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Supplementary Figures 

 
Supplementary Fig. 1: Evaluation of tissue alignment using PCC and Kendall’s tau 
coefficient. 

a, Boxplots show the comparison of tissue alignment performances on 7 source samples of 8 
adjacent normal human small intestine samples respectively and combined, represented by the 
Kendall’s tau coefficient of highly variable gene expression between target and source sample 
after alignment at the same location, using Loki and baseline methods (PASTE, GPSA and CPD 
method) respectively. In the box plots, the middle line represents the median, the box 
boundaries indicate the interquartile range, and the whiskers extend to data points within 1.5× 
the interquartile range.  

b, Comparison of PCC and Kendall’s tau coefficient on 2 adjacent human ovarian 
carcinosarcoma samples using ST-to-ST tissue alignment between Loki and PASTE, Loki and 
GPSA, and Loki and CAST, respectively. 
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Supplementary Fig. 2: Examples of tissue alignment. 

Gene expression of target sample and source sample after alignment using Loki (ST-to-ST), 
CAST(ST-to-ST), GPSA(ST-to-ST), and PASTE (ST-to-ST), respectively. 
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Supplementary Fig. 3: Tissue alignment of fine-tuning, pre-training, and train from 
scratch. 

a, Tissue alignment results on 2 adjacent human ovarian carcinosarcoma samples using Loki 
Align Image-to-ST (fine-tuning, pre-training, and train from scratch). We colored the samples 
using the top three PCA components of OmiCLIP transcriptomic embeddings, mapped to red, 
green, blue color channels, respectively.  

b, Comparison of tissue alignment performances, represented by the PCC and Kendall’s tau 
coefficient of the highly expressed gene expression between target sample and source sample 
after alignment at the same location, using Loki Align Image-to-ST (fine-tuning, pre-training, and 
train from scratch). Bar plot shows the accuracy of alignment by Loki Align Image-to-ST (fine-
tuning, pre-training, and train from scratch). Error bar is standard deviation with center 
measured by mean, n=147. 
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Supplementary Fig. 4: Tissue alignment using dual-modalities and single-modality. 

a, Comparison of tissue alignment performances, represented by the PCC of the highly 
expressed gene expression between target sample and source sample after alignment at the 
same location, using Loki ST&image-to-ST, ST-to-ST, and Image-to-ST, respectively. In the box 
plots, the middle line represents the median, the box boundaries indicate the interquartile range, 
and the whiskers extend to data points within 1.5× the interquartile range, n=147. 

b, Comparison of tissue alignment performances, represented by the Kendall’s tau coefficient of 
the highly expressed gene expression between target sample and source sample after 
alignment at the same location, using Loki ST&image-to-ST, ST-to-ST, and Image-to-ST, 
respectively. In the box plots, the middle line represents the median, the box boundaries 
indicate the interquartile range, and the whiskers extend to data points within 1.5× the 
interquartile range, n=147. 
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Supplementary Fig. 5: Cell type annotation. 

Comparison of similarity difference on breast cancer with tumor bulk RNA-seq data, heart failure 
with fibroblast bulk RNA-seq data, and normal breast samples with tumor bulk RNA-seq data, 
within and out of the corresponding region annotated by pathology experts, respectively. In the 
box plots, the middle line represents the median, the box boundaries indicate the interquartile 
range, and the whiskers extend to data points within 1.5× the interquartile range. 
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Supplementary Fig. 6: H&E image of the brain sample. 

H&E image of the brain sample. 
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Supplementary Fig. 7: In-house patient samples. 

HE images of our in-house patient samples with Alzheimer's disease, metaplastic breast cancer, 
and heart failure. 
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Supplementary Fig. 8: Loki ST gene expression prediction workflow. 

Schematic illustration of Loki ST gene expression prediction using H&E images.  
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Supplementary Notes 

Supplementary Note 1. Evaluating OmiCLIP’s transcriptomic encoder on single-cell RNA-
seq data 

Our transcriptomics training data were collected from spot-level spatial transcriptomics, with 
each spot containing approximately 10-20 cells. Such training on spot-level data may lead to 
potential biases when encoding single-cell transcriptomics1. To evaluate the suitability of 
OmiCLIP’s transcriptomic encoder on single-cell RNA sequencing (scRNA-seq) data, we tested 
whether its transcriptomic embeddings accurately capture cell heterogeneity by annotating cell 
types in scRNA-seq datasets.  

We obtained two scRNA-seq atlas datasets collected from multiple patient samples, along with 
their corresponding cell-type annotations from external cancer studies as labels2, 3. Following 
standard quality control and preprocessing steps on the scRNA-seq data in SCANPY4, gene 
symbols were ranked in descending order and converted into “sentences”, excluding house-
keeping genes. We then applied OmiCLIP’s transcriptomic encoder to transform these gene 
name sentences into transcriptomic embeddings for cell type classification. Remarkably, 
OmiCLIP’s transcriptomic embeddings achieved clear separation of cell types (Supplementary 
Fig. 1a).  

For benchmarking, we compared OmiCLIP with OpenAI CLIP, a baseline model pretrained on 
general-domain text. We used identical procedures to convert the gene name sentences into 
OpenAI CLIP embeddings. Our analysis shows that OmiCLIP effectively clustered cells of same 
cell types from multi-sample scRNA-seq data. In contrast, OpenAI CLIP, pretrained on general-
domain text, resulted in fragmented clusters of the same cell type and showed greater overlap 
among similar cell types (Supplementary Fig. 1b). This suggests that OmiCLIP's pretraining on 
domain-focused data, including gene names and histology image patches, enhances OmiCLIP’s 
capability to group cells of the same type across samples more effectively, reflecting underlying 
biologically meaningful relationships inferred from transcriptomic and histological information. 
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Supplementary Figure 1 UMAP visualizations of OmiCLIP/OpenAI CLIP transcriptomic 
embeddings of scRNA-seq data. a, UMAP representation of the OmiCLIP transcriptomic 
embeddings of single cells in kidney cancer and prostate cancer samples. Each dot represents 
a cell and the colors mark the cell type information from original study. b, Same as in (a) with 
OpenAI CLIP-based embeddings. Note for the prostate cancer OpenAI CLIP embeddings, 
tumor cells (‘invisible’) totally overlap with the epithelial cells. 

In Loki platform, we employed the Gaussian Naive Bayes (Gaussian NB) algorithm 
(implemented via Scikit-Learn's GaussianNB module) for classification on the transcriptomic 
embeddings from our pretrained encoder. In the few-shot setting, we randomly sampled a small 
fraction of labeled examples per class for training, ranging from 0.1%, 0.5%, 1%, 2%, 3%, up to 
the maximum number of labeled examples available for a given class. The remainder of the 
data was used for validation. Each experiment was repeated 10 times with different random 
seeds to account for dataset variability. The performance of the classification was evaluated 
using the weighted F1 score. 

OmiCLIP achieved high precision for most cell types, with the exception of particularly 
challenging classes, such as normal epithelial versus tumor epithelial cells (Supplementary Fig. 
2a-b). In kidney cancer datasets, Loki achieved a median F1 score of 0.89 with only 0.5% of 
training labels per class, surpassing OpenAI CLIP (0.81) and outperforming conventional 
methods like SingleR5 (0.50), Celltypist6 (0.58), and scType7 (0.32). Likewise, in prostate cancer 
samples, Loki achieved a median F1 score of 0.82 with only 0.1% of training labels per class 
(Supplementary Fig. 2c). Overall, OmiCLIP’s transcriptomic embeddings accurately annotated 
cell types with as few as 0.5% labeled training data and consistently outperformed the OpenAI 
CLIP text embeddings for all sizes of the training sets in the two datasets. These results 
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indicated that OmiCLIP’s transcriptomic encoder effectively captures the heterogeneity of single-
cell transcriptomics. 

 

Supplementary Figure 2 Few-shot cell type annotation. a, Confusion matrix between 
predicted and actual cell types of the kidney cancer dataset. The matrix is colored from light to 
dark blue by the precision values. The projection of the actual and predicted cell type labels to 
the original UMAP embedding for the kidney cancer dataset. 1% randomly sampled cells were 
used for training and the rest were plotted on the UMAP embedding. b, same as in (a) for the 
prostate cancer dataset. c, Performance of cell type annotation in four scRNA-seq datasets 
measured by weighted F1 score. In the box plots, the middle line represents the median, the 
box boundaries indicate the interquartile range, and the whiskers extend to data points within 
1.5× the interquartile range. The dashed lines represent the performance of conventional 
methods.
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Supplementary Note 2. Cancer patient risk stratification in the TCGA dataset using 
OmiCLIP embeddings 

Previous studies have shown that diagnostic WSI and RNA-seq can be integrated using deep 
learning for cancer prognosis via a late fusion model8, 9. Using The Cancer Genome Atlas 
(TCGA) patient data, we further tested the capability of OmiCLIP to bridge bulk RNA-seq data 
and paired WSI for leveraging patient risk stratification.  

2.1 Biological relevance of OmiCLIP’s transcriptomic embeddings in the TCGA bulk RNA-
seq dataset 

By converting RNA-seq expression data to gene name sentences, OmiCLIP’s transcriptomic 
embeddings effectively separated patients of different cancer types (Supplementary Fig. 3a), 
achieving comparable performance of the original bulk RNA-seq expression data 
(Supplementary Fig. 3b).  

Supplementary Figure 3 OmiCLIP transcriptomic embeddings distinguish TCGA cancer 
types. a, UMAP representation of the OmiCLIP transcriptomic embeddings, where each dot 
represents a patient case. The OmiCLIP transcriptomic embeddings visually divide the TCGA 
LUAD patients into two groups: LUAD 1 and LUAD 2. b, UMAP representation based on TCGA 
RNA abundances.  

We further investigated OmiCLIP’s transcriptomic encoder on the TCGA bulk RNA-seq data. 
OmiCLIP’s transcriptomic embeddings divided TCGA Lung Adenocarcinoma (LUAD) patients 
into two distinct groups (Supplementary Fig. 4a) as LUAD 1 and LUAD 2. To investigate the 
clinical insight added by this transcriptomic embedding, we performed Kaplan-Meier survival 
analysis on these two groups of patients. The results showed a significant difference in overall 
survival between the two groups (Supplementary Fig. 4b), indicating the prognostic relevance of 
OmiCLIP’s transcriptomic encoder. To further investigate the underlying relevance of the 
OmiCLIP transcriptomic embeddings, we split the larger LUAD group into LUAD 1 – Prox (50%) 
and LUAD 1 – Dist (50%), which were close to and distant from the LUAD 2 group in OmiCLIP 
embedding space, respectively (Supplementary Fig. 4c). Kaplan-Meier survival analysis 
revealed a more significant difference in overall survival between the LUAD 1 – Dist and LUAD 
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2 groups, with a p-value of 7 x 10-4 (Supplementary Fig. 4d). This analysis indicated OmiCLIP’s 
capability to identify patient clusters with clinical relevance. This capability potentially arises 
from incorporation of the biological knowledge derived from the literature: we initialized 
OmiCLIP’s transcriptomic encoder using the pretraining weights of a Bidirectional Encoder 
Representations from Transformers (BERT) language model, thereby leveraging the power of 
natural language processing (NLP) models to embed biological information into a high-
dimensional space. Similar phenomenon has been reported by recent publications such as 
GenePT10 and cell2sentence11, supporting our approach of utilizing text-based embeddings to 
capture rich biological information efficiently. 

 
Supplementary Figure 4 OmiCLIP transcriptomic embeddings stratify patient groups on 
TCGA LUAD data. a, the PCA projections of the OmiCLIP transcriptomic embeddings of the 
TCGA LUAD patients colored by the clustering (LUAD 1 and LUAD 2). b, Kaplan-Meier curves 
for the LUAD 1 and LUAD 2 patient groups. The log rank test p-values are provided. c, the PCA 
projections of the OmiCLIP transcriptomic embeddings of the TCGA LUAD patients colored by 
LUAD 1 – Prox (in close proximity to LUAD 2), LUAD 1 – Dist (distant from LUAD 2), and LUAD 
2. d, Kaplan-Meier curves for the LUAD 1 – Dist and LUAD 2 patient groups. 

2.2 OmiCLIP’s transcriptomics and image alignment achieves patient stratification in the 
TCGA dataset  

Complementary to sequencing data, whole slide images (WSIs) provide phenotypic details, 
such as the morphology of normal tissue and tumor. Here we demonstrate that our multi-modal 
OmiCLIP model enables patient risk assessment across multiple cancer types without additional 
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training, using patients’ H&E images and paired bulk RNA-seq data from the tumor biopsy. We 
hypothesized that integrating histology images could achieve patient stratification by 
incorporating morphological context, thus offering deeper insights into cancer risk and localized, 
region-specific explanations for tumor biology. To test this hypothesis, we employed OmiCLIP to 
calculate the similarity between individual tiles from WSIs and paired bulk RNA-seq data for 
each patient (Supplementary Fig. 5a). Since the transcriptome extracted from tumor biopsies 
reveals tumor-related features such as overexpression of COL1A112 and ACTB13, the regions 
with high similarity highlight tumor regions-of-interest (ROIs). As demonstrated by the similarity 
heatmaps and example histology images of breast cancer samples in main Figure 4b, ROIs with 
higher similarity correspond to more malignant tissues (e.g. tumor cells). Using these cross-
modal cosine similarity scores as weights, we computed a WSI-level image embedding by 
summing the tile embeddings—weighted by OmiCLIP’s cross-modal similarity (Supplementary 
Fig. 5a). We then combined the multimodal OmiCLIP embeddings for each patient and fed them 
into a fully connected neural network for cancer risk estimation. The detailed methodology is 
described in the following.  

We evaluated cancer risk at the patient level by merging diagnostic WSIs from the same patient 
into a single WSI, referred to as a patient WSI. For a given patient p, the top genes ranked by 
abundances were encoded by our pretrained text encoder into an L2-normalized transcriptomic 
embedding (𝑇!). Each WSI was first divided into tiles of 224 x 224 pixels using CLAM14. Tile 
embeddings (𝑉"

! for patient p and tile i) were computed using our pretrained image encoder. The 
cosine similarity (𝐶𝑂𝑆"

! for patient p and tile i) between each tile embedding and the 
transcriptomic embedding were then computed and converted to probabilities using a softmax 
transformation, 

𝐶𝑂𝑆"
! = 𝑇! ∙ 𝑉"

! 

𝑃"
! =

exp	(𝐶𝑂𝑆"
!)

∑ exp	(𝐶𝑂𝑆#
!)#

 

The tile probability 𝑃"
! was used to aggerate the tile embeddings into a patient representation, 

𝑉0! =1𝑉"
! ∗ 𝑃"

!

"
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Supplementary Figure 5 Patient risk stratification in TCGA dataset. a, Schematic illustration 
of patient stratification from WSI and paired RNA-seq abundance with OmiCLIP paired image 
and transcriptomic embeddings. Each WSI (with tissue) is divided into tiles of size 
224 × 224 pixels, and a weight is given to each patch according to its similarity to bulk RNA-seq 
data of the same patient’s biopsy. The patch embeddings are summed to construct a WSI 
embedding weight by similarity. The multimodal patient-level embeddings are input to a simple 
neural network for cancer risk estimation. b, Kaplan-Meier curves for the high- and low-risk 
patient groups in six TCGA cancer datasets. The log rank test p-values are provided. 

The patient level multi-modal embeddings (𝑇! and 𝑉0 !) were then fed into a simple neural 
network for estimation of cancer risk. The network compromises two linear layers with ReLU 
activation functions to create a fused latent representation, and a subsequential linear classifier 
layer to output probabilities for high-risk prediction. The right-censored survival times were 
discretized into four non-overlapping, quantile-based bins. These bins were used as prediction 
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labels for training the model by maximizing a log likelihood function of the predicted survival bin 
index, following the methodologies from prior studies8, 15. For each cancer type, a model was 
trained for 20 epochs on the training set using the Adam optimizer, with a learning rate of 2×10−3 
and a weight decay of 1×10−5. An L1-regularization with a coefficient of 1×10-5 was applied. 
Performance evaluation was conducted via five-fold validation, using Kaplan-Meier analysis for 
risk stratification, and the log rank test for assessing the statistical significance. 

We evaluated the performance using five-fold cross-validation on TCGA data across six cancer 
types with most samples of paired WSI and RNA-seq data available, including Breast Invasive 
Carcinoma (BRCA), Low-Grade Glioblastoma (LGG), Kidney Renal Clear Cell Carcinoma 
(KIRC), Lung Adenocarcinoma (LUAD), Liver Hepatocellular Carcinoma (LIHC), and Bladder 
Urothelial Carcinoma (BLCA). We kept all the cases with both RNA-seq and diagnostic WSIs. 
Patients in each cancer type were grouped into lower and higher risk categories based on the 
50th percentile of the predicted risk scores. A log-rank test was then applied to assess the 
statistical significance of the patient survival time in the two patient groups. We demonstrated 
that in all six cancer types, OmiCLIP’s multimodal embeddings effectively stratified patient 
groups, revealing significant separation in the Kaplan-Meier curves (Supplementary Fig. 5b). 

Altogether, through zero-shot capability of OmiCLIP pretraining that integrates local 
histopathology image regions and molecular features with spatial correspondences, we robustly 
characterized patient stratification and detected intra-tumoral heterogeneity. In contrast, weakly 
supervised deep learning techniques, which are widely used via a late-fusion approach8, 
processing bulk molecular profile data and WSIs independently before combining them only at 
the decision stage, thereby potentially missing crucial interactions between the modalities. The 
pretrained OmiCLIP overcomes this limitation by learning a joint representation that captures 
complex interactions. This approach fuses the transcriptomics and H&E image earlier than 
when training the decision network. Despite not being specifically trained on TCGA, OmiCLIP 
effectively aligns images and bulk RNA-seq data, showing excellent agreement between the 
cosine similarity scores of WSI tiles and RNA-seq data from tumor biopsies. This facilitates early 
fusion for cancer risk estimation and demonstrates OmiCLIP’s ability to generalize across 
various tasks and domains. 
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Supplementary Note 3. Downstream evaluation datasets 

Tissue alignment: Simulated datasets were generated by perturbing real ST data and paired 
H&E images from 10 human tissue slices of diverse tissue and disease types including two 
breast cancer16,17, one colorectal liver cancer18, one liver cancer19, one prostate cancer20, one 
10x Genomics prostate cancer, one 10x Genomics colon cancer, one embryonic lung21, one 
normal small intestine22, and one sleep apnea tonsil sample23. We simulated new ST 
experiments by perturbing both gene expression and spatial locations at different levels of 
noise. Gene expression perturbations involved adding pseudo counts drawn from a multinomial 
distribution, with the total counts per spot following a negative binomial distribution. Spatial 
locations perturbations involved cutting parts of the slice and rotating the coordinates. Low-
noise perturbations had pseudo counts from 0.05 to 0.25, cut region from 3% to 10%, and 
rotations from 5 to 15 degrees. High-noise perturbations had pseudo counts from 0.25 to 0.5, 
cut region from 10% to 20%, and rotation degrees from 15 to 30. Paired H&E images were 
correspondingly cut and rotated. 10 simulated datasets were generated at different perturbation 
levels from each real datasets, totaling 200 datasets including 100 low-noise and 100 high-noise 
perturbations. Real-world data tests used a normal human small intestine dataset22 including 
Visium ST data and paired H&E images of 8 adjacent tissue slices, a human ovarian 
carcinosarcoma dataset24 including Visium ST data and paired H&E images of 2 adjacent tissue 
slices, and a human breast cancer dataset25 including paired Visium and Xenium ST data. 

Tissue annotation: Bulk RNA-seq data based annotation used 3 normal human breast and 3 
human heart failure histology images26,27, and 3 breast cancer patient histology images TCGA. 
Pathology experts annotated different tissue regions. Bulk RNA-seq datasets including 663 
human adipose and 504 human fibroblast samples from the Genotype-Tissue Expression 
(GTEx) Portal and 3 paired tumor biopsies samples from TCGA. Gene expressions were 
averaged for adipose and fibroblast samples. For the tissue annotation task using marker 
genes, we include 4 external validation datasets: CRC7K, WSSS4LUAD, LC25000, and 
PatchCamelyon. CRC7K consisted of 7,180 image patches of 224 × 224 pixels at 0.5 microns 
per pixel (MPP) from 50 patients with colorectal adenocarcinoma. All images were categorized 
into one of the following nine classes: adipose, background, debris, lymphocytes, mucus, 
smooth muscle, normal colon mucosa, cancer-associated stroma, or colorectal adenocarcinoma 
epithelium. We removed background images and that resulted in 6,333 image patches with 8 
different tissue types. As the MPP value is about 2 times our training data, we cropped the 
images into four non-overlapping tiles. The image embeddings encoded by OmiCLIP were the 
average of these four tiles. WSSS4LUAD consisted of 10,091 LUAD image patches of around 
200–500 pixels from 63 WSIs. All images were categorized as either tumor or normal, 
depending on the presence of tumor tissue. This resulted in 6,579 tumor images and 3,512 
normal images. LC25000 consisted of 25,000 lung and colon image patches of 768 × 768 pixels. 
We used the subset of all lung tissues with 5,000 images of lung adenocarcinomas, 5,000 
images of lung squamous cell carcinomas, and 5,000 images of benign lung tissues. All images 
were categorized as either cancer or benign. This resulted in 10,000 cancer images and 5,000 
benign images. PatchCamelyon consisted of 327,680 image patches of 96 x 96 pixels from 
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lymph node sections. All images were categorized as either tumor or normal depending on the 
presence of metastatic tissue. We used the validation set with 32,768 image patches. 

Cell type decomposition: We downloaded a human colorectal cancer dataset28 including Visium, 
Visium-HD, and scRNA-seq data of serial slices. We used the Visium-HD 8-mm bin data as the 
ground truth and created pseudo-Visium spots in the Visium-HD capture area, mirroring the 
Visium spot configuration that each spot is 55 µm in diameter with a 100 µm center-to-center 
distance between spots. Different tissue regions are annotated by pathology experts. We also 
collected one in-house triple-negative breast cancer patient-derived xenograft. The sample was 
snap freeze using 10x Genomics protocol # CG000663. Frozen OCT tumors were sectioned 
using cryostat as per 10x Genomics protocol # CG000579 (Rev E) and mounted directly on the 
Xenium slide. Next, sections on Xenium slides were processed as per 10x Genomics protocol # 
CG000613 (Rev B). For the probes, we used a 10x pre-designed human breast panel that has 
280 genes on the panel. Slides were profiled using Xenium Analyzer (10x Genomics). Following 
analysis, Xenium slides were processed for Hematoxylin & Eosin (H&E) staining using 10x 
Genomics protocol # CG000613. H&E slides were imagined using Akoya Bioscience 
Phenocycler Fusion. We annotated the tumor epithelial cells, immune cells, and stroma cells 
based on marker genes respectively. We then created pseudo Visium spots based on the 
Xenium data resulting in 3,402 spots, mirroring the Visium spot configuration that each spot is 
55 µm in diameter with a 100 µm center to center distance between spots. To decompose this 
TNBC sample, we downloaded an external scRNA-seq of TNBC as a reference29. We also 
downloaded an external mouse brain dataset30 including Visium data of serial slices, and used a 
reference mouse brain scRNA-seq dataset31 from the Allen Institute. 

H&E image-to-ST retrieval: Our in-house heart failure patient tissues were obtained at Houston 
Methodist Hospital under an approved IRB protocol: Pro 00006097 congestive heart failure with 
standard protocol for H&E staining. Our in-house paraffin-embedded Alzheimer's disease 
patient samples were stained following standard protocol for H&E staining. Our in-house 
metaplastic breast cancer and triple-negative breast cancer patient-derived xenografts were 
collected and snap-frozen using 10x Genomics protocol # CG000663, and H&E stained using 
10x Genomics protocol # CG000613. The validation datasets including brain, heart, kidney, and 
breast samples, and the test dataset including desmoplastic small round cell tumor, colorectal 
cancer, vascular, and colon samples from 4 studies (Supplementary Table 4). 

ST gene expression prediction: We used a normal human heart sample dataset27 of paired ST 
data and H&E images including 39 samples. 
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