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Supplementary Figures

a M Loki
M baseline
All source
samples Sourcel Source2 Source3 Source4 Source5 Source6 Source7
6 0.6
> 04 04 04 05 04 04
8 os 03 04 0.4
0 0.2 0.2 03 0.3 03
D 02 02 0.2 02 0.2 0.2
-g 0.0 0.0 0.1 01 01
g 0.0 o 02 0.0 0.0 0.0 ot
0.1 -0.1 0.0 0.0
02 -04 04 -02 -02
Oé\oé o%&oé\ é oéo‘b& Ora&oé\ 5 Oéoé oé\oé é& Oéoé} oé\oé& é\ oéKOé oéoé é& oéoé O(G&Oé\ é QéKOé} oéoé é} QéKOé} oéoé é}
é\ &\ é\\ é,“\ &\o é\ &\ @/\\ é\\ &\o é\&x é}\ é\\ &.9 é\\&\ é}\ é\\ &\o é\&\ é\ é\\ /\.@ é\ &\ é\\ é\\ /\.@ é\\&\ é\\ ré\ /\.9 é\\(g)\ é\\ ré\ &.9
C XA XA XA Cox A C XA XA XA XA
CIL R CELF CELF CELF CELF CLLF CELF CELF
T TR TER T TER TR TR TR
Q Q Q Q Q Q Q Q
<Q Q Q Q q < Q Q
[¢) 9 9 (¢ (¢ d [$ [$
b PCC
1.0 ET 1.0 - 10
0.8 081" B 0.8
_ 061" 064 0.6
S
-

044, 0.4 0.4

021 0.2 0.2

0.0 0.0 0.0

0.0 0.4 0.6

CAST

0.2 0.4 1.0 0.0 0.2 0.8

GPSA

0.4 0.6 0.6 0.8

PASTE

0.0 0.2 0.8 1.0

Kendell’s tau

Loki

02 04 06 08
CAST

0.0

02 04 06 08 10 02 04 06
PASTE GPSA

Supplementary Fig. 1: Evaluation of tissue alignment using PCC and Kendall’s tau

coefficient.

a, Boxplots show the comparison of tissue alignment performances on 7 source samples of 8
adjacent normal human small intestine samples respectively and combined, represented by the
Kendall’s tau coefficient of highly variable gene expression between target and source sample
after alignment at the same location, using Loki and baseline methods (PASTE, GPSA and CPD

method) respectively. In the box plots, the middle line represents the median, the box

boundaries indicate the interquartile range, and the whiskers extend to data points within 1.5x

the interquartile range.

b, Comparison of PCC and Kendall’s tau coefficient on 2 adjacent human ovarian
carcinosarcoma samples using ST-to-ST tissue alignment between Loki and PASTE, Loki and

GPSA, and Loki and CAST, respectively.
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Supplementary Fig. 2: Examples of tissue alignment.

Gene expression of target sample and source sample after alignment using Loki (ST-to-ST),
CAST(ST-to-ST), GPSA(ST-t0-ST), and PASTE (ST-to-ST), respectively.
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Supplementary Fig. 3: Tissue alignment of fine-tuning, pre-training, and train from
scratch.

a, Tissue alignment results on 2 adjacent human ovarian carcinosarcoma samples using Loki
Align Image-to-ST (fine-tuning, pre-training, and train from scratch). We colored the samples
using the top three PCA components of OmiCLIP transcriptomic embeddings, mapped to red,
green, blue color channels, respectively.

b, Comparison of tissue alignment performances, represented by the PCC and Kendall’s tau
coefficient of the highly expressed gene expression between target sample and source sample
after alignment at the same location, using Loki Align Image-to-ST (fine-tuning, pre-training, and
train from scratch). Bar plot shows the accuracy of alignment by Loki Align Image-to-ST (fine-
tuning, pre-training, and train from scratch). Error bar is standard deviation with center
measured by mean, n=147.
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Supplementary Fig. 4: Tissue alignment using dual-modalities and single-modality.

a, Comparison of tissue alignment performances, represented by the PCC of the highly
expressed gene expression between target sample and source sample after alignment at the
same location, using Loki ST&image-to-ST, ST-to-ST, and Image-to-ST, respectively. In the box
plots, the middle line represents the median, the box boundaries indicate the interquartile range,
and the whiskers extend to data points within 1.5x the interquartile range, n=147.

b, Comparison of tissue alignment performances, represented by the Kendall’s tau coefficient of
the highly expressed gene expression between target sample and source sample after
alignment at the same location, using Loki ST& mage-to-ST, ST-to-ST, and Image-to-ST,
respectively. In the box plots, the middle line represents the median, the box boundaries
indicate the interquartile range, and the whiskers extend to data points within 1.5x the
interquartile range, n=147.
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Supplementary Fig. 5: Cell type annotation.

Comparison of similarity difference on breast cancer with tumor bulk RNA-seq data, heart failure
with fibroblast bulk RNA-seq data, and normal breast samples with tumor bulk RNA-seq data,
within and out of the corresponding region annotated by pathology experts, respectively. In the
box plots, the middle line represents the median, the box boundaries indicate the interquartile
range, and the whiskers extend to data points within 1.5x the interquartile range.



Supplementary Fig. 6: H&E image of the brain sample.

H&E image of the brain sample.
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Supplementary Fig. 7: In-house patient samples.

HE images of our in-house patient samples with Alzheimer's disease, metaplastic breast cancer,
and heart failure.
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Supplementary Fig. 8: Loki ST gene expression prediction workflow.

Schematic illustration of Loki ST gene expression prediction using H&E images.



Supplementary Notes

Supplementary Note 1. Evaluating OmiCLIP’s transcriptomic encoder on single-cell RNA-
seq data

Our transcriptomics training data were collected from spot-level spatial transcriptomics, with
each spot containing approximately 10-20 cells. Such training on spot-level data may lead to
potential biases when encoding single-cell transcriptomics’. To evaluate the suitability of
OmiCLIP’s transcriptomic encoder on single-cell RNA sequencing (scRNA-seq) data, we tested
whether its transcriptomic embeddings accurately capture cell heterogeneity by annotating cell
types in scRNA-seq datasets.

We obtained two scRNA-seq atlas datasets collected from multiple patient samples, along with
their corresponding cell-type annotations from external cancer studies as labels? 3. Following
standard quality control and preprocessing steps on the scRNA-seq data in SCANPY*, gene
symbols were ranked in descending order and converted into “sentences”, excluding house-
keeping genes. We then applied OmiCLIP’s transcriptomic encoder to transform these gene
name sentences into transcriptomic embeddings for cell type classification. Remarkably,
OmiCLIP’s transcriptomic embeddings achieved clear separation of cell types (Supplementary
Fig. 1a).

For benchmarking, we compared OmiCLIP with OpenAl CLIP, a baseline model pretrained on
general-domain text. We used identical procedures to convert the gene name sentences into
OpenAl CLIP embeddings. Our analysis shows that OmiCLIP effectively clustered cells of same
cell types from multi-sample scRNA-seq data. In contrast, OpenAl CLIP, pretrained on general-
domain text, resulted in fragmented clusters of the same cell type and showed greater overlap
among similar cell types (Supplementary Fig. 1b). This suggests that OmiCLIP's pretraining on
domain-focused data, including gene names and histology image patches, enhances OmiCLIP’s
capability to group cells of the same type across samples more effectively, reflecting underlying
biologically meaningful relationships inferred from transcriptomic and histological information.

10



a OmiCLIP embeddings

Kidney cancer Prostate cancer

M Fibroblasts
Mast cells
B Macrophages i T cells
Plasma A M Bcells
T cells : € M Myeloid cells
M Tumor Pericytes
M Endothelial N i
Q B Pericyte Q (Q% | Enfioth.ellal cells
<§( vSMC <§< Epithelial cells
=) B Mast cells > I Tumor cells
UMAP1 UMAP1

OpenAl CLIP embeddings
Kidney cancer Prostate cancer

t B Fibroblasts
. *; %f Mast cells
B Macrophages % | i T cells
Plasma % \-"5}; M B cells
: Iuc:]!)sr = Myeloid cells
M Endothelial o Pericytes
« M Pericyte o M Endothelial cells
2 VSMC & Epithelial cells
2 M Mast cells = M Tumor cells
UMAP1 UMAP1

Supplementary Figure 1 UMAP visualizations of OmiCLIP/OpenAl CLIP transcriptomic
embeddings of scRNA-seq data. a, UMAP representation of the OmiCLIP transcriptomic
embeddings of single cells in kidney cancer and prostate cancer samples. Each dot represents
a cell and the colors mark the cell type information from original study. b, Same as in (a) with
OpenAl CLIP-based embeddings. Note for the prostate cancer OpenAl CLIP embeddings,
tumor cells (‘invisible’) totally overlap with the epithelial cells.

In Loki platform, we employed the Gaussian Naive Bayes (Gaussian NB) algorithm
(implemented via Scikit-Learn's GaussianNB module) for classification on the transcriptomic
embeddings from our pretrained encoder. In the few-shot setting, we randomly sampled a small
fraction of labeled examples per class for training, ranging from 0.1%, 0.5%, 1%, 2%, 3%, up to
the maximum number of labeled examples available for a given class. The remainder of the
data was used for validation. Each experiment was repeated 10 times with different random
seeds to account for dataset variability. The performance of the classification was evaluated
using the weighted F1 score.

OmiCLIP achieved high precision for most cell types, with the exception of particularly
challenging classes, such as normal epithelial versus tumor epithelial cells (Supplementary Fig.
2a-b). In kidney cancer datasets, Loki achieved a median F1 score of 0.89 with only 0.5% of
training labels per class, surpassing OpenAl CLIP (0.81) and outperforming conventional
methods like SingleR® (0.50), Celltypist® (0.58), and scType’ (0.32). Likewise, in prostate cancer
samples, Loki achieved a median F1 score of 0.82 with only 0.1% of training labels per class
(Supplementary Fig. 2c). Overall, OmiCLIP’s transcriptomic embeddings accurately annotated
cell types with as few as 0.5% labeled training data and consistently outperformed the OpenAl
CLIP text embeddings for all sizes of the training sets in the two datasets. These results
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indicated that OmiCLIP’s transcriptomic encoder effectively captures the heterogeneity of single-
cell transcriptomics.

Few-shot (1%) supervised cell type prediction from transcriptomic embeddings
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Supplementary Figure 2 Few-shot cell type annotation. a, Confusion matrix between
predicted and actual cell types of the kidney cancer dataset. The matrix is colored from light to
dark blue by the precision values. The projection of the actual and predicted cell type labels to
the original UMAP embedding for the kidney cancer dataset. 1% randomly sampled cells were
used for training and the rest were plotted on the UMAP embedding. b, same as in (a) for the
prostate cancer dataset. ¢, Performance of cell type annotation in four scRNA-seq datasets
measured by weighted F1 score. In the box plots, the middle line represents the median, the
box boundaries indicate the interquartile range, and the whiskers extend to data points within
1.5x the interquartile range. The dashed lines represent the performance of conventional
methods.
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Supplementary Note 2. Cancer patient risk stratification in the TCGA dataset using
OmiCLIP embeddings

Previous studies have shown that diagnostic WSI and RNA-seq can be integrated using deep
learning for cancer prognosis via a late fusion model® °. Using The Cancer Genome Atlas
(TCGA) patient data, we further tested the capability of OmiCLIP to bridge bulk RNA-seq data
and paired WSI for leveraging patient risk stratification.

2.1 Biological relevance of OmiCLIP’s transcriptomic embeddings in the TCGA bulk RNA-

seq dataset

By converting RNA-seq expression data to gene name sentences, OmiCLIP’s transcriptomic
embeddings effectively separated patients of different cancer types (Supplementary Fig. 3a),
achieving comparable performance of the original bulk RNA-seq expression data
(Supplementary Fig. 3b).

a OmiCLIP transcriptomic embeddings b RNA-seq expression O TCGABRCA
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Supplementary Figure 3 OmiCLIP transcriptomic embeddings distinguish TCGA cancer
types. a, UMAP representation of the OmiCLIP transcriptomic embeddings, where each dot
represents a patient case. The OmiCLIP transcriptomic embeddings visually divide the TCGA
LUAD patients into two groups: LUAD 1 and LUAD 2. b, UMAP representation based on TCGA
RNA abundances.

We further investigated OmiCLIP’s transcriptomic encoder on the TCGA bulk RNA-seq data.
OmiCLIP’s transcriptomic embeddings divided TCGA Lung Adenocarcinoma (LUAD) patients
into two distinct groups (Supplementary Fig. 4a) as LUAD 1 and LUAD 2. To investigate the
clinical insight added by this transcriptomic embedding, we performed Kaplan-Meier survival
analysis on these two groups of patients. The results showed a significant difference in overall
survival between the two groups (Supplementary Fig. 4b), indicating the prognostic relevance of
OmiCLIP’s transcriptomic encoder. To further investigate the underlying relevance of the
OmiCLIP transcriptomic embeddings, we split the larger LUAD group into LUAD 1 — Prox (50%)
and LUAD 1 - Dist (50%), which were close to and distant from the LUAD 2 group in OmiCLIP
embedding space, respectively (Supplementary Fig. 4c). Kaplan-Meier survival analysis
revealed a more significant difference in overall survival between the LUAD 1 — Dist and LUAD
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2 groups, with a p-value of 7 x 10* (Supplementary Fig. 4d). This analysis indicated OmiCLIP’s
capability to identify patient clusters with clinical relevance. This capability potentially arises
from incorporation of the biological knowledge derived from the literature: we initialized
OmiCLIP’s transcriptomic encoder using the pretraining weights of a Bidirectional Encoder
Representations from Transformers (BERT) language model, thereby leveraging the power of
natural language processing (NLP) models to embed biological information into a high-
dimensional space. Similar phenomenon has been reported by recent publications such as
GenePT'® and cell2sentence", supporting our approach of utilizing text-based embeddings to
capture rich biological information efficiently.
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Supplementary Figure 4 OmiCLIP transcriptomic embeddings stratify patient groups on
TCGA LUAD data. a, the PCA projections of the OmiCLIP transcriptomic embeddings of the
TCGA LUAD patients colored by the clustering (LUAD 1 and LUAD 2). b, Kaplan-Meier curves
for the LUAD 1 and LUAD 2 patient groups. The log rank test p-values are provided. ¢, the PCA
projections of the OmiCLIP transcriptomic embeddings of the TCGA LUAD patients colored by
LUAD 1 — Prox (in close proximity to LUAD 2), LUAD 1 — Dist (distant from LUAD 2), and LUAD
2. d, Kaplan-Meier curves for the LUAD 1 — Dist and LUAD 2 patient groups.

2.2 OmiCLIP’s transcriptomics and image alignment achieves patient stratification in the
TCGA dataset

Complementary to sequencing data, whole slide images (WSIs) provide phenotypic details,

such as the morphology of normal tissue and tumor. Here we demonstrate that our multi-modal
OmiCLIP model enables patient risk assessment across multiple cancer types without additional
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training, using patients’ H&E images and paired bulk RNA-seq data from the tumor biopsy. We
hypothesized that integrating histology images could achieve patient stratification by
incorporating morphological context, thus offering deeper insights into cancer risk and localized,
region-specific explanations for tumor biology. To test this hypothesis, we employed OmiCLIP to
calculate the similarity between individual tiles from WSIs and paired bulk RNA-seq data for
each patient (Supplementary Fig. 5a). Since the transcriptome extracted from tumor biopsies
reveals tumor-related features such as overexpression of COL1A1'? and ACTB', the regions
with high similarity highlight tumor regions-of-interest (ROIs). As demonstrated by the similarity
heatmaps and example histology images of breast cancer samples in main Figure 4b, ROls with
higher similarity correspond to more malignant tissues (e.g. tumor cells). Using these cross-
modal cosine similarity scores as weights, we computed a WSI-level image embedding by
summing the tile embeddings—weighted by OmiCLIP’s cross-modal similarity (Supplementary
Fig. 5a). We then combined the multimodal OmiCLIP embeddings for each patient and fed them
into a fully connected neural network for cancer risk estimation. The detailed methodology is
described in the following.

We evaluated cancer risk at the patient level by merging diagnostic WSIs from the same patient
into a single WSI, referred to as a patient WSI. For a given patient p, the top genes ranked by
abundances were encoded by our pretrained text encoder into an L2-normalized transcriptomic
embedding (T?). Each WSI was first divided into tiles of 224 x 224 pixels using CLAM. Tile
embeddings (V7 for patient p and tile i) were computed using our pretrained image encoder. The
cosine similarity (COS? for patient p and tile i) between each tile embedding and the
transcriptomic embedding were then computed and converted to probabilities using a softmax
transformation,

cos? =TP-vP

exp (COSP)

P _
% exp (COS})

The tile probability PP was used to aggerate the tile embeddings into a patient representation,

VPZEVip*Pip
i
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Supplementary Figure 5 Patient risk stratification in TCGA dataset. a, Schematic illustration
of patient stratification from WSI and paired RNA-seq abundance with OmiCLIP paired image
and transcriptomic embeddings. Each WSI (with tissue) is divided into tiles of size

224 x 224 pixels, and a weight is given to each patch according to its similarity to bulk RNA-seq
data of the same patient’s biopsy. The patch embeddings are summed to construct a WSI
embedding weight by similarity. The multimodal patient-level embeddings are input to a simple
neural network for cancer risk estimation. b, Kaplan-Meier curves for the high- and low-risk
patient groups in six TCGA cancer datasets. The log rank test p-values are provided.

The patient level multi-modal embeddings (T? and V?) were then fed into a simple neural
network for estimation of cancer risk. The network compromises two linear layers with ReLU
activation functions to create a fused latent representation, and a subsequential linear classifier
layer to output probabilities for high-risk prediction. The right-censored survival times were
discretized into four non-overlapping, quantile-based bins. These bins were used as prediction
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labels for training the model by maximizing a log likelihood function of the predicted survival bin
index, following the methodologies from prior studies® '°. For each cancer type, a model was
trained for 20 epochs on the training set using the Adam optimizer, with a learning rate of 2x107
and a weight decay of 1x107°. An L1-regularization with a coefficient of 1x10° was applied.
Performance evaluation was conducted via five-fold validation, using Kaplan-Meier analysis for
risk stratification, and the log rank test for assessing the statistical significance.

We evaluated the performance using five-fold cross-validation on TCGA data across six cancer
types with most samples of paired WSI and RNA-seq data available, including Breast Invasive
Carcinoma (BRCA), Low-Grade Glioblastoma (LGG), Kidney Renal Clear Cell Carcinoma
(KIRC), Lung Adenocarcinoma (LUAD), Liver Hepatocellular Carcinoma (LIHC), and Bladder
Urothelial Carcinoma (BLCA). We kept all the cases with both RNA-seq and diagnostic WSis.
Patients in each cancer type were grouped into lower and higher risk categories based on the
50th percentile of the predicted risk scores. A log-rank test was then applied to assess the
statistical significance of the patient survival time in the two patient groups. We demonstrated
that in all six cancer types, OmiCLIP’s multimodal embeddings effectively stratified patient
groups, revealing significant separation in the Kaplan-Meier curves (Supplementary Fig. 5b).

Altogether, through zero-shot capability of OmiCLIP pretraining that integrates local
histopathology image regions and molecular features with spatial correspondences, we robustly
characterized patient stratification and detected intra-tumoral heterogeneity. In contrast, weakly
supervised deep learning techniques, which are widely used via a late-fusion approach®,
processing bulk molecular profile data and WSIs independently before combining them only at
the decision stage, thereby potentially missing crucial interactions between the modalities. The
pretrained OmiCLIP overcomes this limitation by learning a joint representation that captures
complex interactions. This approach fuses the transcriptomics and H&E image earlier than
when training the decision network. Despite not being specifically trained on TCGA, OmiCLIP
effectively aligns images and bulk RNA-seq data, showing excellent agreement between the
cosine similarity scores of WSI tiles and RNA-seq data from tumor biopsies. This facilitates early
fusion for cancer risk estimation and demonstrates OmiCLIP’s ability to generalize across
various tasks and domains.
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Supplementary Note 3. Downstream evaluation datasets

Tissue alignment: Simulated datasets were generated by perturbing real ST data and paired
H&E images from 10 human tissue slices of diverse tissue and disease types including two
breast cancer'®'7, one colorectal liver cancer'8, one liver cancer'®, one prostate cancer?°, one
10x Genomics prostate cancer, one 10x Genomics colon cancer, one embryonic lung?', one
normal small intestine??, and one sleep apnea tonsil sample?3. We simulated new ST
experiments by perturbing both gene expression and spatial locations at different levels of
noise. Gene expression perturbations involved adding pseudo counts drawn from a multinomial
distribution, with the total counts per spot following a negative binomial distribution. Spatial
locations perturbations involved cutting parts of the slice and rotating the coordinates. Low-
noise perturbations had pseudo counts from 0.05 to 0.25, cut region from 3% to 10%, and
rotations from 5 to 15 degrees. High-noise perturbations had pseudo counts from 0.25 to 0.5,
cut region from 10% to 20%, and rotation degrees from 15 to 30. Paired H&E images were
correspondingly cut and rotated. 10 simulated datasets were generated at different perturbation
levels from each real datasets, totaling 200 datasets including 100 low-noise and 100 high-noise
perturbations. Real-world data tests used a normal human small intestine dataset?? including
Visium ST data and paired H&E images of 8 adjacent tissue slices, a human ovarian
carcinosarcoma dataset?* including Visium ST data and paired H&E images of 2 adjacent tissue
slices, and a human breast cancer dataset? including paired Visium and Xenium ST data.

Tissue annotation: Bulk RNA-seq data based annotation used 3 normal human breast and 3
human heart failure histology images?627, and 3 breast cancer patient histology images TCGA.
Pathology experts annotated different tissue regions. Bulk RNA-seq datasets including 663
human adipose and 504 human fibroblast samples from the Genotype-Tissue Expression
(GTEXx) Portal and 3 paired tumor biopsies samples from TCGA. Gene expressions were
averaged for adipose and fibroblast samples. For the tissue annotation task using marker
genes, we include 4 external validation datasets: CRC7K, WSSS4LUAD, LC25000, and
PatchCamelyon. CRC7K consisted of 7,180 image patches of 224 x 224 pixels at 0.5 microns
per pixel (MPP) from 50 patients with colorectal adenocarcinoma. All images were categorized
into one of the following nine classes: adipose, background, debris, lymphocytes, mucus,
smooth muscle, normal colon mucosa, cancer-associated stroma, or colorectal adenocarcinoma
epithelium. We removed background images and that resulted in 6,333 image patches with 8
different tissue types. As the MPP value is about 2 times our training data, we cropped the
images into four non-overlapping tiles. The image embeddings encoded by OmiCLIP were the
average of these four tiles. WSSS4LUAD consisted of 10,091 LUAD image patches of around
200-500 pixels from 63 WSiIs. All images were categorized as either tumor or normal,
depending on the presence of tumor tissue. This resulted in 6,579 tumor images and 3,512
normal images. LC25000 consisted of 25,000 lung and colon image patches of 768 x 768 pixels.
We used the subset of all lung tissues with 5,000 images of lung adenocarcinomas, 5,000
images of lung squamous cell carcinomas, and 5,000 images of benign lung tissues. All images
were categorized as either cancer or benign. This resulted in 10,000 cancer images and 5,000
benign images. PatchCamelyon consisted of 327,680 image patches of 96 x 96 pixels from
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lymph node sections. All images were categorized as either tumor or normal depending on the
presence of metastatic tissue. We used the validation set with 32,768 image patches.

Cell type decomposition: We downloaded a human colorectal cancer dataset?® including Visium,
Visium-HD, and scRNA-seq data of serial slices. We used the Visium-HD 8-mm bin data as the
ground truth and created pseudo-Visium spots in the Visium-HD capture area, mirroring the
Visium spot configuration that each spot is 55 ym in diameter with a 100 ym center-to-center
distance between spots. Different tissue regions are annotated by pathology experts. We also
collected one in-house triple-negative breast cancer patient-derived xenograft. The sample was
snap freeze using 10x Genomics protocol # CG000663. Frozen OCT tumors were sectioned
using cryostat as per 10x Genomics protocol # CG000579 (Rev E) and mounted directly on the
Xenium slide. Next, sections on Xenium slides were processed as per 10x Genomics protocol #
CG000613 (Rev B). For the probes, we used a 10x pre-designed human breast panel that has
280 genes on the panel. Slides were profiled using Xenium Analyzer (10x Genomics). Following
analysis, Xenium slides were processed for Hematoxylin & Eosin (H&E) staining using 10x
Genomics protocol # CG000613. H&E slides were imagined using Akoya Bioscience
Phenocycler Fusion. We annotated the tumor epithelial cells, immune cells, and stroma cells
based on marker genes respectively. We then created pseudo Visium spots based on the
Xenium data resulting in 3,402 spots, mirroring the Visium spot configuration that each spot is
55 ym in diameter with a 100 ym center to center distance between spots. To decompose this
TNBC sample, we downloaded an external scRNA-seq of TNBC as a reference?. We also
downloaded an external mouse brain dataset®° including Visium data of serial slices, and used a
reference mouse brain scRNA-seq dataset®' from the Allen Institute.

H&E image-to-ST retrieval: Our in-house heart failure patient tissues were obtained at Houston
Methodist Hospital under an approved IRB protocol: Pro 00006097 congestive heart failure with
standard protocol for H&E staining. Our in-house paraffin-embedded Alzheimer's disease
patient samples were stained following standard protocol for H&E staining. Our in-house
metaplastic breast cancer and triple-negative breast cancer patient-derived xenografts were
collected and snap-frozen using 10x Genomics protocol # CG000663, and H&E stained using
10x Genomics protocol # CG000613. The validation datasets including brain, heart, kidney, and
breast samples, and the test dataset including desmoplastic small round cell tumor, colorectal
cancer, vascular, and colon samples from 4 studies (Supplementary Table 4).

ST gene expression prediction: We used a normal human heart sample dataset?” of paired ST
data and H&E images including 39 samples.
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