1

2

Proof. To prove Theorem 6, we’ll use Lemma 2 to find the KLD between the approximated marginal
true posterior p̂(θi | c) and the marginal estimated posterior q(θi | c), both of which are normal
distributions.

From Lemma 2, we have:

DKL(x(θ) ∥ y(θ)) = log

(
σy

σx

)
+

σx
2 + (µx − µy)

2

2σy
2

− 1

2

Let x(θ) = p̂(θi | c) and y(θ) = q(θi | c).

According to Theorem 3, the marginal estimated posterior q(θi | c) has mean µℓ and variance σ2
ℓ :
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q(θi | c) = N (θi | µℓ, σ
2
ℓ )

Similarly, according to Theorem 4, the approximated marginal true posterior p̂(θi | c) has mean µϕ

and variance σ2
ϕ:

p̂(θi | c) = N (θi | µϕ, σ
2
ϕ)

Substituting these expressions into the formula for the KLD, we get:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σℓ

σϕ

)
+

σϕ
2 + (µϕ − µℓ)

2

2σℓ
2

− 1

2

Therefore, the KLD between the approximated marginal true posterior and the marginal estimated
posterior is given by the expression provided in Theorem 6, as desired.

Lemma 3 (Derivative of the standard normal CDF with respect to standard deviation). Let Φ denote
the cumulative distribution function (CDF) of the standard normal distribution, and let ϕ denote the
probability density function (PDF) of the standard normal distribution. For a normal distribution with
mean µ and standard deviation σ, the derivative of the CDF Φ with respect to the standard deviation
σ is given by:

∂

∂σ
Φ

(
θ − µ

σ

)
= −

(
θ − µ

σ2

)
ϕ

(
θ − µ

σ

)

Proof. To prove this lemma, we start by noting the definitions of Φ and ϕ:

Φ(z) =

∫ z

−∞
ϕ(t) dt, where ϕ(t) =

1√
2π

e−
t2

2

Let z = θ−µ
σ . Then we have:

Φ

(
θ − µ

σ

)
= Φ(z)

Taking the partial derivative of Φ(z) with respect to σ:

∂

∂σ
Φ

(
θ − µ

σ

)
=

∂Φ

∂z
· ∂z
∂σ

Since ∂Φ
∂z = ϕ(z), we have:

∂Φ

∂z
= ϕ

(
θ − µ

σ

)
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Next, we calculate ∂z
∂σ :

z =
θ − µ

σ
=⇒ ∂z

∂σ
=

∂

∂σ

(
θ − µ

σ

)
= −θ − µ

σ2

Combining these results, we obtain:

∂

∂σ
Φ

(
θ − µ

σ

)
= ϕ

(
θ − µ

σ

)
·
(
−θ − µ

σ2

)

Simplifying, we get the desired result:

∂

∂σ
Φ

(
θ − µ

σ

)
= −

(
θ − µ

σ2

)
ϕ

(
θ − µ

σ

)

Thus, the lemma is proven.

Theorem 7 (Derivative of KLD between marginal true prior and marginal assumed prior with respect
to standard deviation). The partial derivative of the KLD DKL(p(θi) ∥ q(θi)) between the marginal
true prior p(θi) and the marginal assumed prior q(θi) with respect to the standard deviation σp of the
marginal true prior is:

∂

∂σp
DKL(p(θi) ∥ q(θi)) = − 1

σp
− log (6)

((
3− µp

σ2
p

)
ϕ

(
3− µp

σp

)
+

(
3 + µp

σ2
p

)
ϕ

(
−3− µp

σp

))
where ϕ denotes the probability density function (PDF) of the standard normal distribution.

Proof. To prove Theorem 7, we will start by differentiating the expression for the KLD given in
Theorem 5 with respect to the standard deviation σp.

Given:

DKL(p(θi) ∥ q(θi)) = log

(
1

σp

)
+ log (6)

(
Φ

(
3− µp

σp

)
− Φ

(
−3− µp

σp

))
−
(
1

2
+ log

(√
2π
))

We differentiate each term separately with respect to σp.

1. The derivative of the first term:
∂

∂σp
log

(
1

σp

)
= − 1

σp

2. The derivative of the second term:
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∂

∂σp

(
log (6)

(
Φ

(
3− µp

σp

)
− Φ

(
−3− µp

σp

)))
= log (6)

(
∂

∂σp
Φ

(
3− µp

σp

)
− ∂

∂σp
Φ

(
−3− µp

σp

))
= log (6)

(
−
(
3− µp

σ2
p

)
ϕ

(
3− µp

σp

)
−
(
3 + µp

σ2
p

)
ϕ

(
−3− µp

σp

))
(using Lemma 3)

= − log (6)

((
3− µp

σ2
p

)
ϕ

(
3− µp

σp

)
+

(
3 + µp

σ2
p

)
ϕ

(
−3− µp

σp

))

3. The derivative of the third term:

∂

∂σp

(
−
(
1

2
+ log

(√
2π
)))

= 0

Combining these results, we obtain:

∂

∂σp
DKL(p(θi) ∥ q(θi)) = − 1

σp
− log (6)

((
3− µp

σ2
p

)
ϕ

(
3− µp

σp

)
+

(
3 + µp

σ2
p

)
ϕ

(
−3− µp

σp

))

Thus, the derivative of the KLD between the marginal true prior p(θi) and the marginal assumed prior
q(θi) with respect to the standard deviation σp is derived as desired.

Theorem 8 (Derivative of KLD between approximated marginal true posterior and marginal estimated
posterior). The derivative of the KLD between the approximated marginal true posterior p̂(θi | c) and
the marginal estimated posterior q(θi | c) with respect to the standard deviation σp of the marginal true
prior is:

∂

∂σp
DKL(p̂(θi | c) ∥ q(θi | c)) = − σℓ

2

σℓ
2σp + σp

3
−

σℓ
2σp

(
2(µp − µℓ)

2 −
(
σℓ

2 + σp
2
))

(σℓ
2 + σp

2)3

Proof. To prove Theorem 8, we will first rewrite the Kullback-Leibler divergence (KLD) DKL(p̂(θi |
c) ∥ q(θi | c)) in terms of σp, and then differentiate it with respect to σp.

Given Theorem 6, we have:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σℓ

σϕ

)
+

σϕ
2 + (µϕ − µℓ)

2

2σℓ
2

− 1

2

Now, expressing σϕ in terms of σp using the formulas given in Theorem 4:

µϕ =
µpσ

2
ℓ + µℓσ

2
p

σ2
ℓ + σ2

p

σ2
ϕ =

σ2
pσ

2
ℓ

σ2
p + σ2

ℓ
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We substitute µϕ and σϕ into the expression for DKL:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

 σℓ√
σ2
pσ

2
ℓ

σ2
p+σ2

ℓ

+

σ2
pσ

2
ℓ

σ2
p+σ2

ℓ
+ (

µpσ
2
ℓ+µℓσ

2
p

σ2
ℓ+σ2

p
− µℓ)

2

2σℓ
2

− 1

2

Simplify the expression:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

σℓ

√
σ2
p + σ2

ℓ

σp

+
σ2
p +

σ2
ℓ (µp−µℓ)

2

σ2
p+σ2

ℓ

2(σ2
p + σ2

ℓ )
− 1

2

Now, we differentiate DKL with respect to σp. The derivative of the first term involves the chain rule,
and the derivative of the second term can be obtained directly:

∂

∂σp
DKL(p̂(θi | c) ∥ q(θi | c)) =

∂

∂σp

log

σℓ

√
σ2
p + σ2

ℓ

σp

+
∂

∂σp

σ2
p +

σ2
ℓ (µp−µℓ)

2

σ2
p+σ2

ℓ

2(σ2
p + σ2

ℓ )


After computing the derivatives, we arrive at the expression:

∂

∂σp
DKL(p̂(θi | c) ∥ q(θi | c)) = − σℓ

2

σℓ
2σp + σp

3
−

σℓ
2σp

(
2(µp − µℓ)

2 −
(
σℓ

2 + σp
2
))

(σℓ
2 + σp

2)3

This completes the proof of Theorem 8.

Lemma 4 (0.5 Points of a Likelihood). Consider a likelihood P (c = 1 | θi) that follows a univariate
Gaussian distribution:

P (c = 1 | θi) = N (θi | µ, σ2)

The 0.5 points are the values of θi for which the likelihood function equals 0.5. The left and right 0.5
points of this distribution are given by:

θleft = µ− σ

√
2 log

(
2

σ
√
2π

)

θright = µ+ σ

√
2 log

(
2

σ
√
2π

)

Proof. For a likelihood that follows a Gaussian distribution N (θi | µ, σ2), the function is given by:

f(θi) =
1

σ
√
2π

exp

(
− (θi − µ)2

2σ2

)

The 0.5 points occur where the likelihood function equals 0.5:

1

σ
√
2π

exp

(
− (θleft − µ)2

2σ2

)
=

1

2

11



Taking the natural logarithm of both sides:

log

(
1

σ
√
2π

)
− (θleft − µ)2

2σ2
= log

(
1

2

)

Simplifying the right-hand side:

− (θleft − µ)2

2σ2
= log

(
1

2

)
− log

(
1

σ
√
2π

)

− (θleft − µ)2

2σ2
= − log 2− log

(
1

σ
√
2π

)
(θleft − µ)2

2σ2
= log

(
2

σ
√
2π

)

Solving for θleft:

(θleft − µ)2 = 2σ2 log

(
2

σ
√
2π

)

θleft − µ = ±σ

√
2 log

(
2

σ
√
2π

)

Since θleft is to the left of µ:

θleft = µ− σ

√
2 log

(
2

σ
√
2π

)

Similarly, for the right 0.5 point:

θright = µ+ σ

√
2 log

(
2

σ
√
2π

)

Thus, we have derived the desired formulas for the left and right 0.5 points of the likelihood function.

Theorem 9 (Marginal estimated posterior via inaccurate likelihood). The marginal estimated poste-
rior q(θi | c) for the parameter θi via inaccurate likelihood q(θi | c) = N (θi | µq, σ

2
q ) is a univariate

Gaussian distribution with mean µq and covariance σℓ:

q(θi | c) = N (θ | µq, σℓ
2) for − 3 ≤ θi ≤ 3

Proof. From Definition 12, we have that the marginal inaccurate likelihood q(c | θi) follows a Gaussian
distribution with mean µq and variance σ2

ℓ , i.e.,

q(c | θi) = N (θ | µq, σℓ
2)

From Theorem 1, we know that the marginal posterior distribution q(θi | c) given class c and a uniform
prior q(θi) is proportional to the product of the marginal likelihood q(c | θi) and the marginal prior
q(θi), i.e.,

q(θi | c) ∝ q(c | θi)q(θi) for − 3 ≤ θi ≤ 3

12



Substituting the expression for p(c | θi) into the proportionality, we get:

q(θi | c) ∝ N (θ | µq, σℓ
2) · q(θi) for − 3 ≤ θi ≤ 3

Since q(θi) is a uniform distribution, it is constant, and hence, we can drop the proportionality sign.
Therefore,

q(θi | c) = N (θ | µq, σℓ
2) for − 3 ≤ θi ≤ 3

Thus, the theorem is proved.

Theorem 10 (Error generated by marginal inaccurate likelihood). The error generated by this model,
represented as the cumulative probability of false positives (FP) and false negatives (FN), arises due
to the discrepancy β = |µℓ − µq| between µq and µℓ.

Case 1: µq = µℓ − β (This case is depicted in Figure B.1 (a))

FP1 =

∫ θleft+β

θleft

N (θi | µq, σ
2
ℓ ) dθi

FN1 =

∫ θright+β

θright

N (θi | µq, σ
2
ℓ ) dθi

Case 2: µq = µℓ + β (This case is depicted in Figure B.1 (b))

FN2 =

∫ θ′
left+β

θ′
left

N (θi | µq, σ
2
ℓ ) dθi

FP2 =

∫ θ′
right+β

θ′
right

N (θi | µq, σ
2
ℓ ) dθi

where θleft and θright are the left and right 0.5 points of the marginal inaccurate likelihood, respectively;
while θ′left and θ′right are the left and right 0.5 points of the marginal accurate likelihood, respectively.

Proof. For the marginal inaccurate likelihood that follows a Gaussian function N (θi | µq, σ
2
ℓ ), the left

and right 0.5 points are symmetric around µq. According to Lemma 4, these points are located at:

θleft = µq − σℓ

√
2 log

(
2

σℓ

√
2π

)

θright = µq + σℓ

√
2 log

(
2

σℓ

√
2π

)

13



Figure B.1: Visual comparison of marginal accurate and inaccurate likelihoods with classi-
fication outcomes. This figure illustrates the marginal accurate likelihood p(c | θi) and the marginal
inaccurate likelihood q(c | θi) for the parameter θi. In scenario (a), the marginal inaccurate likelihood
q(c | θi) is shifted by −β from the accurate likelihood p(c | θi), and in scenario (b), it is shifted by +β.
The absolute mean differences α, β, and γ between these distributions are indicated, reflecting their
respective relationships. The shaded areas under the curves represent different classification outcomes
(True Positive, False Positive, True Negative, and False Negative) relative to the decision threshold of
0.5.
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For the marginal accurate likelihood that follows a Gaussian function N (θi | µℓ, σ
2
ℓ ), the left and right

0.5 points are according to Lemma 4 located at:

θ′left = µℓ − σℓ

√
2 log

(
2

σℓ

√
2π

)

θ′right = µℓ + σℓ

√
2 log

(
2

σℓ

√
2π

)

To prove this theorem, we consider the two cases separately:

• Case 1: µq = µℓ − β

In this case,

θ′left = µℓ − σℓ

√
2 log

(
2

σℓ

√
2π

)

= µq + β − σℓ

√
2 log

(
2

σℓ

√
2π

)

=

(
µq − σℓ

√
2 log

(
2

σℓ

√
2π

))
+ β

= θleft + β

The same way:

θ′right = θright + β

False positives (FP):

FP occurs between the left 0.5 points of the two likelihood functions. In this area, the marginal
inaccurate likelihood is already > 0.5 and thus the model predicts positive, but the marginal
accurate likelihood is still < 0.5 suggesting the actual class is negative; hence FP. The area of
FP is:

FP1 =

∫ θ′
left

θleft

N (θi | µq, σ
2
ℓ ) dθi =

∫ θleft+β

θleft

N (θi | µq, σ
2
ℓ ) dθi

False negatives (FN):

FN occurs between the right 0.5 points of the two likelihood functions. In this area, the marginal
inaccurate likelihood is already < 0.5 and thus the model predicts negative, but the marginal
accurate likelihood is still > 0.5 suggesting the actual class is positive; hence FN. The area of
FN is:

FN1 =

∫ θ′
right

θright

N (θi | µq, σ
2
ℓ ) dθi =

∫ θright+β

θright

N (θi | µq, σ
2
ℓ ) dθi

• Case 2: µq = µℓ + β

In this case,

15



θleft = µq − σℓ

√
2 log

(
2

σℓ

√
2π

)

= µℓ + β − σℓ

√
2 log

(
2

σℓ

√
2π

)

=

(
µℓ − σℓ

√
2 log

(
2

σℓ

√
2π

))
+ β

= θ′left + β

The same way:

θright = θ′right + β

False negatives (FN):

FN occurs between the left 0.5 points of the two likelihood functions. In this area, the marginal
inaccurate likelihood is still< 0.5 and thus the model predicts negative, but the marginal accurate
likelihood is already > 0.5 suggesting the actual class is positive; hence FN. The area of FN is:

FN2 =

∫ θleft

θ′
left

N (θi | µq, σ
2
ℓ ) dθi =

∫ θ′
left+β

θ′
left

N (θi | µq, σ
2
ℓ ) dθi

False positives (FP):

FP occurs between the right 0.5 points of the two likelihood functions. In this area, the marginal
inaccurate likelihood is still > 0.5 and thus the model predicts positive, but the marginal accurate
likelihood is already < 0.5 suggesting the actual class is negative; hence FP. The area of FP is:

FP2 =

∫ θright

θ′
right

N (θi | µq, σ
2
ℓ ) dθi =

∫ θ′
right+β

θ′
right

N (θi | µq, σ
2
ℓ ) dθi

Thus, we have derived the desired formulas for the false positive and false negative areas,

Theorem 11 (KLD between approximated marginal true posterior and marginal estimated posterior
via inaccurate likelihood). The KLD DKL(p̂(θi | c) ∥ q(θi | c)) between the approximated marginal true
posterior p̂(θi | c) and the marginal estimated posterior q(θi | c) via inaccurate likelihood q(θi | c) =
N (θi | µq, σ

2
q ) is given by:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σq

σϕ

)
+

σϕ
2 + (α+ β)2

2σ2
q

− 1

2

Proof. To prove Theorem 11, we will use Lemma 2 to find the KLD between the approximated marginal
true posterior p̂(θi | c) and the marginal estimated posterior q(θi | c) via inaccurate likelihood q(θi | c),
both of which are normal distributions.

From Proposition 2, we have:

DKL(x(θ) ∥ y(θ)) = log

(
σy

σx

)
+

σx
2 + (µx − µy)

2

2σy
2

− 1

2
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Let x(θ) = p̂(θi | c) and y(θ) = q(θi | c).

According to Theorem 4, the approximated marginal true posterior p̂(θi | c) has mean µϕ and variance
σ2
ϕ:

p̂(θi | c) = N (θi | µϕ, σ
2
ϕ)

Similarly, according to Theorem 9, the marginal estimated posterior q(θi | c) via inaccurate likelihood
has mean µq and variance σ2

ℓ :

q(θi | c) = N (θi | µq, σ
2
ℓ )

Substituting these expressions into the formula for the KLD, we get:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σℓ

σϕ

)
+

σϕ
2 + (µϕ − µq)

2

2σℓ
2

− 1

2

= log

(
σℓ

σϕ

)
+

σϕ
2 + |µϕ − µq|2

2σℓ
2

− 1

2

As Definition 12 suggests γ = α+ β = |µϕ − µq|,

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σq

σϕ

)
+

σϕ
2 + (α+ β)2

2σ2
q

− 1

2

Therefore, the KLD between the approximated marginal true posterior p̂(θi | c) and the marginal
estimated posterior q(θi | c) via inaccurate likelihood q(θi | c) is given by the expression provided in
Theorem 11, as desired.

Theorem 12 (Derivative of error with respect to β). The derivative of the error E (represented as
false positives or false negatives given in Theorem 10) with respect to the absolute mean difference β
between the marginal accurate likelihood and the marginal inaccurate likelihood is given by:

∂

∂β
E = N (θi = u | µq, σ

2
ℓ )

where u denotes the upper bound of the integral of the respective error area given in Theorem 10.

Proof. According to Theorem 10, the error area E is represented as either FP1, FN1, FN2, or FP2.

When E denotes FP1, the derivative of the false positive area with respect to β is given by:

∂

∂β
FP1 =

∂

∂β

∫ θleft+β

θleft

N (θi | µq, σ
2
ℓ ) dθi

Substitute u for the upper bound of the integral (θleft + β):
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∂

∂β
FP1 =

d

du

∫ u

θleft

N (θi | µq, σ
2
ℓ ) dθi ×

du

dβ

Since θleft is a constant and du
dβ = 1:

∂

∂β
FP1 =

∂

∂β
E = N (θi = u | µq, σ

2
ℓ )

Similarly, when E denotes either FN1, FN2, or FP2, by substituting u for the upper bound of the
respective integral:

∂

∂β
E = N (θi = u | µq, σ

2
ℓ )

Thus, we have derived the desired formula for the derivative of the error with respect to β.

Theorem 13 (Derivative of KLD between approximated marginal true posterior and marginal es-
timated posterior with respect to β). The derivative of the KLD DKL(p̂(θi | c) ∥ q(θi | c)) between
the approximated marginal true posterior p̂(θi | c) and the marginal estimated posterior q(θi | c) via
inaccurate likelihood q(θi | c) = N (θi | µq, σ

2
q ) with respect to the absolute mean difference between the

accurate likelihood and the inaccurate likelihood β is given by:

∂

∂β
DKL(p̂(θi | c) ∥ q(θi | c)) =

α+ β

σ2
q

Proof. From Theorem 11, we have the KLD between the approximated marginal true posterior and
the marginal estimated posterior via inaccurate likelihood as:

DKL(p̂(θi | c) ∥ q(θi | c)) = log

(
σq

σϕ

)
+

σϕ
2 + (α+ β)2

2σ2
q

− 1

2

To find the derivative of this KLD with respect to β, we differentiate the right-hand side with respect
to β:

∂

∂β
DKL(p̂(θi | c) ∥ q(θi | c)) =

∂

∂β

(
log

(
σq

σϕ

)
+

σϕ
2 + (α+ β)2

2σ2
q

− 1

2

)

Since σq and σϕ are constants with respect to β, the derivative of the logarithmic term is zero. Thus,
we focus on the second term:

∂

∂β

(
σϕ

2 + (α+ β)2

2σ2
q

)

Using the chain rule:
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∂

∂β

(
σϕ

2 + (α+ β)2

2σ2
q

)
=

1

2σ2
q

· ∂

∂β

(
σϕ

2 + (α+ β)2
)

The term σϕ
2 is constant with respect to β, so its derivative is zero. Therefore:

∂

∂β

(
σϕ

2 + (α+ β)2
)
=

∂

∂β

(
(α+ β)2

)
= 2(α+ β)

Substituting this back in:

∂

∂β

(
σϕ

2 + (α+ β)2

2σ2
q

)
=

1

2σ2
q

· 2(α+ β) =
α+ β

σ2
q

Thus, we have:

∂

∂β
DKL(p̂(θi | c) ∥ q(θi | c)) =

α+ β

σ2
q

Hence, we have derived the desired formula for the derivative of the KLD with respect to β.
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