library(limma)
library(ggplot2) #用于绘制火山图
library(pheatmap) #用于绘制热图
# 输入表达矩阵和分组文件 -------------------------------------------------------------
expr_data<-read.table("Matrix_of_expression.txt",header = T,
                           row.names = 1,sep = "\t")
group<-read.csv("group.csv",header = T,row.names = 1,sep = ",")
# #构建分组矩阵--design ---------------------------------------------------------
design <- model.matrix(~0+factor(group$group))
colnames(design) <- levels(factor(group$group))
rownames(design) <- colnames(expr_data)
# #构建比较矩阵——contrast -------------------------------------------------------
contrast.matrix <- makeContrasts(Tumor-Normal,levels = design)
# #线性拟合模型构建 ---------------------------------------------------------------
fit <- lmFit(expr_data,design) #非线性最小二乘法
fit2 <- contrasts.fit(fit, contrast.matrix)  
fit2 <- eBayes(fit2)#用经验贝叶斯调整t-test中方差的部分
DEG <- topTable(fit2, coef = 1,n = Inf)
DEG$regulate <- ifelse(DEG$P.Value > 0.05, "unchanged",
                   ifelse(DEG$logFC > 1, "up-regulated",
                          ifelse(DEG$logFC < -1, "down-regulated", "unchanged")))
table(DEG$regulate)
write.table(data.frame(gene_symbol=rownames(DEG),DEG),file = "DEG_result.txt",
            sep = "\t",quote = F,row.names = F,col.names = T)
# 区分上下调基因 -----------------------------------------------------------------
DE_1_0.05 <- DEG[DEG$P.Value<0.05&abs(DEG$logFC)>1,]
upGene_1_0.05 <- DE_1_0.05[DE_1_0.05$regulate == "up-regulated",]
downGene_1_0.05 <- DE_1_0.05[DE_1_0.05$regulate == "down-regulated",]
write.csv(upGene_1_0.05,"upGene_1_0.05.csv")
write.csv(downGene_1_0.05,"down-regulated.csv")
# 火山图的绘制 ------------------------------------------------------------------
pdf("volcano.pdf")
ggplot(DEG,aes(x=logFC,y=-log10(P.Value)))+ #x轴logFC,y轴adj.p.value
  geom_point(alpha=0.6,size=3.5,aes(color=regulate))+ #点的透明度，大小
  ylab("-log10(P.Value)")+ #y轴的说明
  scale_color_manual(values = c("blue", "grey", "red"))+ #点的颜色
  geom_vline(xintercept = c(-1,1),lty=4,col ="black",lwd=0.8)+ #logFC分界线
  geom_hline(yintercept=-log10(0.05),lty=4,col = "black",lwd=0.8)+ #adj.p.val分界线
  theme_bw()  #火山图绘制
dev.off()
# ggvolcano绘制另一种火山图 ----------------------------------------------------------
library(ggVolcano)
Genes <- rownames(DEG)
DEG$Genes <- Genes#将行名添加为一列
ggvolcano(data = DEG,x = "logFC",y = "P.Value",label = "Genes",
          label_number = 10,output = FALSE,
          fills = c("#00AFBB", "#999999", "#FC4E07"),
          colors = c("#00AFBB", "#999999", "#FC4E07"),
          x_lab = "log2FC",
          y_lab = "-Log10P.Value")
# 热图的绘制 -------------------------------------------------------------------
DEG_genes <- DEG[DEG$P.Value<0.05&abs(DEG$logFC)>1,]
DEG_gene_expr <- expr_data[rownames(DEG_genes),]
pdf("pheatmap.pdf")
pheatmap(DEG_gene_expr,
         color = colorRampPalette(c("blue","white","red"))(100), #颜色
         scale = "row", #归一化的方式
         border_color = NA, #线的颜色
         fontsize = 10, #文字大小
         show_rownames = F) 
dev.off()
# 加载必要的包
library(WGCNA)
library(limma)
# 读取表达数据
exprData <- read.csv("expression_data.csv", row.names = 1)
# 数据标准化（log2转换）
exprData <- log2(exprData + 1)
# 去除批次效应（如果有）
exprData <- removeBatchEffect(exprData, batch = batchInfo)
# 样本聚类和离群值检测
sampleTree <- hclust(dist(exprData), method = "average")
plot(sampleTree, main = "Sample Clustering", sub = "", xlab = "")
# 软阈值选择
powers <- c(1:20)
sft <- pickSoftThreshold(exprData, powerVector = powers, verbose = 5)
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     xlab = "Soft Threshold (power)", ylab = "Scale Free Topology Model Fit")
# 构建邻接矩阵和TOM矩阵
adjacency <- adjacency(exprData, power = sft$powerEstimate)
TOM <- TOMsimilarity(adjacency)
dissTOM <- 1 - TOM
# 基因聚类和模块检测
geneTree <- hclust(as.dist(dissTOM), method = "average")
dynamicMods <- cutreeDynamic(dendro = geneTree, distM = dissTOM,
                            minClusterSize = 30, deepSplit = 2)
moduleColors <- labels2colors(dynamicMods)
# 计算模块特征基因（eigengenes）
MEs <- moduleEigengenes(exprData, colors = moduleColors)$eigengenes
# 模块与性状的相关性分析
traitData <- read.csv("clinical_traits.csv")
moduleTraitCor <- cor(MEs, traitData, use = "p")
moduleTraitPvalue <- corPvalueStudent(moduleTraitCor, nSamples)
# 可视化模块-性状关系
heatmapData <- data.frame(Correlation = as.vector(moduleTraitCor),
                          Pvalue = as.vector(moduleTraitPvalue))
ggplot(heatmapData, aes(x = Module, y = Trait, fill = Correlation)) +
  geom_tile() +
  scale_fill_gradient2(low = "blue", high = "red", mid = "white")
# 计算基因显著性（GS）和模块成员（MM）
geneSignificance <- as.data.frame(cor(exprData, traitData, use = "p"))
moduleMembership <- as.data.frame(cor(exprData, MEs, use = "p"))
# 识别hub基因
hubGenes <- chooseTopHubInEachModule(exprData, moduleColors) # GO和KEGG富集分析
library(clusterProfiler)
enrichGO <- enrichGO(gene = hubGenes, OrgDb = org.Hs.eg.db, ont = "BP")
enrichKEGG <- enrichKEGG(gene = hubGenes, organism = "hsa")
# 可视化富集结果
dotplot(enrichGO, showCategory = 10)
dotplot(enrichKEGG, showCategory = 10)
# 绘制基因聚类树
plotDendroAndColors(geneTree, moduleColors, "Module Colors",
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05)
# 模块-性状热图
labeledHeatmap(Matrix = moduleTraitCor,
               xLabels = names(traitData),
               yLabels = names(MEs),
               colorLabels = TRUE)
library(BiocManager)
BiocManager::install("DOSE")

library("clusterProfiler")
library("org.Hs.eg.db")
library("enrichplot")
library("ggplot2")
library("pathview")
library("ggnewscale")
library("DOSE")
library(stringr)

pvalueFilter=0.05        
qvalueFilter=1        
showNum=20
#keggId="hsa04659"

rt=read.table("target-down-CNB.txt",sep="\t",check.names=F,header=F)      
genes=as.vector(rt[,1])
entrezIDs <- mget(genes, org.Hs.egSYMBOL2EG, ifnotfound=NA)  
entrezIDs <- as.character(entrezIDs)
rt=cbind(rt,entrezID=entrezIDs)
colnames(rt)=c("symbol","entrezID") 
rt=rt[is.na(rt[,"entrezID"])==F,]                        
gene=rt$entrezID
gene=unique(gene)
colorSel="qvalue"
if(qvalueFilter>0.05){
	colorSel="pvalue"
}
kk <- enrichKEGG(gene = gene, organism = "hsa", pvalueCutoff =1, qvalueCutoff =1)
KEGG=as.data.frame(kk)
KEGG$geneID=as.character(sapply(KEGG$geneID,function(x)paste(rt$symbol[match(strsplit(x,"/")[[1]],as.character(rt$entrezID))],collapse="/")))
KEGG=KEGG[(KEGG$pvalue<pvalueFilter & KEGG$qvalue<qvalueFilter),]
write.table(KEGG,file="KEGG.xls",sep="\t",quote=F,row.names = F)

if(nrow(KEGG)<showNum){
	showNum=nrow(KEGG)
}
pdf(file="KEGG_barplot.pdf",width = 9,height = 7)
barplot(kk, drop = TRUE, showCategory = showNum, color = colorSel) +scale_y_discrete(labels=function(x) stringr::str_wrap(x, width=60))
dev.off()
pdf(file="KEGG_bubble.pdf",width = 9,height = 7)
dotplot(kk, showCategory = showNum, orderBy = "GeneRatio",color = colorSel)+scale_y_discrete(labels=function(x) stringr::str_wrap(x, width=60))
dev.off()
pdf(file="KEGG_cnet.pdf",width = 9,height = 8)
af=setReadable(kk, 'org.Hs.eg.db', 'ENTREZID')
cnetplot(af, showCategory = showNum, categorySize="pvalue",circular = TRUE,colorEdge = TRUE,cex_label_category=0.65,cex_label_gene=0.6)
dev.off()
pdf(file="KEGG_net.pdf",width = 9,height = 7)
x2 <- pairwise_termsim(kk)
emapplot(x2,showCategory = showNum,cex_label_category=0.65,color = "pvalue",layout ="nicely")
dev.off()  
geneFC=rep(1,length(gene))
names(geneFC)=gene
pv.out=pathview(gene.data = geneFC, pathway.id = keggId, species = "hsa", out.suffix = "pathview")
p <- pathview(gene.data = geneFC, pathway.id = keggId, species = "hsa", kegg.native = F, sign.pos="bottomleft", same.layer = F)
#install.packages("caret")
#install.packages("DALEX")
#install.packages("ggplot2")
#install.packages("randomForest")
#install.packages("kernlab")
#install.packages("pROC")
#install.packages("xgboost")

# 引用已安装的 R 包
library(caret)          # 用于创建预测模型
library(DALEX)         # 用于解释机器学习模型
library(ggplot2)       # 用于数据可视化
library(randomForest)  # 用于随机森林模型
library(kernlab)       # 用于支持向量机模型
library(xgboost)       # 用于梯度提升模型
library(pROC)          # 用于绘制 ROC 曲线

# 设置随机种子以确保结果可重复
set.seed(123)

# 定义输入文件路径
inputFile="normalize.txt"      # 基因表达数据文件
geneFile="interGenes.txt"      # 基因列表文件

# 设置工作目录
setwd("D:\\常用生信分析\\68.9种机器学习算法模型来筛选疾病诊断特征基因\\02.9种机器学习算法模型来筛选疾病诊断特征基因")

# 读取表达数据文件，行名为基因名称，列名为样本名称
data=read.table(inputFile, header=T, sep="\t", check.names=F, row.names=1)

# 读取基因列表文件，提取核心基因的表达数据
geneRT=read.table(geneFile, header=F, sep="\t", check.names=F)
data=data[as.vector(geneRT[,1]),]     # 根据基因列表提取表达矩阵中的对应基因
row.names(data)=gsub("-", "_", row.names(data))  # 将基因名称中的 "-" 替换为 "_"

# 获取样本分组信息，并将其作为新列添加到数据框中
data=t(data)   # 转置数据矩阵，使样本为行，基因为列
group=gsub("(.*)\\_(.*)", "\\2", row.names(data))  # 提取样本分组信息
data=as.data.frame(data)  # 转换为数据框格式
data$Type=group           # 添加样本分组信息作为数据框中的一列

# 将数据分为训练集和测试集，训练集占总样本的 70%
inTrain<-createDataPartition(y=data$Type, p=0.7, list=F)
train<-data[inTrain,]  # 训练集数据
test<-data[-inTrain,]  # 测试集数据

# 创建 RF 随机森林模型
control=trainControl(method="repeatedcv", number=5, savePredictions=TRUE)  # 定义交叉验证方法
mod_rf = train(Type ~ ., data = train, method='rf', trControl = control)

# 创建 SVM 机器学习模型
mod_svm=train(Type ~., data = train, method = "svmRadial", prob.model=TRUE, trControl=control)

# 创建 XGB 模型
mod_xgb=train(Type ~., data = train, method = "xgbDART", trControl=control)

# 创建 GLM 模型
mod_glm=train(Type ~., data = train, method = "glm", family="binomial", trControl=control)

# 创建 KNN 模型
mod_knn=train(Type ~., data = train, method = "knn", trControl=control)

# 创建 NNET 模型
mod_nnet=train(Type ~., data = train, method = "nnet", trControl=control)

# 创建 LASSO 模型
mod_lasso=train(Type ~., data = train, method = "glmnet", trControl=control)

# 创建 DT 决策树模型
mod_dt=train(Type ~., data = train, method = "rpart", trControl=control)

# 定义预测函数，用于获取模型预测的概率
p_fun=function(object, newdata){
  predict(object, newdata=newdata, type="prob")[,2]
}
yTest=ifelse(test$Type=="Control", 0, 1)  # 将测试集的分类结果转换为二进制

# RF 随机森林模型预测结果
explainer_rf=explain(mod_rf, label = "RF",
                     data = test, y = yTest,
                     predict_function = p_fun,
                     verbose = FALSE)
mp_rf=model_performance(explainer_rf)

# SVM 机器学习模型预测结果
explainer_svm=explain(mod_svm, label = "SVM",
                      data = test, y = yTest,
                      predict_function = p_fun,
                      verbose = FALSE)
mp_svm=model_performance(explainer_svm)

# XGB 模型预测结果
explainer_xgb=explain(mod_xgb, label = "XGB",
                      data = test, y = yTest,
                      predict_function = p_fun,
                      verbose = FALSE)
mp_xgb=model_performance(explainer_xgb)

# GLM 模型预测结果
explainer_glm=explain(mod_glm, label = "GLM",
                      data = test, y = yTest,
                      predict_function = p_fun,
                      verbose = FALSE)
mp_glm=model_performance(explainer_glm)

# KNN 模型预测结果
explainer_knn=explain(mod_knn, label = "KNN",
                      data = test, y = yTest,
                      predict_function = p_fun,
                      verbose = FALSE)
mp_knn=model_performance(explainer_knn)

# NNET 模型预测结果
explainer_nnet=explain(mod_nnet, label = "NNET",
                       data = test, y = yTest,
                       predict_function = p_fun,
                       verbose = FALSE)
mp_nnet=model_performance(explainer_nnet)

# LASSO 模型预测结果
explainer_lasso=explain(mod_lasso, label = "LASSO",
                        data = test, y = yTest,
                        predict_function = p_fun,
                        verbose = FALSE)
mp_lasso=model_performance(explainer_lasso)

# DT 决策树模型预测结果
explainer_dt=explain(mod_dt, label = "DT",
                     data = test, y = yTest,
                     predict_function = p_fun,
                     verbose = FALSE)
mp_dt=model_performance(explainer_dt)

# 绘制残差反向累计分布图
pdf(file="residual.pdf", width=6, height=6)
p1 <- plot(mp_rf, mp_svm, mp_xgb, mp_glm, mp_knn, mp_nnet,mp_lasso,mp_dt)
print(p1)
dev.off()

# 绘制残差箱线图
pdf(file="boxplot.pdf", width=6, height=6)
p2 <- plot(mp_rf, mp_svm, mp_xgb, mp_glm, mp_knn , mp_nnet, mp_lasso, mp_dt, geom = "boxplot")
print(p2)
dev.off()

# 绘制 ROC 曲线并保存到 PDF 文件
pred1=predict(mod_rf, newdata=test, type="prob")
pred2=predict(mod_svm, newdata=test, type="prob")
pred3=predict(mod_xgb, newdata=test, type="prob")
pred4=predict(mod_glm, newdata=test, type="prob")
pred5=predict(mod_knn, newdata=test, type="prob")
pred6=predict(mod_nnet, newdata=test, type="prob")
pred7=predict(mod_lasso, newdata=test, type="prob")
pred8=predict(mod_dt, newdata=test, type="prob")

roc1=roc(yTest, as.numeric(pred1[,2]))  # 计算 ROC 曲线
roc2=roc(yTest, as.numeric(pred2[,2]))
roc3=roc(yTest, as.numeric(pred3[,2]))
roc4=roc(yTest, as.numeric(pred4[,2]))
roc5=roc(yTest, as.numeric(pred5[,2]))
roc6=roc(yTest, as.numeric(pred6[,2]))
roc7=roc(yTest, as.numeric(pred7[,2]))
roc8=roc(yTest, as.numeric(pred8[,2]))

pdf(file="ROC.pdf", width=5, height=5)
plot(roc1, print.auc=F, legacy.axes=T, main="", col="red")  # 绘制 ROC 曲线
plot(roc2, print.auc=F, legacy.axes=T, main="", col="blue", add=T)
plot(roc3, print.auc=F, legacy.axes=T, main="", col="green", add=T)
plot(roc4, print.auc=F, legacy.axes=T, main="", col="yellow", add=T)
plot(roc5, print.auc=F, legacy.axes=T, main="", col="orange", add=T)
plot(roc6, print.auc=F, legacy.axes=T, main="", col="purple", add=T)
plot(roc7, print.auc=F, legacy.axes=T, main="", col="black", add=T)
plot(roc8, print.auc=F, legacy.axes=T, main="", col="blue", add=T)

# 添加图例
legend('bottomright',
       c(paste0('RF: ',sprintf("%.03f",roc1$auc)),
         paste0('SVM: ',sprintf("%.03f",roc2$auc)),
         paste0('XGB: ',sprintf("%.03f",roc3$auc)),
         paste0('GLM: ',sprintf("%.03f",roc4$auc)),
         paste0('KNN: ',sprintf("%.03f",roc5$auc)),
         paste0('NNET: ',sprintf("%.03f",roc6$auc)),
         paste0('LASSO: ',sprintf("%.03f",roc7$auc)),
         paste0('DT: ',sprintf("%.03f",roc8$auc))),
       lwd=2, bty="n", col=c("red", "blue", "green", "yellow", "orange", "purple", "black", "blue"))

# 关闭 PDF 输出设备
dev.off()

# 计算各模型的基因重要性评分
importance_rf<-variable_importance(
  explainer_rf,
  loss_function = loss_root_mean_square
)
importance_svm<-variable_importance(
  explainer_svm,
  loss_function = loss_root_mean_square
)
importance_glm<-variable_importance(
  explainer_glm,
  loss_function = loss_root_mean_square
)
importance_xgb<-variable_importance(
  explainer_xgb,
  loss_function = loss_root_mean_square
)
importance_knn<-variable_importance(
  explainer_knn,
  loss_function = loss_root_mean_square
)
importance_nnet<-variable_importance(
  explainer_nnet,
  loss_function = loss_root_mean_square
)
importance_lasso<-variable_importance(
  explainer_lasso,
  loss_function = loss_root_mean_square
)
importance_dt<-variable_importance(
  explainer_dt,
  loss_function = loss_root_mean_square
)

# 绘制基因重要性图形并保存为 PDF 文件
pdf(file="importance.pdf", width=7, height=14)
plot(importance_rf[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_svm[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_xgb[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_knn[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_nnet[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_lasso[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_dt[c(1,(ncol(data)-8):(ncol(data)+1)),],
     importance_glm[c(1,(ncol(data)-8):(ncol(data)+1)),])
dev.off()

# 输出重要性评分最高的基因到文本文件中
geneNum=5  # 设置输出基因的数量
write.table(importance_rf[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.RF.txt", sep="\t", quote=F, row.names=F)
write.table(importance_svm[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.SVM.txt", sep="\t", quote=F, row.names=F)
write.table(importance_xgb[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.XGB.txt", sep="\t", quote=F, row.names=F)
write.table(importance_glm[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.GLM.txt", sep="\t", quote=F, row.names=F)
write.table(importance_knn[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.KNN.txt", sep="\t", quote=F, row.names=F)
write.table(importance_nnet[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.NNET.txt", sep="\t", quote=F, row.names=F)
write.table(importance_lasso[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.LASSO.txt", sep="\t", quote=F, row.names=F)
write.table(importance_dt[(ncol(data)-geneNum+2):(ncol(data)+1),], file="importanceGene.DT.txt", sep="\t", quote=F, row.names=F)
rm(list = ls())
install.packages(c("dplyr","tidyverse","reshape2","pals","pheatmap","ggpubr","corrplot","devtools"))
library(dplyr)
library(tidyverse)
library(reshape2)
library(pals)
library(pheatmap)
library(ggpubr)
library(corrplot)
library(devtools)
setwd("C:/Users/22593/Desktop/心梗生信+新冠")
library(usethis)
library('devtools')
devtools::install_github("Moonerss/CIBERSORT")
library(CIBERSORT)
library(ggplot2)
DEG_expr <- read.csv("AMI-CAD-EXP.csv",row.names = 1)
group <- read.csv("Group.csv")
boxplot(DEG_expr,outline = F,notch = F,las=2)
data(LM22)
sig_matrix <- system.file("extdata", "LM22.txt", package = "CIBERSORT")
result <- cibersort(sig_matrix = LM22,mixture_file = DEG_expr,perm = 0, QN = T)
results <- cibersort(sig_matrix, DEG_expr,perm = 0,QN = T)
rm(list=ls())

library(glmnet)
library(readxl)
library(plyr)
library(caret)
library(corrplot)
library(ggplot2)
library(Hmisc)
library(openxlsx)

data<-read.xlsx("Blue-AAA-exp.xlsx")
x<-as.matrix(data[,-c(1:2)])
y<-as.double(data$Group)
###下面三个要一起运行
fit<- glmnet(x,y,family = "binomial",nlambda = 1000, alpha = 1)
print(fit)
plot(fit,xvar = "lambda")

lasso_fit<-cv.glmnet(x,y,family="binomial",alpha = 1, type.measure = "auc",nlambda=1000)
plot(lasso_fit)
print(lasso_fit)

lasso_best <- glmnet(x=x, y=y, alpha = 1, lambda=lasso_fit$lambda.min)
coef(lasso_best)

coefficient<-coef(lasso_best,s=lasso_best$lambda.min)
coe<-coefficient@x
coe<-as.data.frame(coe)
Active_Index <- which(as.numeric(coefficient)!=0)
active_coefficients<-as.numeric(coefficient)[Active_Index]
variable<-rownames(coefficient)[Active_Index]
variable<-as.data.frame(variable)
variable<-cbind(variable,coe)
View(variable)
write.csv(variable,"variable-lasso.csv")

install.packages("randomForest")
library(randomForest)
library(ggplot2)
mydata <- read.csv("Blue-AAA-exp.csv",row.names = 1)

y<- mydata[,1]
x<- mydata[,-1]

set.seed(12345)
rf_model <- randomForest(x,
                         y,
                         ntree = 1000,
                         importance = TRUE)

varImpPlot(rf_model,
           type=1,#1或2
           main="Variable Importance",
           n.var = 20,#top变量个数
           scale = T,#是否显示横坐标
           cex=1.2)
#MSE代表均方差误差，MSE越小，模型预测能力越好
#%INCMSE(INCREASE IN MSE%)越高，变量越重要

varImpPlot(rf_model,
           type=2,#1或2
           main="Variable Importance",
           n.var = 20,#top变量个数
           scale = T,#是否显示横坐标
           cex=1.2)

#IncNodePurity越高越好，越重要
#用于衡量将变量添加到节点后带来的收益大小，即对节点纯度的提升。
#这个是基于基尼系数计算的值，而基尼系数越大，代表分出的类不确定性较大，效果越不好

varImpPlot(rf_model,
           n.var = 25,
           cex=1.2)
#提取变量的重要性
importance <- importance(rf_model)

#提取%INCMSE前10的变量
importance <- as.data.frame(importance)
top10_IncMSE <- head(rownames(importance[order(-importance$"%IncMSE"),]),10)
top10_IncMSE

#提取%IncNodePurity前10的变量
top10_ncNodePurity <-head(rownames(importance[order(-importance$"IncNodePurity"),]),10)
top10_ncNodePurity#这个更常用

#构建筛选获得变量的表达谱矩阵
top10_ncNodePurity_data<-mydata[,top10_ncNodePurity]
top10_IncMSE_data<-mydata[,top10_IncMSE]

write.csv(top10_IncMSE_data,"top10_IncMSE_data.csv")
write.csv(top10_ncNodePurity_data,"top10_ncNodePurity_data.csv")


rm(list=ls())
library(e1071)
library(pROC)
library(ggplot2)
library(caret)

mydata <- read.csv("Blue-AAA-exp.csv",row.names = 1)

#简单的数据清洗（如果必要再用以下代码）
#mydata <- subset(mydata，select = -time)#删除time这一列
#因变量
#mydataSstatus <- factor(ifelse(mydataSstatus == "Dead",1,0)) #死亡为1，存活为0
#将二分类变量中的字符转变成数字
#mydata$gender <- ifelse(mydata$gender "female",0,1)
#mydata$type <- ifelse(mydata$type == "squamous carcinom"，0，1)
#mydata$smoker <- ifelse(mydata$smoker == "nonsmoker"，0，1)
#mydata$alcohol_history <- ifelse(mydata$alcohol_history == "No"，0，1)
#SVM对数值敏感，二分类变量输入会让结果出现很大波动

table(mydata$Group)
x <- mydata[,2:45]#定义预测变量即从第几列到第几列是数值变量
y <- as.numeric(as.factor(mydata$Group))#定义预测变量及分组GROUP，
#如果是MI就是MI，如果是AAA那就是是AAA
#设置重复交叉验证
control <- trainControl(method = "repeatedcv",
                        #交叉验证方法，这里选重复K折交叉验证
                        number = 10,
                        #k值，将数据分成5份，可以根据样本量选择5-10
                        repeats = 5,
                        #重复次数，可以选2-5次
                        search = "random")
                        #选择重复交叉验证时，方式可以选systematic或者random
#适应SVM-RFE特征选择方法
set.seed(12345)
svm_rfe <- rfe(x,
               y,
               sizes = 1:5,
               #size=1:20,算法会考虑选择1个特征，2个特征，直到选20个特征
               #一般选择1-10个特征
               rfeControl = rfeControl(functions = caretFuncs,
                                       method = "repeatedcv",
                                       number = 10,
                                       repeats = 5,
                                       #10折交叉验证，重复5次
                                       verbose = FALSE),
               method = "svmLinear",
               trControl = control,   
               preProc = c("center","scale")
               )
svm_rfe_ranking <- svm_rfe$variables
head(svm_rfe_ranking)
#overall:特征的总体重要性评分,越高表示该特征对模型性能贡献越大,重要性越高
#var: 特征的名称。
#Variables:特征数量,显示在选取该数量特征时,各特征的重要性评分。这里显示在选择25时
#Resample:如果进行了交又验证,显示交又验证的fold信息。这里显示为Fold1.Rep1

varImp(svm_rfe)#查看变量最重要性评分
varImp_dataframe <- data.frame(Gene = row.names(varImp(svm_rfe))[1:20],
                               importance = varImp(svm_rfe)[1:20,1])
varImp_dataframe <- na.omit(varImp_dataframe)

#绘制柱状图
mycolor <- c("#D4E2A7","#88D7A4","#A136A1","#BAE8BC","#C757AF",
             "#DF9FCE","#9FDFDF","#DAD490","#A7DCE2","#D5E1F1",
             "#305691","#B6C2E7",
             "#E8EFF7","#EEE0F5","#267336","#372E8A","#4C862D",
             "#AFDE9C","#98CEDD","#CDE2EE","#81D5B0","#BAE8C9")
ggplot(varImp_dataframe,aes(x = reorder(Gene,-importance),y = importance,fill = Gene)) +
  geom_col() +
  ggtitle("Hub Genes")+
  theme(panel.border = element_blank(),
        axis.text.x = element_text(size = 8, colour = "black"),
        axis.text.y = element_text(size = 12, colour = "black"),
        axis.title.x = element_text(margin = margin(t=0,r=20,b=0,l = 0)),
        plot.title = element_text(margin = margin(b=20)),
        panel.grid.major = element_line(color = "grey",size = 0.22)) +
  xlab("Gene")+ ylab("Importance")+
  scale_fill_manual(values = mycolor)

#查看重要性前10的基因
top_10_vars <- svm_rfe_ranking$var[1:15]
top_10_vars

#提取前10变量的表达矩阵
top_svm_data <- mydata[,top_10_vars]

#提取最优子集中的变量
x_plot = svm_rfe$results$Variables
y_plot = svm_rfe$results$RMSE
plot(x_plot,y_plot,
     xlab="Variable Number",
     ylab="RMSE(Cross-Validation",
     col="#A136A1",
     pch=16,
     cex=1.5,
     lwd=2,
     type="b",
     ylim=c(0.2,0.6))#y轴的范围
lines(x_plot,y_plot,col="#DF294C",lwd=2) #格外绘制一条红色粗线
abline(h=min(y_plot),col="skyblue")#添加水平线
grid(col="grey",lwd = 1,lty=3)#添加网格线

legend("topright",c("Training RMSE","Cross-Validation RMSE"),
       col = c("#A136A1","#DF294C"),pch = c(16,NA),lwd = 1,bg="white")#添加图例
#找到RMSE最小的点
#RMSE是Root Mean Square Error（均方根误差）的缩写，是评价回归模型的一个重要指标
#RMSE通过测量预测值与实际值的离差来评价模型的准确性，值越小表示模型约准确。
wmin <-which.min(svm_rfe$results$RMSE)
wmin

#在图上标记RMSE最小的点
points(wmin,svm_rfe$results$RMSE[wmin],col="orange",pch= 16,cex =1)
text(wmin,svm_rfe$results$RMSE[wmin],
     paste0("N=",wmin),pos = 1,col = "orange",cex = 1)#cex是字的大小，1-3比较合适

#提取最优子集变量的名称
Target_Genes <- svm_rfe$optVariables
Target_Genes

#提取最优子集的表达矩阵
Best_SVM_data <- mydata[,Target_Genes]


#支持向量机拟合模型--------最优的表达矩阵与GROUP模型状态组合在一起
View(Best_SVM_data)

data<- cbind(mydata$Group,Best_SVM_data)
colnames(data)[1]<-"Group"
View(data)

#将数据集分成训练集和测试集（适用于样本量较大的情况）
set.seed(12345)
train_index <- sample(1:nrow(data),nrow(data)*0.7)#将数据集分为7和3，7为训练集
train_data<- data[train_index,]
test_data<-data[-train_index,]

#拟合模型
model_linear<-svm(Group~.,data = train_data,kernel="linear",probability=TRUE)

#查看模型预测准确率
#模型准确辜的计算 FOrmula 为:
# Accuracy = (TP + IN) / (TP + FP + FN + TN)
#TP(True Positive):真正例，模型预测为正例，实际也是正例
#TN(True Negative):真负例模型预测为负例实际也是负例
#FP(False positive): 假正例，模型预测为正例,实际是负例
#FN(False Neaative):假负例模型预测为负例.实际是正例

mean(train_data[,1] == model_linear$fitted)

#查看混淆矩阵
table(actual = train_data[,1],model_linear$fitted)

#获取模型预测概率
prob_linear <- predict(model_linear,train_data,probability = TRUE)
prob_linear_use <- attr(prob_linear,"probabilities")
linear_ROC<- roc(response = train_data$MI,predictor=prob_linear_use[,2])

#plot函数绘制ROC曲线
plot(linear_ROC,
     legacy,axes = TRUE,
     main="ROC curve",
     type= "l",col="red",lty=1,
     print.auc = T,
     thresholds = "best",#基于youden指数选择roc曲线最佳阈值点
     print.thres = "best")#在ROC曲线是哪个显示最佳阈值点

#拟合四种不同核函数的SVM模型
summary(data)
model_linear<-svm(Group~.,data = train_data,kernel="linear",probability=TRUE)
model_ploynomial <- svm(Group~., data = train_data,kernel="ploynomial",probability=TRUE)
model_radial<-svm(Group~.,data = train_data,kernel="radial",probability=TRUE)
model_sigmoid<-svm(Group~.,data = train_data,kernel="sigmoid",probability=TRUE)

mean(train_data[,1] == model_linear$fitted)
mean(train_data[,1] == model_ploynomial$fitted)
mean(train_data[,1] == model_radial$fitted)
mean(train_data[,1] == model_sigmoid$fitted) rm(list=ls())
setwd("C:/Users/22593/Desktop/常用R代码")
library(xgboost)
library(tidyverse)
library(skimr)
library(DataExplorer)
library(caret)
library(pROC)
boston <- read.csv(file.choose())
boston <- boston[,-1]
skim(boston)
boston$Group <- factor(boston$Group)
skim(boston)
hist(boston$Group,)

set.seed(42)
trains <- createDataPartition(
  y = boston$Group,
  p = 0.8,
  list = F)
trainset<- boston[trains,]
testset <- boston[-trains,]
library(Matrix)
###c(x:x)代表你的因变量从第几列到第几列Group是自变量，不是因变量
traindata1 <- data.matrix(trainset[,c(2:45)])
traindata2<-Matrix(traindata1,sparse = T)
train_y <- as.numeric(trainset[,1])-1
traindata<- list(data=traindata2,label=train_y)
dtrain <- xgb.DMatrix(data = traindata$data,label = traindata$label)

testset1 <- data.matrix(testset[,c(2:45)])
testset2<-Matrix(testset1,sparse = T)
test_y <- as.numeric(testset[,1])-1
testset<- list(data=testset2,label=test_y)
dtest <- xgb.DMatrix(data = testset$data,label = testset$label)

model_xgb <- xgboost(data=dtrain,booster="gbtree",max_depth=6,eta=0.3,objective="multi:softmax",num_class = 2,nround = 200)

pre<- predict(model_xgb,newdata = dtest)
library(caret)
xgb.cf<-caret::confusionMatrix(as.factor(pre),as.factor(test_y))
xgb.cf
importance_matrix <- xgb.importance(model = model_xgb)
print(importance_matrix)
xgb.plot.importance(importance_matrix = importance_matrix,measure = "Cover")

set.seed(200)
trains1 <- createDataPartition(
  y = boston$Group,
  p = 0.8,
  list = F
)
##从trains中分为两部分，一部分做训练，一部分做提前终止
trains2 <- sample(trains1,24)
valids1 <- setdiff(trains1,trains2)

data_trian <- boston[trains2, ]
data_valid <- boston[valids1, ]
data_test <- boston[-trains1,]
colnames(boston)
dvfunc <- dummyVars(~.,data = data_trian[, 2:45],fullRank = T)
data_trianx <- predict(dvfunc, newdata = data_trian[, 2:45])
data_triany <- ifelse(data_trian$Group == "No",0, 1)


xgb.plot.shap(data = data_trianx,
              model = model_xgb,
              top_n = 5)
