
Supplementary Information 

1 Methods 

1.1 Participants’ sample size calculation 

Previous studies reported correlations between IAcc and HEP amplitude during the HTT, HDT, and HCT  as 
.28, -.75, and .45, respectively. Based on these values, the required sample sizes were 97, 11, and 36 participants, 
respectively, to detect the given effect size with the specified alpha 0.05 and 80% of power 1–3 .Correlations 
ranging from .6 to .36 between IAcc in the HCT and HDT  required sample sizes between 20 and 58 
participants 4,5. Finally, to detect a correlation of .8 between IAcc in HCT and HTT required a sample size of 
nine participants 6.  

1.2 Exclusion criteria for participants’ recruitment and selection 

The exclusion criteria were as follows: presence of arterial hypertension (systolic blood pressure ≥ 140 mmHg 
and/or diastolic blood pressure ≥ 90 mmHg) based on office, home, or ambulatory blood pressure monitoring, 
presence of arrhythmias documented by ECG or Holter monitoring (no more than 200 ventricular or 
supraventricular extrasystoles), organic cardiac pathology (previous myocardial infarction, cardiomyopathies of 
various etiologies, scarring of unknown etiology, congenital heart defects, etc.), obstructive sleep apnea 
syndrome, significant atherosclerosis of central or peripheral arteries (arterial stenosis of 50% or more), mental 
disorders and pathology of the nervous system, thyroid dysfunction, systemic and/or autoimmune diseases, 
significant pathology of the liver, kidneys, or lungs, epilepsy, head trauma within the past year, administration of 
drugs passing through the blood-brain barrier, complications resulting from previous viral/infectious diseases, 
endocrine disorders (diabetes, obesity (>30 kg/m2), etc.). 

Before the final inclusion participants had to (1) complete the Hospital Anxiety and Depression Scale (HADS)7 
those with the score >11 were not included in the further study and (2) undergo 24-h Holter and blood pressure 
monitoring to confirm the absence of arrhythmias and hypertension. Participants received no monetary 
compensation, but were provided with the results of the screening medical examination.  

1.3 Technical details of heartbeat discrimination test implementation and its quality criteria 

The implementation of the HDT was carried out using Python 3 programming language, the Pylsl package to 
capture the amplifier signal by the recording device. The algorithm accumulated resting-state ECG data and 
used the neurokit2 library to find the 75% of the average R peak amplitude, which served as the threshold for 
further real-time detection of R peaks. The Multiprocessing and Multithreading packages were used to enable 
parallel accumulation of physiological data, timestamps, and events from both the presentation computer and 
recording device. This setup allowed for the isolation of the ECG signal from the main data stream and real-time 
R peak detection. Each streamed sample was compared to the threshold, and when the threshold was exceeded, a 
sound with a specified delay was delivered. The Pywave package was used to generate the sound signal. The other 
two tasks were also implemented in Python, utilizing the Psychopy, tkinter, and numpy packages.  
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We assessed the quality of the biofeedback by examining two criteria: (1) whether the difference between the R 
peak detected by the presentation script and the actual R peak was within a 50 ms range, and (2) whether there 
were any pauses between tones in the sequence. Trials that did not meet these criteria were excluded from the set 
of 40 trials. Only participants with more than 10 synchronous and non-synchronous trials remaining were 
included in further analysis 8. 

1.4 EMG data analysis 

To account for the time required to execute the press, we corrected the button press time recorded by the 
keyboard using EMG data. EMG data analysis was performed using the neurokit2 package 9, applying the 
Teager-Kaiser Energy operator to detect movement onset thresholds, as implemented by the biosppy method. 
First, we found EMG onsets within an average reaction time of 250 ms before button presses 10 and determined 
the participant’s mean time difference between the onset and the actual press. If no EMG onsets were detected 
near the button presses (14% of presses across all participants), the individual mean time difference was 
subtracted from the button press time. Mean time difference of presses across all participants was 140 ± 6 ms. 

1.5 ICA components selection  

We ensured the exclusion of ICA components by controlling their power spectral densities, signal correlation 
with the ECG and EOG signals, and their topographies. For ECG components we also looked at their averaging 
time-locked to R peaks. The topography of the EOG components were left-to-right oriented with positive 
values on one side and negative values on the other and up-down with either positive or negative values only. As 
a referent scalp topography we chose a topography of a clear in time ECG component from one of the 
participants. We selected two EOG and one ECG components that had the highest correlation with EOG and 
ECG signals, had similar scalp topographies to the referent topography, and in the case of the ECG component 
had a prominent R peak and QRS complex morphology in R-locked components averaging.  

1.6 Behavioral tasks analysis 

1.6.1 HTT 

The delay-based IAcc was calculated using equation (1), where the Total of Correct Answers represented the 
number of presses that fell within a specified time window after the nearest preceding R peak, and Recorded 
Heartbeats represented the total number of R peaks recorded during the task. We compared the interval 
between each R peak and the nearest subsequent press. If the interval was shorter than the specified time 
window, the press was labeled as correct; otherwise, the press was labeled as incorrect. The time windows were 
set based on the participant's average heart rate during the experiment: 750 ms for heart rates below 69.76 bpm, 
600 ms for heart rates between 69.75 and 94.25 bpm, and 400 ms for heart rates above 94.25 bpm. 

 𝑑𝑒𝑙𝑎𝑦_𝑏𝑎𝑠𝑒𝑑 = 1 − 𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠 – 𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐴𝑛𝑠𝑤𝑒𝑟𝑠
𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠  (1)
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The mSI IAcc was assessed using the equation (1) where Total of the Correct Answers was replaced by the total 
of all the presses.  

To calculate md IAcc, the ECG signal was divided into overlapping 10-s windows, starting from each R peak. 
Within each window, inter-response intervals (IRI) and inter-beat intervals (IBI) were estimated in seconds. If 
the variation (calculated as the ratio of the standard deviation to the mean) of the IBI in a window was less than 
or equal to 0.5, the difference between the response frequency (1/IRI) and cardiac frequency (1/IBI) was 
computed. The md IAcc was then derived as 1 minus the mean of these differences. 

The d_mod IAcc with logarithmic correction 11 was calculated using equation (2), where z() represents the 
inverse of the cumulative distribution function of the standard normal distribution. According to signal 
detection theory (SDT) 12, the HTT test can be represented as a two-alternative forced choice task between 
“signal” and “noise”. The "signal" was defined as a specific time window following the R peak, during which the 
participant should feel a heartbeat, while the "noise" was the rest of the interval until the next peak. The total 
number of correct presses that fell within this window, as determined by the delay_based IAcc (see above), were 
classified as hits, while presses that did not fall within the window were classified as false alarms. 

 𝑑_𝑚𝑜𝑑 = 𝑧 ℎ𝑖𝑡𝑠+0.5
𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠 + 1( ) − 𝑧 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠+0.5

𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠 + 1( ) (2)

We calculated the time delay between each button press and the nearest preceding R peak to assess resVec IAcc. 
This time delay was then normalized by the corresponding inter-beat interval (IBI) for that R peak. The IBI was 
considered as a full circle (2π radians), and the ratio of the time delay to the IBI was multiplied by 2π to 
determine the position on the circular distribution. Next, we used the circvar() function from the astropy.stats 
Python library to calculate the circular variation. The result was subtracted from 1 to obtain the resVec value, 
where values closer to 0 indicated high variation of pressing time, and values closer to 1 indicated low variation 
of pressing time. 

CAcmotor IAcc was calculated with equation (1) where Total of Correct Answers was replaced by the number of 
presses done within the 350-650 ms window after the R peak. 

1.6.2 HDT 

In our analysis, we applied the ratio of correct answers (ncorrect) and the d-prime index with log-linear 
correction (d) using equation (3). Additionally, we used the proportion correct (Pc2IFC) to convert the range of 

d to 0-1, following the formula , where the cumulative distribution function  was applied 13. Φ(𝑑/ 2) Φ

 𝑑 = 𝑧 ℎ𝑖𝑡+0.5
ℎ𝑖𝑡+𝑚𝑖𝑠𝑠+1( ) − 𝑧 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚+0.5

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚+𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛+1( ) (3)

where z() - inverse of the cumulative distribution function of the standard normal distribution; hit, miss - 
number of correct and incorrect responses in S250 respectively; correct rejection, false alarm - number of correct 
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and incorrect responses in S550 respectively. The participant’s response was considered correct if it matched the 
type of the condition. 

Criterion (c) was determined using equation (4). 

 𝑐 =  − 0. 5 𝑧 ℎ𝑖𝑡+0.5
ℎ𝑖𝑡+𝑚𝑖𝑠𝑠+1( ) + 𝑧 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚+0.5

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚+𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛+1( )( ) (4)

1.6.3 HCT 

For the HCT test Shandry index (SI) was calculated using the equation (5), where Reported Heartbeats were 
participants' answers about the number of heartbeats felt per interval. 

 𝑆𝐼 = 1
6 ∑ 1 − |𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠−𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠|

𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠( )
Also we applied correction (corSI) to take into account the number of counted heartbeats was much higher than 
the actual value by including (Recorded Heartbeats+Reported Heartbeats)/2 in the denominator 14 . 

1.7 Spatio-temporal permutation test on HEP comparison  

Test solved the problem of multiple comparisons in point-to-point comparisons within evoked data between 
conditions/groups. First, the data was randomly assigned to one of the conditions/groups, then data were 
compared and t values were calculated. Second, from the points with a t-value above the threshold, a cluster with 
the highest sum of t-values was selected. Then steps 1-2 were repeated 1000 times to generate a distribution of t 
values to test the null hypothesis. The null hypothesis was rejected if the t value of the observed cluster (formed 
based on the adjacency matrix) was within 5% of the most extreme values of the distribution. For within group 
comparison we used mne.stats.spatio_temporal_cluster_1samp_testt function with paired t-test 
(ttest_1samp_no_p) as a stat_fun parameter and threshold calculated as t.ppf(1 - alpha / 2, df) where alpha was 
.05, df = N-1, N was a number of participants. For between group comparison we used one-way ANOVA 
(f_oneway) from scipy.stats Python library as a stat_fun parameter and threshold calculated as f.ppf(1 - alpha / 
2, dfn = dfn, dfd = dfd) where alpha was .05, dfn = Nc-1, dfd = N-Nc, Nc was a number of conditions, N was a 
number of participants. 

1.8 Spatio-temporal permutation test on correlation between HEP amplitude and IAcc  

Spearman’s correlation convetration to t-statistics was performed  with rho*(sqrt(N-2))./sqrt((1-rho.^2)) derived 
from the formula t^2 = DF*R^2 / (1-R^2), where DF was equal to N-2 with N was a number of participants. 
Channel adjacency matrix was prepared by 'distance' method with a 8 minimum neighborhood distance. The 
test was performed with 1000 permutations with two-tailed 'ft_statfun_correlationT' as statistic mode, cluster 
alpha was .05, ‘maxsum’ method to correct for multiple comparisons and 'nonparametric_individual' method 
for single-sample threshold was chosen, p-value threshold was set to .05.  
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2 Discussion on montage 

We should note that during the recordings, we were constrained by the specific montage configuration provided 
by the amplifier's manufacturer, which we could not alter at the time. Despite this limitation, our participant 
recruitment necessitated proceeding with the recordings. We believe that, although this setup is somewhat 
unconventional, our data remains valuable and worth reporting for the following reasons: 

1.​ We explicitly describe our reference scheme, allowing interested researchers to replicate our findings by 
offline re-referencing their EEG setups. 

2.​ Significant differences cannot arise solely from specific montages unless genuine differences exist 
initially. 

3.​ The uniqueness of our data offers new information to the community investigating heart-brain 
interactions, even when obtained with an unusual montage, which we clearly describe. 

4.​ While mastoids provide a more neutral reference point, researchers in the EEG community often use 
even bipolar montages, which inherently contain differences between two active points. 

We discussed the current montage and outlined its associated limitations through two approaches: first, by 
qualitatively comparing our HEP data with findings from the literature, and second, by empirically examining 
the effect of the reference on HEP amplitude in a newly recruited subgroup of participants. 

A methodological review by Coll et al. (2021) of a large number of studies on HEP revealed variability in the 
methods used for HEP processing and recording15. Researchers selected approaches based on the specific 
requirements of their study and their prior experience. In our study, we applied high- and low-pass filtering, 
baseline correction, and CFA artifact removal, following the most commonly used procedures reported in the 
literature. The choice of reference scheme complicated the comparison of HEP waveform and amplitude. Yoris 
et al. (2017) suggested that methodological heterogeneity, particularly in the number of electrodes used and the 
approach to removing the CFA artifact, might have influenced the characteristics of HEP deflections16. 
However, several studies17–21 reported negative deflections in HEP amplitude within frontal regions, which were 
consistent with our findings (Fig. 3 in the submitted article). 

Previous research noted that it is hard to find entirely neutral reference location in the body22. This complicated 
the selection of a reference and led to the use of various referencing montages. Lei X and Liao K (2017) 
demonstrated that specific reference schemes were preferable for interpreting EEG components generated by the 
visual, somatomotor, and other brain networks23. In our study, we adopted a montage that was more commonly 
used in clinical research. Given this methodological constraint, in our fundamental study, we refrained from 
making inferences regarding the brain networks involved in the investigated HEP paradigms. 

To further assess the impact of referencing schemes, we conducted an additional study involving n=20 
volunteers, comprising both healthy participants and individuals with cardiological conditions (for details on 
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inclusion criteria, see Limonova et al. (2024)24). Resting-state EEG was recorded for five minutes using the same 
procedure as in the submitted article but with a monopolar montage. We performed  the same  processing steps 
as in the submitted manuscript however, noisy epochs were not removed. To evaluate the effect of referencing 
schemes we performed two analyses which differed in the references: (1) T3 and T4 references as in the 
submitted manuscript, (2) a common average reference, which is often used in basic research16. Сomparison of 
mean HEP amplitudes within the 200–600 ms time window in the six regions of interest revealed no significant 
differences (Fig. S5). The data and code generated for this additional study are available upon request. 
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4 Tables and figures 

Supplementary Figure S1. Grand averages of HEP averaged over all channels for groups with high (HIGH) and 
low (LOW) interoceptive accuracy (IAcc) splitted based on the median of the following IAcc metrics - (a) md, 
(b) resVec, (c) CAcmotor in the HTT. Left figures show HEP amplitude during tasks and resting state within the 
group with low IAcc. Central - HEP amplitude within the group with high IAcc. Right - HEP amplitude 
modulation in groups with high (ΔHIGH) and low (ΔLOW) IAcc i.e HEP amplitude during tasks from which 
HEP amplitude during resting state was subtracted. The 95% confidence band is drawn. 
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Supplementary Figure S2. Grand averages of HEP averaged over all channels for groups with high (HIGH) and 
low (LOW) IAcc splitted based on the median of the following IAcc metrics - (a) d in the HDT, corSI (c) in the 
HCT, and with high and low characteristics of answers in the HDT test splitted based on the median c (b). Left 
figures show HEP amplitude during tasks and resting state within the group with low values. Central - HEP 
amplitude within the group with high values. Right - HEP amplitude modulation in groups with high 
(ΔHIGH) and low (ΔLOW) values i.e HEP amplitude during tasks from which HEP amplitude during resting 
state was subtracted. The time at which a significant difference is observed is highlighted in gray. The 95% 
confidence band is drawn. 
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Supplementary Figure S3. Grand averages of HEP averaged over all channels for detectors and non-detectors 
groups in the (a) HTT, (b) HDT, and (c) HCT. Left figures show HEP amplitude during tasks and resting state 
within the non-detectors group. Central - HEP amplitude within the detectors group. Right - HEP amplitude 
modulation (Δ) in non-detectors and detectors groups i.e HEP amplitude during tasks from which HEP 
amplitude during resting state was subtracted. The 95% confidence band is drawn. 
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Supplementary Figure S4. Summary of HEP amplitude comparison within conditions within the whole sample 
and within groups with different levels of cardioception (detectors group, non-detectors group, six groups with 
low IAcc-metrics, six groups with high IAcc-metrics). p-values for significant effects are indicated with group in 
brackets; if no significance is reported, the effect was nonsignificant (N.S.) for all groups.  

 

Figure S5. Mean HEP amplitude from 0,2 to 0,6 s averaged in LF (left frontal: Fp1, F3, FC3, C3, F7, FT7), FC 
(central frontal: Fpz, Fz, FCz, Cz), RF (right frontal: Fp2, F4, FC4, C4, F8, FT8), TL (left temporal: TP7, CP3, 
P3, T5, P5, PO7), CO (central occipital: CPz, Pz, POz, Oz, PO3, O1, PO4, O2), and TR (right temporal: TP8, 
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CP4, P4, T6, P6, PO8) regions of interest (ROI). T3T4 – montage with ipsilateral T3 and T4 reference, 
Average – common average reference. 
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