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SUPPLEMENTARY TEXT 

1. Materials and Neutron scattering 

1.1 Sample preparation and characterization 

Ti4MnBi2 single crystals were grown using the flux method described in our previous work 
1. We optimized the growth conditions to prepare large single crystals for neutron scattering 

experiments. The crystals are rodlike, with typical dimensions of ~1 mm × 1 mm square cross-

section and ~5-10 mm in length. X-ray diffraction experiments were carried on a powder prepared 

from single crystals out using a Bruker D8 Advance powder x-ray diffractometer. The crystals are 

single phase and the expected structure was confirmed 2,3 (Fig. S1a). The crystals have shiny 

metallic surfaces normal to the (110) and equivalent crystal directions and the (001) crystal 

direction is along the rod axis (Fig. S1b). The double-sided sample used for the INS experiments 

(AMATERAS and DNA@J-PARC) was assembled by co-aligning ~400 crystals on both sides of 

two 0.3 mm thick aluminum sheets, using hydrogen-free Cytop CTL-809M as the adhesive 4 (Fig. 

S1c). The sample size is roughly 20 mm (width) * 30 mm (height) * 4 mm (thickness) with a total 

mass of 10.2 g Ti4MnBi2 single crystals. The (110) axis of the crystals are normal to the aluminum 

sheets, and the scattering plane is (H, H, L). The neutron diffraction peaks in the (H, H, L) 

scattering plane (including peaks projected from outside of the scattering plane) are shown in Fig. 

S1d, and their sharpness as well as the relatively narrow rocking curve for the sample assembly 

(Fig. S1e) shows that the alignment of the crystals is excellent.  

 
Fig. S1 | Ti4MnBi2 sample characterization. a, Room temperature powder x-ray diffraction data. The 

indicated refinement used the tetragonal structure I4/mcm (No. 140) space-group symmetry, and the 

refined lattice parameters are a = b = 10.5001(1) Å and c = 4.98985(8) Å. There are no additional Bragg 
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peaks that would be associated with possible impurity phases, beyond small inclusions of the flux. b, 

Surface scan of a single crystal shows the Bragg peaks associated with the (H, H, 0) and (H, -H, 0) planes. 

c, The assembly of single crystals used for neutron scattering experiments at AMATERAS@J-PARC and 

DNA@J-PARC, which consists of a total of four layers of Ti4MnBi2 crystals on both sides of two 0.3 mm 

thickness aluminum sheets. Individual Ti4MnBi2 single crystals were aligned with their (110) direction 

normal to the aluminum sheet, with the neutron scattering in the (H, H, L) plane. d, Elastic scattering in 

the (H, H, L) plane from AMATERAS. e, Neutron scattering measured rocking curve of the (-1, -1, 0) Bragg 

peak on Ti4MnBi2 sample shown in (c). The solid line is a Gaussian fit to the peak, which extracted a FWHM 

= 3.1(1)˚. 

1.2 Inelastic neutron scattering 

The 10.2 g co-aligned sample (Fig. S1c) was mounted in the (H, H, L) scattering plane, 

with the (1-10) direction vertical in the AMATERAS and DNA experiments at the MLF, J-PARC 

in Japan. Both experiments used the same 3He cryostat sample environment with a base 

temperature of 0.3 K. For measurements using the direct geometry instrument AMATERAS 5, the 

chopper configurations were set to select multiple incident energies Ei of 3.13518, 7.73595, 

15.1464, and 41.9667 meV with corresponding energy resolutions ∆E (full width at half maximum 

of the elastic peaks) of, respectively, 0.0581, 0.2244, 0.5652, and 2.4048 meV. The beam size was 

defined by slits to be 25 mm (width) * 35 mm (height), so that the sample with dimensions of 20 

mm (width) * 30 mm (height) is fully illuminated by the neutron beam. The AMATERAS 

measurements were performed at 0.3, 1, 2, 5, 10, 25, and 100 K. The sample rotation angle is from 

-40˚ to 140˚ with a 0.5˚ increment at 0.3 K and a 1˚ increment at other temperatures. The data 

collecting time is ~ 30 hours at 0.3 K and ~ 12 hours at other temperatures. The initial data 

reduction was completed using the software suite UTSUSEMI 6. The AMATERAS detectors are 

position sensitive along the vertical direction, which provides access to the out-of-plane (H, -H, L) 

direction and allows isolating contributions from the (H, H, L) scattering plane. The neutron 

absorption correction, including both in-plane and out-of-plane directions, was carried out using 

Mslice/DAVE 7, including the absorption cross section, as well as the coherent and incoherent 

scattering cross sections. Details of the absorption corrections follow in the next section.  

For the inverse geometry instrument DNA 8, the chopper configurations were set to high-

resolution mode with Ef = 2.08 meV with energy resolution of ∆E = 0.004 meV (full width at half 

maximum of the elastic peaks) which can measure -0.03 meV < E < 0.1 meV range. The beam 

size was 20 mm (width) * 30 mm (height), well matched to the sample size. The measurements 

were performed at 0.3, 1, 1.4, 2, and 5 K, respectively. The sample rotation angle is from -40˚ to 

140˚ with 1˚ increment, and the data collecting time is ~ 24 hours, except for the 5 K data, which 

were measured from -40˚ to -19˚ with 1˚ increment. The data reduction and analysis were 

completed using the software suite UTSUSEMI 6 as well as Mslice/DAVE and PAN/DAVE 7. 

A standard vanadium sample was measured under the same instrumental setup in both 

AMATERAS and DNA experiments, which allows us to report results in terms of absolute units, 

as shown below.  
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2. Data Analysis and Corrections 

2.1 Absorption correction 

Correcting for absorption effects is critical in Ti4MnBi2, both because of the large 

absorption cross sections for neutrons (Table S1), and the slab-like sample geometry (Fig. S1c). 

The Ti and Mn atoms have relatively large neutron absorption cross sections (Table S1). We will 

use the approach outlined in Wu et al 9 and Mantid website 10 in our treatment of the absorption, 

as well as in subsequent steps of normalization that allow us to express the scattering in absolute 

units.  

Table S1: Neutron scattering and absorption cross sections for Ti, Mn, and Bi 11. 

 𝜎𝑐𝑜ℎ / barn 𝜎𝑖𝑛𝑐 / barn 𝜎𝑎 / barn 

Ti 1.485 2.87 6.09 

Mn 1.75 0.4 13.3 

Bi 9.148 0.0084 0.0338 

Note: 1 barn = 10-24 cm2. 𝜎𝑎 is absorption cross section for 2200 m/s (𝜆 = 1.7982 Å) neutrons. 

We will disregard the effects of the aluminum sheets in the sample holder, since their mass 

is very small compared to that of the sample.  

Neutron scattering events are characterized by two distances: l1 is the distance traveled in 

the sample before scattering, and l2 represents the length traveled by the neutron after scattering. 

Following Mantid 10 the number of neutrons per unit solid angle scattered once by a volume 

element 𝑑𝑉 of the sample is given by:  

𝑑𝐼1(𝜃) = 𝐽0𝜌
𝑑𝜎

𝑑𝛺
(𝜃)𝑒−𝜇(𝜆𝟏)𝑙𝟏−𝜇(𝜆𝟐)𝑙𝟐𝑑𝑉 (𝑆1) 

where 𝐽𝟎 is the incident beam flux, 𝜌 is the atomic number density, 
𝑑𝜎

𝑑𝛺
(𝜃) is the differential cross-

section, and 𝜆𝟏 and 𝜆𝟐 are the incident and scattered neutron wavelengths. The linear attenuation 

coefficient  is determined from the sum of the neutron scattering cross section 𝜎𝑠, which includes 

both the coherent and incoherent cross sections, and 𝜎𝑎, which is the neutron absorption cross 

section (Table S1). 

𝜇 = 𝜌𝜎𝑡 = 𝜌(𝜎𝑠 + 𝜎𝑎) (𝑆2) 

Given that the incident neutron energy for the AMATERAS experiment Ei = 3.13518 meV is low, 

we will omit the coherent cross section from our determination of .  

The wavelength  dependence of the absorption cross section is given by: 
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𝜎𝑎(𝜆) = 𝜎𝑎(𝜆 = 1.7982Å) (
𝜆

1.7982
) (𝑆3) 

Although the dimensions of the sample are 20 mm (width) * 4 mm (thickness), the overall 

shape of the sample for the AMATERAS with Ei = 3.13518 meV can be approximated by a 

rectangle of width 13 mm along the crystal (001) direction, and thickness 1.6 mm along the crystal 

(110) direction which is perpendicular to the sample holder surface with the sample density fixed 

to the crystallographic density.  

For the DNA data, the overall effective size has been tuned since the instrument is an 

inverse geometry with Ef = 2.08 meV. The absorption corrections for both AMATERAS and DNA 

data have been carried out using the absorption correction option with both in-plane and out-of-

plane data corrected using the Mslice/DAVE analysis software package 7. 

Figure S2 shows the effect of absorption on the AMATERAS measurements and 

demonstrates the extent to which the data can be corrected for absorption.  

 

Fig. S2 | Effect of neutron absorption in Ti4MnBi2 AMATERAS data. a, b, Plots of the 0.3 K elastic 

scattering in the (H, H, L) scattering plane averaged within the ranges of E = [-0.2, 0.2] meV and (H, -H, 0) 

= [-0.5, 0.5] r.l.u. before (a) and after (b) the absorption correction has been applied. The blue arcs in (a) 

occur when the neutron beam is parallel to the (001) direction, where the neutron path length in the 

sample is the longest and absorption consequently the largest. This effect is practically absent in (b). c, d, 

Contour plots of the energy dependencies of the neutron scattering intensity, I(Q, E), along the (0, 0, L) 

direction with (H, H, 0) = [0, 2] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.l.u. measured at 0.3 K before (c) and after 

(d) the absorption correction. e, f, Contour plots of the energy dependencies of the neutron scattering 

intensity, I(Q, E), along the (H, H, 0) direction with (0, 0, L) = [-1, 1] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.l.u. 

measured at 0.3 K before (e) and after (f) the absorption correction. The red arrows in (a) and (e) point to 

the most apparent absorption areas. 
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2.2 Absolute normalization 

We will next normalize both the AMATERAS and DNA data sets to absolute units.  

According to Xu et al 12 and Wu et al 9, there are four ways to carry out the absolute unit 

normalization:  

1) Using the incoherent elastic scattering of a standard vanadium sample. 

2) Using the incoherent elastic scattering of the sample. Since the incoherent scattering of Bi and 

Mn is very small (Table S1), the overall incoherent scattering is likely to be overwhelmed by the 

elastic scattering background. 

3) Using the phonon scattering of the sample. However, it is not available for Ti4MnBi2.  

4) Using the nuclear Bragg peaks of the sample. In practice, extinction in Bragg peak scattering 

can significantly affect the absolute Bragg peak intensities in single crystal experiments, and a 

thorough understanding of the instrument resolution is required.  

We will use the incoherent elastic scattering of the standard vanadium sample method. A standard 

vanadium sample has been measured under the same instrumental setup both in AMATERAS and 

in DNA experiments. 

Following Xu et al 12 the measured INS intensity can be written as: 

𝐼(𝑸, 𝐸) = ∫
𝑑2𝜎

𝑑𝛺0𝑑𝐸0
𝑅(𝑸𝟎, 𝐸0, 𝑸, 𝐸)𝑑𝑸𝟎𝑑𝐸0 (𝑆4) 

where 𝑅(𝑸𝟎, 𝐸0, 𝑸, 𝐸) is the instrument resolution function mainly determined by the instrumental 

setup, Q and E are the neutron wave vector and energy transfer.  

For an experiment with unpolarized neutrons, the coherent magnetic scattering can be 

written as: 

𝑑2𝜎

𝑑𝛺𝑑𝐸
= 𝑁

𝑘𝑓

𝑘𝑖
(
𝛾𝑟0
2

)
2

𝑔2𝑓2(𝑸)𝑒−2𝑊 ∑(𝛿𝛼,𝛽 − 𝑸𝜶
⃗⃗ ⃗⃗  ⃗ ∙ 𝑸𝜷

⃗⃗ ⃗⃗  ⃗)𝑆𝛼,𝛽(𝑸, 𝐸)

𝛼,𝛽

(𝑆5) 

where N is the total number of the unit cells, (𝛾𝑟0)
2 = 0.291 × 10−24 𝑐𝑚2  = 0.291 𝑏𝑎𝑟𝑛 with 

𝑟0  is the classical electron radius and γ is the magnetic moment of the neutron in nuclear 

magnetons, g is the Landé g-factor, f(Q) is the magnetic form factor, 𝑒−2𝑊  is the Debye-Waller 

factor, which at the low temperatures and small wave vectors of our measurements is taken to be 

unity, α and β denote the Cartesian coordinates, x, y, or z, which characterize the polarization of 

magnetic fluctuations. 𝑸𝜶
⃗⃗ ⃗⃗  ⃗ = 𝑸𝜶/𝑄 and 𝑸𝜷

⃗⃗ ⃗⃗  ⃗ = 𝑸𝜷/𝑄 are the projections of the unit vector along the 

wave vector transfer direction onto the Cartesian axes, and 𝑆𝛼,𝛽(𝑸, 𝐸) is the dynamic structure 
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factor. The kf/ki calibration that is related to the incident neutron flux and scattering neutron flux 

is corrected for during the data reduction phase using UTSUSEMI 6.  

The measured INS intensity can be written as: 

𝐼(𝑸, 𝐸) ≈ 𝑁 (
𝛾𝑟0
2

)
2

𝑔2𝑓2(𝑸)𝑒−2𝑊 ∑(𝛿𝛼,𝛽 − 𝑸𝜶
⃗⃗ ⃗⃗  ⃗ ∙ 𝑸𝜷

⃗⃗ ⃗⃗  ⃗)𝑆𝛼,𝛽(𝑸, 𝐸)

𝛼,𝛽

𝑅0(𝑸, 𝐸) (𝑆6) 

where 𝑅0(𝑸, 𝐸) = ∫𝑅(𝑸𝟎, 𝐸0, 𝑸, 𝐸)𝑑𝑸𝟎𝑑𝐸0 is the resolution volume, which varies depending on 

the instrument setup. Thus, one can ultimately write down: 

𝑆(𝑸, 𝐸) = ∑(𝛿𝛼,𝛽 − 𝑸𝜶
⃗⃗ ⃗⃗  ⃗ ∙ 𝑸𝜷

⃗⃗ ⃗⃗  ⃗)𝑆𝛼,𝛽(𝑸, 𝐸)

𝛼,𝛽

=
13.75(𝑏𝑎𝑟𝑛−1)𝐼(𝑸, 𝐸)

𝑁𝑔2𝑓2(𝑸)𝑒−2𝑊𝑅0(𝑸, 𝐸)
(𝑆7) 

where 𝑆(𝑸, 𝐸) has units of meV-1. The magnetic dynamic structure factor can be further written 

as: 

𝑀(𝑸, 𝐸) = 𝑔2𝜇𝐵
2𝑓2(𝑸)𝑆(𝑸, 𝐸) =

13.75(𝑏𝑎𝑟𝑛−1)𝜇𝐵
2𝐼(𝑸, 𝐸)

𝑁𝑒−2𝑊𝑅0(𝑸, 𝐸)
(𝑆8) 

which has the units of 𝜇𝐵
2 ·meV-1.  

The Q-dependent magnetic susceptibility, χ"(Q, E), is related to the magnetic dynamic 

structure factor, M(Q, E), by the principle of detailed balance, leading to: 

𝜒"(𝑸, 𝐸) = 𝜋 [1 − 𝑒
−

𝐸
𝑘𝐵𝑇]𝑀(𝑸, 𝐸) (𝑆9) 

where [1 − 𝑒
−

𝐸

𝑘𝐵𝑇] describes the Bose-Einstein statistics, kB is the Boltzmann constant, and T is 

the temperature. 

The Landé g-factor, magnetic form factor, and Debye-Waller factor are sample dependent, 

and can be estimated. For instance, the Curie-Weiss fitting suggested g ≈ 2 (Fig. S9). The Debye-

Waller factor 𝑒−2𝑊 ≈ 1 at low temperatures and small Q, and f(Q) is the magnetic form factor 

which can be calculated by DFT or estimated by fitting the INS data (Fig. S15). Thus, to complete 

the absolute unit calibration, one needs to know the resolution volume 𝑅0(𝑸, 𝐸), which can be 

calculated using the incoherent elastic scattering data of the standard vanadium sample. The cross-

section for incoherent elastic scattering is: 

(
𝑑𝜎

𝑑𝛺
)
𝑖𝑛𝑐,𝑒𝑙

=
𝑁

4𝜋
∑𝜎𝑗

𝑖𝑛𝑐,𝑉𝑒−2𝑊

𝑗

(𝑆10) 
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where 𝜎𝑗
𝑖𝑛𝑐,𝑉 = 5.08 𝑏𝑎𝑟𝑛 is the incoherent neutron scattering cross-section of the jth vanadium 

atom 11. So, from the standard vanadium sample measured scattering intensity, one can get: 

∫𝐼(𝑸,𝐸)𝑑𝐸 =
𝑁

4𝜋
∑𝜎𝑗

𝑖𝑛𝑐,𝑉𝑒−2𝑊𝑅0(𝑸, 𝐸)

𝑗

(𝑆11) 

Thus, the resolution volume 𝑅0(𝑸, 𝐸), can be calculated as: 

𝑅0(𝑸, 𝐸) =
4𝜋 ∫ 𝐼(𝑸, 𝐸)𝑑𝐸

𝑁 ∑ 𝜎𝑗
𝑖𝑛𝑐,𝑉𝑒−2𝑊

𝑗

(𝑆12) 

For the AMATERAS experiment, a 1.5397 g standard vanadium sample was measured at 

room temperature with a total counting time of about 8 hours. Thus, the measured resolution 

volume of the AMATERAS setup is: 

𝑅0(𝑸, 𝐸)𝐴𝑀𝐴𝑇𝐸𝑅𝐴𝑆 =
4𝜋 ∫ 𝐼(𝑸, 𝐸)𝑉,𝐴𝑀𝐴𝑇𝐸𝑅𝐴𝑆𝑑𝐸

𝑁 ∑ 𝜎𝑗
𝑖𝑛𝑐,𝑉𝑒−2𝑊

𝑗

= 1.082 × 10−21
𝑚𝑒𝑉

𝑏𝑎𝑟𝑛
(𝑆13) 

For the DNA experiment, a 5.5666 g standard vanadium sample was measured from 7 to 

4.5 K with a total counting time of about 7 hours. Thus, the measured resolution volume of the 

DNA setup is: 

𝑅0(𝑸, 𝐸)𝐷𝑁𝐴 =
4𝜋 ∫ 𝐼(𝑸, 𝐸)𝑉,𝐷𝑁𝐴𝑑𝐸

𝑁 ∑ 𝜎𝑗
𝑖𝑛𝑐,𝑉𝑒−2𝑊

𝑗

= 5.640 × 10−25
𝑚𝑒𝑉

𝑏𝑎𝑟𝑛
(𝑆14) 

Finally, the resolution volume 𝑅0(𝑸, 𝐸) values and Eq. S8 can be used together to express 

the INS data of the Ti4MnBi2 sample in absolute units. 

The large incoherent scattering cross section of the vanadium causes the above 

normalization process to ignore the incoherent elastic scattering background from the sample 

environment. 

2.3 Temperature-independent background subtraction 

The INS measured data can be separated into temperature-dependent and temperature-

independent parts, where the temperature-dependent part obeys the principle of detailed balance. 

In contrast, the temperature-independent scattering, including the resolution broadened elastic 

scattering tails and the sample environment's scattering, can be approximated as being temperature 

independent at sufficiently low temperatures. Following Hong et al 13, the measured INS raw data 

intensity 𝐼𝑟(𝐸,  𝑇1) at temperature T1 for any specific Q can be written as: 

𝐼𝑟(𝐸,  𝑇1) = 𝐵(𝐸) + 𝐼(𝐸, 𝑇1) (𝑆15𝑎) 
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𝐼𝑟(−|𝐸|,  𝑇1) = 𝐵(−|𝐸|) + 𝐼(|𝐸|, 𝑇1)𝑒
−

|𝐸|
𝑘𝐵𝑇1 (𝑆15𝑏) 

where B(E) is the temperature-independent background, and 𝐼(𝐸, 𝑇1) is the INS intensity that 

obeys detailed balance. By measuring the sample at another temperature T2, two additional 

equations can be written as: 

𝐼𝑟(𝐸,  𝑇2) = 𝐵(𝐸) + 𝐼(𝐸, 𝑇2) (𝑆16𝑎) 

𝐼𝑟(−|𝐸|,  𝑇2) = 𝐵(−|𝐸|) + 𝐼(|𝐸|, 𝑇2)𝑒
−

|𝐸|
𝑘𝐵𝑇2 (𝑆16𝑏) 

The temperature-dependent and the temperature-independent parts of the raw data intensity 

can be determined by solving these four equations simultaneously. Solving for the temperature-

independent background gives:  

𝐵(𝐸) =
𝐼𝑟(𝐸,  𝑇1)𝑒

−
|𝐸|

𝑘𝐵𝑇1 − 𝐼𝑟(−|𝐸|,  𝑇1)+ 𝐼𝑟(−|𝐸|,  𝑇2) − 𝐼𝑟(𝐸,  𝑇2)𝑒
−

|𝐸|
𝑘𝐵𝑇2

𝑒
−

|𝐸|
𝑘𝐵𝑇1− 𝑒

−
|𝐸|

𝑘𝐵𝑇2

(𝑆17𝑎) 

𝐵(−|𝐸|) =
𝐼𝑟(𝐸,  𝑇1)𝑒

−
|𝐸|

𝑘𝐵𝑇1
−

|𝐸|
𝑘𝐵𝑇2 − 𝐼𝑟(−|𝐸|,  𝑇1)𝑒

−
|𝐸|

𝑘𝐵𝑇2+ 𝐼𝑟(−|𝐸|,  𝑇2)𝑒
−

|𝐸|
𝑘𝐵𝑇1 − 𝐼𝑟(𝐸,  𝑇2)𝑒

−
|𝐸|

𝑘𝐵𝑇1
−

|𝐸|
𝑘𝐵𝑇2

𝑒
−

|𝐸|
𝑘𝐵𝑇1− 𝑒

−
|𝐸|

𝑘𝐵𝑇2

(𝑆17𝑏) 

This method works well when the energy dependence of the energy resolution can be 

ignored. In the analysis of the AMATERAS data, we used the data sets measured at T1 = 0.3 K 

and T2 = 100 K to determine the temperature-independent background, which is subsequently 

subtracted from the data measured at all other temperatures. The effects of background subtraction 

are demonstrated in Fig. S3. 

Since the phonon density of states follows the Bose distribution, one can further subtract 

the phonon contribution in order to isolate the magnetic part of the scattering. The phonon density 

of states should be the same at low and high temperatures once the data have been corrected for 

the Bose factor. Using Eq. S15 and Eq. S16, 

𝐼(|𝐸|, 𝑇1)𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑝ℎ𝑜𝑛𝑜𝑛 = [𝐼(|𝐸|, 𝑇1) (1 − 𝑒
−

|𝐸|
𝑘𝐵𝑇1) − 𝐼(|𝐸|, 𝑇2) (1 − 𝑒

−
|𝐸|

𝑘𝐵𝑇2)] (1 − 𝑒
−

|𝐸|
𝑘𝐵𝑇1)⁄  

= [𝐼𝑟(𝐸,  𝑇1) − 𝐼𝑟(−|𝐸|,  𝑇1) + 𝐼𝑟(−|𝐸|,  𝑇2) − 𝐼𝑟(𝐸,  𝑇2)] (1 − 𝑒
−

|𝐸|
𝑘𝐵𝑇1)⁄ (S18) 
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Fig. S3 | Temperature-independent background subtraction in Ti4MnBi2. a, b, The INS intensity I(Q, E) 

measured at 0.3 K (a) and 100 K (b) at AMATERAS. The data are averaged over the ranges of (H, H, 0) = [0, 

2] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.l.u. c, The temperature-independent background B(Q, E) was calculated 

using the 0.3 K and 100 K data. Compared with the raw data shown in (a) and (b), the intensity of B(Q, E) 

is quite weak. d, e, Data plots at 100 K (d) and 0.3 K (e) from which the temperature-independent 

background has been subtracted. f, The 1D plots of the raw data, temperature-independent B(E) data, 

and temperature-independent background subtracted data, averaged over the ranges of (H, H, 0) = [0, 2] 

r.l.u., (H, -H, 0) = [-0.5, 0.5] r.l.u., and (0, 0, L) = [-0.5, 0.5] r.l.u. The plots show that the subtraction of the 

temperature-independent background for the energies E = [0.5, 1.5] meV that is dominated by the spinon 

continuum reduces the raw intensity by less than 4%.  

Using Eq. S18 and Eq. S8 allows the calculation of the phonon subtracted M(Q, E), and 

the effect of subtracting it from the temperature-independent background subtracted data at 0.3 K 

is demonstrated in Fig. S4. The comparison of M(Q, E) at 0.3 K with and without the phonon 

subtraction is shown in Fig. S4. We should note that the 100 K data has some residual magnetic 

scattering, which is also subtracted in the above analysis. However, the phonon subtraction around 

the Bragg peaks (0, 0, 1) and (0, 0, -1) should not be affected. 
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Fig. S4 | Phonon subtraction in Ti4MnBi2. a, b, The INS M(Q, E) measured at 0.3 K with phonon scattering 

subtracted (a) using the 100 K data, and without phonon subtraction (b) plots. The data are averaged over 

the ranges of (H, H, 0) = [0, 2] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.l.u. The comparison of (a) and (b) suggests 

that phonon scattering is not significant at 0.3 K.  

2.4 Magnetic moment sum rule 

We will use the approach outlined in Wu et al 9 to describe and calculate the moment sum 

rule in Ti4MnBi2. The sum rule of the dynamic spin correlation function 𝑆𝛼,𝛽(𝑸, 𝐸) is satisfied 

when integrated over the first Brillouin zone (BZ): 

∑ ∫ ∫ 𝑆𝛼,𝛽(𝑸, 𝐸)
1𝑠𝑡

𝐵𝑍
𝑑𝑸𝑑𝐸

+∞

−∞𝛼,𝛽

∫ 𝑑𝑸
1𝑠𝑡

𝐵𝑍

= 𝑆(𝑆 + 1)𝛿𝛼,𝛽 (𝑆19) 

The energy E integration excludes elastic scattering, which is presumably dominated by different 

sources of elastic scattering, apart from magnetic scattering. For an S = 1/2 system, the sum rule 

is a combination of three independent sum rules, one for each polarization: 

∫ ∫ 𝑆𝛼,𝛼(𝑸, 𝐸)
1𝑠𝑡

𝐵𝑍
𝑑𝑸𝑑𝐸

+∞

−∞

∫ 𝑑𝑸
1𝑠𝑡

𝐵𝑍

=
1

3
𝑆(𝑆 + 1)𝛿𝛼,𝛼 =

1

4
,        𝛼 = 𝑥, 𝑦, 𝑧 (𝑆20) 

The data normalized to absolute units can be used to verify the sum rules in Ti4MnBi2.  

The integrated 𝑀𝐹𝑙𝑢𝑐𝑡
2  shown in Fig. 4c is calculated by: 

𝑀2 =
∫ ∫

𝑀(𝑸, 𝐸)
𝑓2(𝑸)

1𝑠𝑡

𝐵𝑍
𝑑𝑸𝑑𝐸

+∞

−∞

∫ 𝑑𝑸
1𝑠𝑡

𝐵𝑍

(S21) 

with the data integrated in E = [-2.4, 2.4] meV range (the elastic incoherent scattering range of [-

0.1, 0.1] meV has been excluded) and Q averaged in the first BZ. A factor of 3/2 is included in 
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Fig. 4c, intended to represent the contribution from the longitudinal dynamic structure factor Szz(Q, 

E), which is nearly absent in the measured and calculated S(Q, E), due to the easy axis character 

of Ti4MnBi2 (see sections 4.2 and 4.5).  

The elastic moment 𝑀𝐸𝑙𝑎𝑠
2  shown in Fig. 4c is calculated using Eq. S21 with the data 

integrated over E = [-0.1, 0.1] meV and Q averaged over (0, 0, L) = [0, 1] r.l.u., (H, H, 0) = [-0.5, 

0.5] r.l.u., and (H, -H, 0) = [-0.5, 0.5] r.l.u., where the strongest magnetic diffuse scattering is found 

(Figs. 2a-d). The 100 K data are used as a background, which slightly underestimates the magnetic 

signal, due to a very small residual magnetic signal at 100 K. The largest uncertainty affecting the 

moment sum rule is the lack of an expression for the magnetic form factor that is valid for all 

measured wave vectors. The data presented in Fig. 4c include a Lorentzian form factor that is, 

strictly speaking, most accurate for wave vectors QL < 0.7 r.l.u. The discussion of Fig. S15 shows 

that the Lorentzian form factor underestimates the form factor for these larger values of QL, and 

consequently the values of 𝑀𝐸𝑙𝑎𝑠
2  in Fig. 4c are somewhat inflated.  

2.5 Static magnetic susceptibility and the Kramers-Kronig relation   

As described in Enderle et al 14, the imaginary part of the dynamic susceptibility is directly 

related to the static susceptibility. The fluctuation-dissipation theorem gives the relationship 

between 𝑆𝛼,𝛽(𝑸, 𝐸) and 𝜒𝛼,𝛽″
(𝑸, 𝐸) as 14,15: 

𝜒𝛼,𝛽″
(𝑸, 𝐸) = 𝜋𝑔2𝜇𝐵

2𝑓2(𝑸) (1 − 𝑒
−

𝐸
𝑘𝐵𝑇) 𝑆𝛼,𝛽(𝑸, 𝐸) (𝑆22) 

𝜒𝛼,𝛽″
(𝑸, 𝐸) is related to the bulk susceptibility via the Kramers-Kronig relation: 

𝜒𝛼,𝛽′
(𝑸, 0) =

1

𝜋
∫𝑑𝐸

1

𝐸
𝜒𝛼,𝛽″

(𝑸, 𝐸) = 𝑔2𝜇𝐵
2𝑓2(𝑸)∫ 𝑑𝐸

𝐸𝑐𝑢𝑡𝑜𝑓𝑓

−𝑘𝐵𝑇

1

𝐸
(1 − 𝑒

−
𝐸

𝑘𝐵𝑇) 𝑆𝛼,𝛽(𝑸, 𝐸)(𝑆23) 

The bulk susceptibility is measured in a magnetic field that is applied along one direction 

in single crystal, which gives 𝜒𝛼,𝛼′
(𝑸 = 0, 0) with 𝛼 = 𝑥, 𝑦, 𝑧. 

The integrated INS measured susceptibility 16 shown in Fig. 4e is calculated using the 

following expression: 

1

𝜋
∫ 𝑑𝐸

𝐸𝑐𝑢𝑡𝑜𝑓𝑓

−𝑘𝐵𝑇

1

𝐸
𝜒"(𝑸, 𝐸) 

where the energy integration is carried out over the energy range E = [-kBT, 2.4] meV range, 

excluding the elastic incoherent scattering with energies in the range [-0.1, 0.1] meV where 𝜒"(E) 

is not known. The average of "(Q, E) within the first BZ is used to approximate "(Q = 0, E). 

Comparing the high temperatures data, an adjustment scaling factor is applied to estimate the 

intensity attenuation at large Q due to the form factor.  
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3. First-principles Density-functional Theory (DFT) Calculations 

The DFT calculations of the electronic structure of Ti4MnBi2 were performed using the 

augmented plane-wave all-electron package WIEN2k 17 and the gradient-corrected local density 

approximation (GGA) by Perdew, Burke, and Ernzenhof 18 for the energy functional. The basis set 

size is set by choosing RKmax = 7.0, while the BZ integration is performed using a Γ-centered 10 

× 10 × 10 k-vector grid. The considered structural model of Ti4MnBi2 is based on the 

experimentally determined tetragonal unit cell with the space group I4/mcm and the lattice vectors 

equal to a = b = 10.547214 Å and c = 4.974468 Å 2,3. In addition to the non-spin-polarized 

calculations that have been performed to obtain the Mn 3d projected densities of states presented 

in Fig. 1b, we also carried out two spin-polarized calculations, one corresponding to a 

ferromagnetic (FM) ordering of the molecular orbital (MO) 19 spins and one corresponding to their 

nearest-neighbor antiferromagnetic (AF) ordering. The spatial distribution of the spin density in 

the latter solution is presented in Fig. 1f, clearly demonstrating the MO character of the localized 

magnetic moments in Ti4MnBi2, related to experimental and theoretical work identifying magnetic 

MOs in MnSi 19. The AF solution is by about 8 meV per Mn higher in energy compared with the 

FM solution, confirming that the nearest-neighbor spin coupling J1 in our J1-J2 Hamiltonian is FM. 

We note, however, that our simple GGA approach is likely to significantly underestimate correlate 

ion effects associated with the localized MO magnetic moments so that the realistic J1 value may 

be quite different from the one that one might deduce from the 8 meV energy difference given by 

GGA. Unfortunately, the DFT+U method 20 which is often used to improve the treatment of local 

correlation effects in DFT, cannot be applied to Ti4MnBi2 because of its known tendency to destroy 

MOs 21. As a result of underestimated correlations, both spin-polarized GGA solutions were found 

to be very difficult to converge, for which reason we found it helpful to turn off spatial 

symmetrization (by setting the space group to P1) and to run spin-orbit (SO) coupled calculations 

with the SO coupling artificially set to zero in order to disable any additional internal 

symmetrization done by WIEN2k. 

The Sommerfeld coefficient 𝛾𝐷𝐹𝑇 was calculated using the expression 22: 

𝛾𝐷𝐹𝑇 =
𝜋2

3
𝑘𝐵

2𝐷(𝐸𝐹) (𝑆24) 

where D(EF) is the density of states at the Fermi level EF in the FM DFT solution in which only 

the itinerant electronic states contribute. D(EF) was obtained to be equal to 10.7 states/(Vu.c.-eV) or 

9.74×1047 states/(m3-J). 

4. Density Matrix Renormalization Group (DMRG) 

4.1 Details of DMRG calculations and ground state phase diagram from DMRG 
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The DMRG method is widely recognized as the best numerical method to solve for the 

ground state of one-dimensional spin chains beyond the means of exact diagonalization methods. 

It is variationally exact for ground state calculations, as the accuracies of ground state energies and 

gap to the first excited state can be improved by increasing the so-called "bond-dimension" 

parameter, which encapsulates the expressivity of the Matrix Product State (MPS) wave-function 

ansatz underlying the method. For the calculation of spectral functions, such as the dynamical spin 

structure factor, DMRG calculations are again variationally exact, but there are a few additional 

and important limitations depending on the approach used. Dynamical spin structure factors are 

defined as two-point, two-times spin-spin correlators, which are eventually space-time Fourier 

Transformed to the momentum-energy domain.  

While DMRG calculations are usually performed in real space, requiring a single space 

Fourier Transform, there are two methods to evaluate spectral functions in the energy domain. The 

first is to use the time evolution and then Fourier transform to the energy domain. This has the 

main drawback of requiring long time evolutions to be able to perform a reliable time Fourier 

transform. Besides requiring an increasing bond-dimension as a function of time, the time 

evolution must be truncated resulting in an extrinsic broadening of the spectral peaks in energy. 

The second method, which we adopt in our work, is to evaluate the dynamical structure factor 

directly in the energy domain, and repeating the calculation for each energy slice in a pre-

determined energy interval (this can be done trivially in parallel in standard computing cluster 

facilities). This second method introduces explicitly an extrinsic broadening parameter, which 

however can be matched to the energy resolution of the INS experiment. 

In summary, there are essentially four sources of error for the evaluation of the spectral 

function using the DMRG method: 

1) finite bond-dimension parameter to converge the ground state energy and MPS approximation 

for the wave-function |𝛹>. 

2) finite bond-dimension parameter to converge the two-point correlator resolvent at fixed Energy 

= E* and related Krylov expansion error 28. 

For both 1) and 2), we have checked that our results are converged with respect to the bond-

dimension parameter and Krylov expansion error. 

3) finite precision of the space Fourier Transform in a finite size chain with open boundaries. This 

is usually evaluated using the so-called center-trick 28. We have simulated chains up to L = 200 

length, so that our results are converged in system size and representative of the thermodynamic 

limit. 

4) finite extrinsic broadening parameter, which however can be matched to the energy resolution 

of the INS experiment, which is always finite. 

To describe the behavior of the Ti4MnBi2 chain, we used the anisotropic J1-J2 model 

Hamiltonian: 
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𝐻 = 𝐽1 ∑[𝑆𝑛
𝑧 ∙ 𝑆𝑛+1

𝑧 + 𝜀1(𝑆𝑛
𝑥 ∙ 𝑆𝑛+1

𝑥 + 𝑆𝑛
𝑦
∙ 𝑆𝑛+1

𝑦
)]

𝐿−1

𝑛=1

+ 𝐽2 ∑[𝑆𝑛
𝑧 ∙ 𝑆𝑛+2

𝑧 + 𝜀2(𝑆𝑛
𝑥 ∙ 𝑆𝑛+2

𝑥 + 𝑆𝑛
𝑦
∙ 𝑆𝑛+2

𝑦
)]

𝐿−2

𝑛=2

(𝑆25) 

where J1 and J2 are the nearest-neighbors and next-nearest-neighbors exchange parameters while 

𝜺1 and 𝜺2 are the magnetic anisotropic parameters dictating the easy-axis (𝜺1 < 1, 𝜺2 < 1) or easy-

plane (𝜺1 > 1, 𝜺2 > 1) character of magnetic interactions. To compute the ground state phase 

diagram of the model, we simulated chains of L sites (up to 200) with open boundary conditions 

using the standard DMRG method 23,24 implemented in the DMRG++ code 25. For the ground state 

calculations, we used up to m = 1000 DMRG states allowing for a maximum truncation error of 

10−9. We computed several quantities, such as the total magnetization: 

𝑀𝑎 = ∑
〈𝛹𝑔𝑠|𝑆𝑖

𝑎|𝛹𝑔𝑠〉

𝐿

𝐿

𝑖=1

(𝑆26) 

(where 𝑆𝑖
𝑎 is the spin operator on site i along the a = x, y, z directions), the longitudinal 𝑀𝑖𝑗

⫽ and 

transverse 𝑀𝑖𝑗
ꓕ  spin-spin correlations: 

𝑀𝑖𝑗
⫽

= 〈𝛹𝑔𝑠|𝑆𝑖
𝑧𝑆𝑗

𝑧|𝛹𝑔𝑠〉, 𝑀𝑖𝑗
ꓕ = 〈𝛹𝑔𝑠|𝑆𝑖

+𝑆𝑗
−|𝛹𝑔𝑠〉 (𝑆27) 

As in other studies 26–28, we also computed vector-chiral (VC) and quadrupolar (Q) 

correlations functions: 

𝑀𝑖𝑗
𝑉𝐶𝑥 = 〈𝛹𝑔𝑠|𝜅𝑖

𝑥𝜅𝑗
𝑥|𝛹𝑔𝑠〉 (𝑆28) 

𝑀
𝑖𝑗

𝑉𝐶𝑦 = 〈𝛹𝑔𝑠|𝜅𝑖
𝑦
𝜅𝑗

𝑦
|𝛹𝑔𝑠〉 (𝑆29) 

𝑀𝑖𝑗
𝑉𝐶𝑧 = 〈𝛹𝑔𝑠|𝜅𝑖

𝑧𝜅𝑗
𝑧|𝛹𝑔𝑠〉 (𝑆30) 

𝑀𝑖𝑗
𝑄 = 〈𝛹𝑔𝑠|𝑄𝑖

+𝑄𝑗|𝛹𝑔𝑠〉 (𝑆31) 

where 𝜅𝑗 = 𝑆𝑗 × 𝑆𝑗+1 and 𝑄𝑗
+ = 𝑆𝑗

+𝑆𝑗+1
+ .  

Finally, to establish the presence of FM phases, we computed the spin S of the ground state 

wavefunction from the standard formula: 

∑ ∑〈𝛹𝑔𝑠|𝑆𝑖
𝑎𝑆𝑗

𝑎|𝛹𝑔𝑠〉

𝑖,𝑗𝑎=𝑥,𝑦,𝑧

= 𝑆(𝑆 + 1) (𝑆32) 

where S is extracted from Stot = S(S+1) (Fig. S5). S can go up to L/2. 
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Let’s start discuss the phase diagram of the model sketched in Fig. 1h in the main text, 

where the parameters are 𝜶 = J2/|J1|, and 𝜺2, and we have chosen 𝜺1 = 1. 

A. ↑↑↓↓ and polarized FM phases 

For any value of the uniaxial anisotropy 𝜺2 < 1, the most prominent feature of the phase 

diagram is the presence of a ↑↑↓↓ phase for sufficiently large 𝜶. For 𝜶 < 𝜶c(𝜺2), then Fig. S5 

clearly shows that the system converged to a partially polarized FM phase. 

 
Fig. S5 | Total spin S/(L/2) as functions of J1-J2 XXZ parameters 𝜶, 𝜺2 at T = 0. Based on the definition in 

Eq. S31, S/(L/2) = 1 means fully polarized FM state. Here the chain length is L = 150 sites. 

The ↑↑↓↓ phase was detected as follows: we first checked long distance behavior of the 

two-point correlation function 𝑀𝑖𝑗
⫽ , which shows a ↑↑↓↓ character (see Fig. S6a). Note that a 

standard ↑↓ Ising order would show: 

lim
|𝑖−𝑗|→∞

𝑀𝑖𝑗
⫽

= (−1)𝑖+𝑗𝑚𝑧
2 (𝑆33) 

where 〈𝑆𝑖
𝑧〉 ≈ 〈𝑆𝑗

𝑧〉 ≈ 𝑚𝑧.   

We then defined the ↑↑↓↓ correlation function: 

𝑀𝑖𝑗
↑↑↓↓ = 〈𝛹𝑔𝑠|𝐷𝑖

𝑧𝐷𝑗
𝑧|𝛹𝑔𝑠〉, 𝐷𝑗

𝑧 =
(𝑆2𝑗

𝑧 + 𝑆2𝑗+1
𝑧 )

2
(𝑆34) 

which shows long range order, 

lim
|𝑖−𝑗|→∞

𝑀𝑖𝑗
↑↑↓↓ = (−1)𝑖+𝑗𝑑𝑧

2 (𝑆35) 
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where 〈𝐷𝑖
𝑧〉 ≈ 〈𝐷𝑗

𝑧〉 ≈ 𝑑𝑧. One can then think of 𝑑𝑧 = √| lim
|𝑖−𝑗|→∞

𝑀𝑖𝑗
↑↑↓↓| as an order parameter for 

the ↑↑↓↓ phase. In a system with periodic boundary conditions, one would have expected a 4-fold 

degeneracy for the ground state in this case, spanned by the states, 

|𝛹𝑔𝑠
1 ⟩ = |∙∙↑↑↓↓∙∙⟩,   |𝛹𝑔𝑠

2 ⟩ = |∙∙↓↑↑↓∙∙⟩,   |𝛹𝑔𝑠
3 ⟩ = |∙∙↓↓↑↑∙∙⟩,   |𝛹𝑔𝑠

4 ⟩ = |∙∙↑↓↓↑∙∙⟩                 (S36) 

As DMRG is most efficient with open boundaries, we found only a 2-fold degenerate ground state 

manifold in this case. We verified numerically that open boundaries break the 4-fold degeneracy 

energetically favoring the states |𝛹𝑔𝑠
1 ⟩ and |𝛹𝑔𝑠

3 ⟩ which display FM bonds at the edge of the chain. 

We then computed the gap 𝜟(L) above this 2-fold degenerate state for different system 

sizes up to L = 72. Since the correlation length is known to increase substantially for 𝜺2 → 1, we 

hatched the part of the phase diagram depicted in Fig. 1h in the main text where we found harder 

to extrapolate to extremely small gaps at larger sizes. Fig. S6b shows the exponential decay of the 

transverse spin-spin correlations, 𝑀𝑖𝑗
ꓕ . We finally note that the VC correlations are also 

exponentially decaying and therefore are short-ranged in this phase (Fig. S6c). 

  

Fig. S6 | The two-point correlation function a, 𝑴𝒊𝒋
⫽

, b, 𝑴𝒊𝒋
ꓕ , and c, the VC correlations as functions of the 

distance r of the spin c+r respect the spin c in the chain center. These results are performed with 𝜶 = 

J2/|J1| = 0.7 and 𝜺2 =  .4  w               ↑↑↓↓ phase but very close to the FM ↑↑↓↓ phase boundary. 

Here the chain length is L = 150 sites. 

B. Vector-Chiral phase 

We have found that in the region of larger 𝜺2, and intermediate 𝜶 as indicated in the phase 

diagram in Fig. 1h in the main text, the VC correlation functions show a power law decay as a 

function of distance (it was difficult to distinguish a power law from an exponential with very large 

correlation length), which is compatible with the vanishingly small gap found in this region. Note 

that while the 𝑀𝑖𝑗
⫽ show long range order in the ↑↑↓↓ as discussed in the previous section (see the 

black curve in Fig. S7b), these are exponentially decaying in the VC phase (Fig. S7a). On the other 

hand, both the 𝑀𝑖𝑗
𝑉𝐶𝑥 and 𝑀𝑖𝑗

𝑉𝐶𝑧  correlations function (green and blue curves in Fig. S7) show quasi-

long range order for 𝜺2 = 0.8 and 𝜶 = 0.8. In both phases, 𝑀𝑖𝑗
ꓕ  and 𝑀𝑖𝑗

𝑄 (red and magenta curves in 

Fig. S7) are subdominant. 
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Fig. S7 | Absolute value of various correlation functions, as indicated. a, These results are performed 

with 𝜶 = J2/|J1| = 0.8 and 𝜺2 = 0.8, which is in the VC phase. b, These results are performed with 𝜶 = J2/|J1| 

= 2 and 𝜺2 =  .8  w               ↑↑↓↓ phase. Here the chain length is L = 150 sites. 

4.2 Dynamical spin structure factors with DMRG  

We computed the longitudinal 𝑆𝑖𝑗
𝑧𝑧(𝐸) and transverse 𝑆𝑖𝑗

+−(𝐸) spin structure factors in real 

space:  

𝑆𝑖𝑗
𝑧𝑧(𝐸) = −

1

𝜋
𝐼𝑚 〈𝛹𝑔𝑠 |𝑆𝑗

𝑧
1

𝐸 − 𝐻̂ + 𝐸0 + 𝑖𝜂
𝑆𝑖

𝑍| 𝛹𝑔𝑠〉 (𝑆37) 

𝑆𝑖𝑗
±(𝐸) = −

1

𝜋
𝐼𝑚 〈𝛹𝑔𝑠 |𝑆𝑗

+ 1

𝐸 − 𝐻̂ + 𝐸0 + 𝑖𝜂
𝑆𝑖

−|𝛹𝑔𝑠〉 (𝑆38) 

using the DMRG correction-vector method 29,30. The corresponding correlation functions in 

momentum space were then obtained by a Fourier transform. When calculating the dynamical 

correlation functions, we fixed the broadening coefficient to η = 0.06J2 and computed the spectral 

functions for each E using the root-N Correction-Vector algorithm with Krylov decomposition and 

a two-site DMRG update recently introduced, as implemented in the DMRG++ code 25. We used 

N = 8 and kept up to m = 800 states. To avoid the necessity of reorthogonalizing the Krylov vectors, 

we allowed up to 200 Krylov vectors and truncated the effective Hamiltonian decomposition with 

a tolerance of 10-12. A representative transverse dynamic structure factor SXX(Q, E) and 

longitudinal dynamic structure factor SZZ(Q, E) are shown in Fig. S8. 

The Q* values shown in Fig. 3f are calculated by analyzing peaks of the SXX(Q, E) cut at E 

= 0, where two peaks are shown at (0, 0, Q*) and (0, 0, -Q*). They are consequences of satellite 

peaks of the short-ranged conical spiral magnetic structure (see Fig. S19). 
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Fig. S8 | Two-spinon dynamical structure factor at zero temperature calculated by DMRG. a, Transverse 

dynamic structure factor SXX(Q, E); b, Longitudinal dynamic structure factor SZZ(Q, E). The simulation was 

performed using the J1-J2 Hamiltonian with J2/|J1| = 0.75, 𝜺1 = 1, and 𝜺2 = 0.425. The values of SXX(Q, E) 

given in the scale bar is ten times that of SZZ(Q, E). The anisotropic parameter 𝜺2 causes their differences. 

Here the chain length is L = 200 sites. 

It is important to clarify the definitions of reciprocal space dimensions that are used in the 

DMRG calculations and in the INS measurements. As shown in Fig. 1a, the lattice parameter c = 

4.98985(8) Å, and the unit cell contains two spin S = 1/2 moments that are associated with 

magnetic orbitals. The chemical and magnetic unit cells are identical in Ti4MnBi2. 

DMRG simulations use the length scale for individual Mn moments, i.e., c/2 = 2.495 Å to 

define the reciprocal space metric QL_DMRG = 2p/(c/2). This gives the first Brillouin Zone (BZ) for 

DMRG as [-2p/c, 2p/c], or [-2, 2] reciprocal lattice units (r.l.u) where 1 r.l.u = p/c.  

INS measurements follow the convention that QL_INS is related to the unit cell c, which 

contains two spin S = 1/2 moments. This gives QL_INS = 1/c, and the corresponding BZ for INS is 

[-0.5/c, 0.5/c], or [-0.5, 0.5] r.l.u. 

We use the INS BZ throughout, which involves artificially renormalizing the DMRG BZ 

to be consistent with the INS data.  

4.3 Magnetic anisotropy in Ti4MnBi2: comparison of calculations and magnetization 

measurements  

The temperature dependence of the magnetization data was measured with a 1 T field 

applied along the (001) and the (110) crystal directions of Ti4MnBi2 single crystal (Fig. S9). These 

data were fitted by the Curie-Weiss law: 

𝜒(𝑇) =
𝐶

𝑇 − 𝜃𝐶𝑊
+  χ

0
(𝑆39) 
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Fig. S9 | Temperature dependencies of the magnetic susceptibility in Ti4MnBi2. a, The magnetization as 

a function of temperature with a 1 T field applied along the (110) (black points) and (001) (red points) 

crystal directions. The signal from the empty sample holder (cyan points, multiplied by 5) is compared to 

the data. b, Corresponding plots of [(M/H) - χ0 ]-1 with linear fits (blue and green lines) to data with 

temperatures larger than 50 K.  

where C is the Curie constant, θCW is the paramagnetic Curie-Weiss temperature, and χ
0
 is a 

temperature-independent susceptibility, which is likely the Pauli susceptibility expected for 

metallic Ti4MnBi2 
1 (Fig. S9). The fitted negative values of θCW are -13.3(2) K for the applied field 

along the (110) direction and -13.2(2) K for the applied field along the (001) direction, reflecting 

the net AF interaction. The fitted Curie Weiss moment is 1.843(2) µB/Mn for the applied field 

along the (110) direction and 1.756(2) µB/Mn for the applied field along the (001) direction. Both 

are close to the S = 1/2 value of 1.73 µB/Mn. The slight differences in the Curie-Weiss moments 

suggest a weak anisotropy of the Landé g-factor, whose values are close to 2. 

The weak anisotropy of the single ion Landé g-factor in Ti4MnBi2 is proved by the loss of 

magnetization anisotropies at high temperatures. The magnetization data along different single 

crystal directions are measured by sample rotation. The sample rotates around the (001) axis for 

the in-plane measurements (the top panels in Fig. S10) and rotates around the (1-10) axis for the 

out-of-plane measurements (the bottom panels in Fig. S10). The magnetic interaction effect can 

be ignored at temperatures much higher than the TN ~ 2.0 K 1. The consequence is that the weak 

anisotropy of the magnetization at 100 K reflects the weak anisotropy of single ion Landé g-factor. 

Thus, the magnetization anisotropies at low temperatures come from the anisotropic magnetic 

interaction by assuming that the single ion Landé g-factor is temperature independent. 

0 50 100 150 200 250 300
10-4

10-3

10-2

M
 (

e
m

u
)

T (K)

 H=1 T // (110)

 H=1 T // (001)

 Background X 5

a b

0 50 100 150 200 250 300
0

200

400

600

800

1
/(

M
/H

-
0
) 

(m
o
l/
e
m

u
/O

e
)

T (K)

 H=1 T // (110)

 H=1 T // (001)



21 

 

 
Fig. S10 | Polar plots of M/H of Ti4MnBi2 single crystal measured at indicated magnetic fields and 

temperatures. These data show that the anisotropy in the low temperature magnetization is suppressed 

at high temperatures, and in the presence of a magnetic field. However, 100 K and 7 T are not enough to 

fully suppress it. The strongest anisotropy of (M/H)110/(M/H)001 ~ 3.3 was measured at 1.8 K with 0.1 T 

applied magnetic field with the sample rotating around the (1-10) axis. We expect larger anisotropies to 

be measured at lower temperatures using smaller external magnetic fields. The measured rotation angle 

            y 5%        f     y 5˚      j                ff             m    m      g   g     v      . 

The next question is whether the anisotropic magnetic interaction is an easy axis type or an 

easy plane type. In the case of an FM interaction, the easy axis model gives a maximum 

magnetization along the easy axis direction and an isotropic minimum magnetization in the plane 

perpendicular to the easy axis direction. The easy plane model gives an isotropic maximum 

magnetization in the plane, and a minimum magnetization in the direction perpendicular to the 

easy plane. In contrast, in the case of an AF interaction, the easy axis model gives a minimum 

magnetization along the easy axis direction and an isotropic maximum magnetization in the plane 

perpendicular to the easy axis direction; while the easy plane model gives an isotropic minimum 

magnetization in the plane, and a maximum magnetization in the direction perpendicular to the 

easy plane (Table S2). Our measured magnetization results for AF Ti4MnBi2 shown in Fig. S10, 

show a minimum magnetization along the (001) direction and a maximum isotropic magnetization 

in the plane perpendicular to the (001) direction, which is consistent with the results of an easy 

axis model, i.e., an Ising model with an Ising axis along the crystal (001) direction. This is 

consistent with the expectations from DFT (main text Fig. 1g). 

Table S2: Different variants of magnetization anisotropy in easy-axis (Ising) and easy-plane models.  
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The DMRG simulation data further prove the applicability of the Ising model with an Ising 

axis along the (001) direction. The simulation results of a J1-J2 model with an Ising axis along the 

chain direction at zero temperature are shown in Fig. S11, roughly consistent with the low-

temperature low-field experiment data shown in Fig. S10. The simulation data gives zero 

magnetization along the chain direction due to AF; however, the measured magnetization along 

the (001) direction has a non-zero minimum magnetization. This could be caused by several 

reasons, such as the simulation is calculated at T = 0 while experiment data is measured at 

temperatures higher than 1.8 K, Pauli susceptibility is not included in the simulation, a magnetic 

field cannot apply perfectly along the (001) direction of the sample, and the sample may have 

domains, etc. 

 

Fig. S11 | DMRG simulation of crystal rotation angle dependent magnetization in Ti4MnBi2 calculated at 

zero temperature. MS is the saturated magnetization. The left panel is the in-plane magnetization, and 

the right panel is the out-of-plane magnetization. Here the chain length is L = 150 sites. 

4.4 Anisotropy of the electrical resistivity (T) 

As a complement to the magnetization anisotropy, we have measured the anisotropy in the 

resistivity measured with the current along the c-axis (001) and also perpendicular to the c-axis 

(110). All samples were taken from a single preparation batch. The former was measured in two 

different samples, while the latter was measured in a single sample. The configurations of the 

sample leads are shown in the inset to Fig. S12a, and the measurement current was 1 mA in all 

cases. The temperature dependencies of all three resistivity measurements are presented in Fig. 

S12a. Given the size of the electrical contacts, which were made with silver-filled epoxy, and 

uncertainties in the geometrical factors the systematic uncertainties in the measurements are 

considerable. The shaded regions in Fig. S12a denote the confidence intervals for the three 

measurements, where 001 #1,2 are the measurements for the current along the chain axis, and 110 

#3 has the current perpendicular to the chain axis.  
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Fig. S12| Transport anisotropy. a, The temperature dependencies of the resistivity in the chain direction 

ρ001 and perpendicular to the chain direction ρ110. The residual resistivities 0 have been subtracted. Inset 

shows the contact configurations for the three crystals, where the c-axes are along the axis of the 

crystalline rods. b, The temperature dependencies of (T) for all three samples. c, The temperature 

dependencies of the anisotropy of the resistivity 110/001.  

All three of these measurements display a decidedly metallic resistivity, (Fig. S12b) with 

very similar residual resistivity ratios RRR = 4.8 (110) #3, 4.2 (001)#2, and  3.8 (001)#1, 

suggesting uniform quality across the preparation batch. The resistivity anisotropy is defined 

as 110/001, and its temperature dependencies for samples #1, #2 are presented in Fig. S12c.  The 

anisotropy has a moderate temperature dependence of no more than ~ 25%, however, the average 

anisotropy is close to ~2 for both samples. This is in stark contrast to similar measurements carried 

out on organic conductors 31, where this anisotropy is strongly temperature dependent, and in some 

materials reaches values as large as 103-104.  This anisotropy in the organic conductors is a 

consequence of the different conduction mechanisms along the stacks of organic ions, and between 

them, and the interplay of the relative energies related to the Mott insulating gap and the strength 

of the interchain coupling.  As we have discussed in the main text, the chemical bonds in Ti4MnBi2 

are much more isotropic, leading to very modest levels of resistivity anisotropy, as expected in a 

good metal.  

This modest anisotropy in the resistivity, paired with the Fermi liquid temperature 

dependencies in the resistivity and the specific heat that we have reported previously 1 are together 

strong evidence that the conduction electrons have a three-dimensional character in Ti4MnBi2.  
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4.5 From DMRG simulation to INS experiment 

DMRG calculated the transverse and longitudinal dynamic structure factors separately, 

while the INS experiment measured a combination of them. In the case of an isotropic Heisenberg 

Hamiltonian, the transverse and longitudinal dynamic structure factors are equal. However, in the 

case of the Ising Hamiltonian, the longitudinal dynamic structure factor will be fully suppressed. 

Between these two extreme cases, i.e., the Ising-like Heisenberg Hamiltonian, the relative intensity 

ratio rL/T between longitudinal and transverse dynamic structure factors depends on the anisotropy 

parameters 𝜺1 and 𝜺2. Generally, the ratio rL/T becomes smaller as the system becomes more Ising-

like. From Eq. S5, we know that several pre-factors are added in front of the dynamic structure 

factor to the INS measured data, e.g., the Q-dependent polarization factor, magnetic form factor, 

Debye-Waller factor, and some other Q-independent constants (e.g., Landé g-factor, resolution 

volume, number of the unit cells, the classical electron radius, and the magnetic moment of the 

neutron). The Q-independent constants can be ignored when qualitatively comparing between 

simulation and experiment. The Debye-Waller factor can be approximated to a unit at low 

temperatures, as the atomic thermal displacement should be weak. Thus, one needs to only deal 

with the Q-dependent polarization factor and magnetic form factor. Here, we show how to get a 

simulation result that can be compared with the INS-measured data by adding the polarization and 

magnetic form factors to the DMRG calculated dynamic structure factors (Fig. S13). Note that the 

DMRG simulation results are calculated at zero temperature, and the INS experiment data are 

measured at 0.3 K (~ 1% of J2 = 2.1 meV). 

Starting from the transverse and longitudinal dynamic structure factors calculated from 

DMRG (Fig. S8), the unit cell of the J1-J2 model has one spin S = 1/2 moment along the chain 

while there are two spin S = 1/2 moments along the chain in the crystal structure unit cell which 

has been used in the INS data analysis. As explained in SI 4.2, there is a factor of four difference 

between the sizes of the DMRG BZ and INS BZ, calibrated in the following analysis. The 

polarization factors related to the experimental scattering geometry can be computed using Eq. S5 

based on an Ising model. Adding these polarization factors to the DMRG-calculated dynamic 

structure factors produces the result shown in Fig. S13c. A comparison with the INS data reveals 

that the magnetic form factor governs the primary disparities. Further, using a simple Lorentzian 

function fitting of the INS data for small QL gives a reasonable estimate of the form factor. The 

results of adding this fitted form factor are shown in Fig. S13d. We will show the details of the 

calculations for the polarization and magnetic form factors in the following paragraphs. 
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Fig. S13 | Adding polarization and magnetic form factors to the DMRG calculated magnetic dynamic 

structure factors. a, b, The DMRG simulated the transverse dynamic structure factor, SXX(Q, E) (a), and the 

longitudinal dynamic structure factor, SZZ(Q, E) (b). Note that the scale bar of (a) is ten times of (b). c, The 

polarization factors (PF) are added to the SXX(Q, E) and SZZ(Q, E). d, The Lorentzian-fitted magnetic form 

factor (FF) is added to the SXX(Q, E). e, The PF of SXX(Q, E) is further added to the data shown in (d). f, The 

SZZ(Q, E) is further added to the data shown in (e). These data should be qualitatively comparable to the 

INS-measured data shown in Fig. 3a. Here the chain length is L = 200 sites. 

Next, we show how the neutron scattering polarization factors are calculated. The Ising-

like J1-J2 model has been demonstrated by the crystal rotation angle-dependent magnetization data, 

which shows that the antiferromagnetically coupled spins align along the c-axis. In that case, the 

INS polarization factor can be calculated accurately using the formula ∑ (𝛿𝛼,𝛽 − 𝑸𝜶
⃗⃗ ⃗⃗  ⃗ ∙𝛼,𝛽

𝑸𝜷
⃗⃗ ⃗⃗  ⃗)𝑆𝛼,𝛽(𝑸, 𝐸) for both the transverse structure factors SXX, SYY, and longitudinal structure factor 

SZZ (Fig. S14). As SXX is the same as SYY, their total polarization factors can be added as (cos2θ + 

sin2θsin2φ) + (cos2θ + sin2θcos2φ) = 1+cos2θ, the polarization factor for SZZ is sin2θ. The 

polarization factors added result of the combination of SXX, SYY, and SZZ is shown in Fig. S13c. 
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Fig. S14 | The geometry of the INS polarization factors. The Ising-axis is along the z-axis/(0, 0, L) direction. 

Finally, we show how the magnetic form factor is included. Fig. S15b presents several 

different form factors that we considered. Figs. S15c-f are DMRG computations of M(Q, E) using 

these different form factors. There are two aspects of these calculations that are used to assess how 

well the form factors that we used reproduce the actual form factor that is realized in the sample 

itself. In Fig. S15c, we used the Mn2+ atomic form factor. It does not reproduce the strong peak in 

the INS data at QL = 0, and the helimagnon 32 branches from the DMRG are hardly suppressed, 

indicating that this form factor falls off much too slowly with QL. The DFT calculations are better 

suited for describing M(Q, E) for the large values of QL where the helimagnon excitations are 

observed in the DMRG structure factor. Fig. S15d shows the DFT form factor when the MO 

contains only Mn d-orbitals. It is clear that this form factor is an overestimate, driving the values 

of M(Q, E) at large Q to very low levels that are not observed in the INS data. Assuming that the 

MO has 70% Mn d-orbitals and 30% Ti d-orbitals results in a much better agreement (Fig. S15e), 

where the helimagnons are scarcely visible in the DMRG calculations, in accord with their absence 

in the INS data. This supports for our proposal that the S = 1/2 moments in Ti4MnBi2 originate 

from these MOs 19. While the DFT form factors peaked at QL = 0, they do not reproduce the 

sharpness of the fall-off found in the INS data. We fitted a Lorentzian function to the sharp fall-

off in the INS data for small QL (Fig. S15f) with a width of W = 0.58(2) r.l.u., where 1/W = 1.72(7) 

l.u. is approximately two chemical cells in Ti4MnBi2. This suggests that the magnetization density 

that scatters the neutrons is extended along the chain and falls off more gradually in the transverse 

direction, similar to the Mn2+ atomic form factor. This phenomenological form factor 

underestimates the form factor at larger QL, as clear signatures of the helimagnons are evident that 

are absent in the INS data. Nevertheless, except where indicated otherwise, we will use the 

Lorentzian form factor.  
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Fig. S15 | Magnetic form factor in Ti4MnBi2. a, The INS data for M(Q, E). b, Different form factors (FF) 

compared to the INS data. c, DMRG calculation of M(Q, E) using the Mn2+ FF. d, DMRG calculation using 

DFT FF with only Mn d-orbital weight in the MO. e, Same as (d), but with 70% Mn d-orbital and 30% Ti d-

orbital admixture. f, DMRG calculation of M(Q, E) using a Lorentzian FF. Here the chain length is L = 200 

sites. 

4.6 Inelastic neutron scattering and the parameters of the J1-J2 XXZ model  

The parameters of the J1-J2 XXZ model 𝜶 = J2/|J1| and 𝜺2 are determined by comparing the 

DMRG calculations to the INS measurements, with the optimal result in Fig. S16. Forty-two 

different DMRG simulations were carried out, with 0.5 ≤ 𝜶 ≤ 2 and 0 ≤ 𝜺2 ≤ 0.5, with 𝜺1 = 1 

throughout. Examples of the computed magnetic dynamical structure factor are shown for different 

values of 𝜶 and 𝜺2 in Fig. S17. The comparisons between the most dispersing parts of the INS 

spinon spectra and the DMRG spectra are shown in Fig. S18, from which the optimal parameters 

of 𝜶 = 0.75(5) and 𝜺2 = 0.43(3) have been selected, and are used throughout this work.  
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Fig. S16 | Spinon dispersions in DMRG and INS data in Ti4MnBi2. The most sensitive determination of the 

parameters for the J1-J2 XXZ model compares the spinon dispersions from DMRG to the dispersion 

measured by INS. a, The DMRG calculated the transverse dynamic structure factors, Sxx(Q, E), with 𝜶 = 

J2/|J1| = 0.75 and 𝜺2 = 0.425. The polarization factor (PF) and form factor (FF) are added to compare the 

INS data. The red circles indicate the spinon dispersion from the INS measurements in b. The black dot 

lines are the spinon dispersion from the DMRG simulation in (a). Here the chain length is L = 200 sites. 

 
Fig. S17 | The complete magnetic dynamic structure factors from DMRG for different values of 

parameters 𝜶 = J2/|J1| and 𝜺2 from the J1-J2 XXZ model. The panel with 𝜶 = 0.6, 𝜺2 = 0.425 is the only one 

in the ungapped FM phase, while the others are in either the ↑↓↑↓ phase or vector chiral (VC) phase. 

Qualitatively, the INS date that most resemble the structure factors appear near the center of the figure. 

Here the chain length is L = 200 sites. 

            

                

   

   

   

 
  
 
 
 
 

   

   

 
 
 
  

  
  
 
 
  
 
  
 
  
  

  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  
 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  
 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 
 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

     1 = .   2= .4 5      1 = .  5  2= .4 5      1 = . 5  2= .4 5      1 = .8  2= .4 5      1 = .   2= .4 5     1 = .   2= .4 5

     1 = .  5  2= .4      1 = . 5  2= .4

     1 = .  5  2= .35      1 = . 5  2= .35

    

          

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

     1 = .  5  2= .5

     1 = .  5  2= .45

    

          

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

    

                

 

 

 

 
  
 
 
 
 

 

   

   

 
 
 
  

  
  
 
 
  

 
  
 
  
  

     1 = . 5  2= .45

     1 = . 5  2= .5

  



29 

 

 

Fig. S18 | Parameterizing the INS spinon spectrum. Shown is a closeup of the spinon spectrum from the 

INS measurements, overlaid with the spinon spectrum calculated by DMRG for a number of different 

values of 𝜶 = J2/|J1| and 𝜺2. The red circles indicate the spinon dispersion from the INS measurements. 

The black dot lines are the spinon dispersion from the DMRG simulations with 𝜶 and 𝜺2 values indicated. 

The best agreement is obtained for 0.7 < 𝜶 < 0.8, and for 0.4 < 𝜺2 < 0.45 which roughly provides the 

confidence limits. Based on this comparison, we have chosen 𝜶 = 0.75(5) and 𝜺2 = 0.43(3) as the optimal 

parameters for Ti4MnBi2. 

5. Spinon Propagation in the S = 1/2 J1-J2 XXZ Chain 

The underlying state for the spinons in the J1-J2 FM XXZ chain is ↑↑↓↓, with first neighbors 

coupled by the FM exchange J1 and second neighbors by the AF exchange J2. Figure S19 shows 

how a single spin flip (S = 1, E = 2J2) subsequently creates domain walls (spinons) and how 

they propagate by reversing additional spins. Second step of the spinon propagation creates an 

energy difference E = 2J2 - 2|J1|, which is negative when J2 < |J1|. Subsequent spin flips cost zero 

energy, as is the case for the conventional ↑↓↑↓ XXZ chain, where a pair of spinons propagate 

freely. 
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Fig. S19 | Spin configuration and spinon propagation in an ↑↑↓↓ spin S = 1/2 chain. The MO 

configurations that provide the moments are indicated in the leftmost column (for more information see 

Fig. 1 and related text), resulting in the conical spiral spin configuration shown in the second column. 

C   m  3              y  g ↑↑↓↓         f g    ion along the chain direction, column 4 depicts a single 

spin flip that subsequently generates a pair of spinons in column 5. Columns 6 and 7 show subsequent 

steps in the spinon propagation. Unlike the conventional ↑↓↑↓ AF spin chain, in the J1-J2 XXZ chain 

there are single domain walls accompanied by spinon propagation (the spins that are marked by filled 

circles). 
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6. Low Energy Excitations: a comparison of AMATERAS and DNA measurements  

Since both AMATERAS and DNA data are calibrated to the absolute units (see SI 2.2), 

one can plot the AMATERAS and DNA data together. The M(E) data shown in Fig. 4a are the 

powder averaged data of the full 180˚ rotation angle data, averaged over Q space [1.1, 1.5] Å-1 to 

avoid the Bragg peaks where elastic broadening usually contaminates the quasielastic signal. The 

data are shown in raw data plots without any background subtraction. The 0.3 K DNA data (solid 

black squares) serves as a background level reflecting the incoherent elastic nuclear scattering, 

with the black dash line being an elastic line convolved with instrumental resolution. The insert 

data present the χ"(E) measured at 1, 2, and 5 K with this 0.3 K background subtracted.  

7. Temperature Dependencies of M(Q, E) and "(E) 

The INS measured magnetic dynamic structure factor M(Q, E) and the imaginary part of 

the dynamical magnetic susceptibility χ″(Q, E) 2D plots are shown for different temperatures in 

Fig. S20.  

 

Fig. S20 | Temperature dependence of the INS measured magnetic dynamic structure factor M(Q, E) 

and the corresponding dynamical magnetic susceptibility χ″(Q, E) in Ti4MnBi2. The data are measured at 

0.3, 1, 2, 5, 10, 25, and 100 K using AMATERAS@J-PARC. 

We plotted the magnetic dynamic susceptibility data, χ″(Q, E), in different scale bars (top 

row, bottom row) and compared them in Fig. S21. While there is evidently considerable 

temperature dependence to these data, it is clear that the spinons contribute significantly to χ″(Q, 

E), even at 100 K.  

 .3  1     5  1    5  1    

(     ) ( . . .) (     ) ( . . .) (     ) ( . . .) (     ) ( . . .) (     ) ( . . .) (     ) ( . . .) (     ) ( . . .)



32 

 

 
Fig. S21 | Temperature dependence of the INS measured dynamical magnetic susceptibility in Ti4MnBi2. 

The top panels are the χ″(Q, E) plots at indicated temperatures, and the bottom panels are the same data 

plotted with an adjusted color bar.   

8. J1-J2 XXZ Materials 

A list of known materials described by the S = 1/2 FM J1-J2 XXZ chain are presented in 

Table S3 and Fig. S22. 

Table S3. Materials described by the S = 1/2 FM Chain J1-J2 XXZ model.  

 J1/meV J2/meV 𝜶 = J2/J1 Ƹ1 Ƹ2 Type/References 

β-TeVO4 -3.3 3.3 -1 0.9 1.1 -- 33 

NaCuMoO4(OH) -4.4 3.1 -0.71 1 1 Isotropic 34 

Ca2Y2Cu5O10 -14.6 2.8 -0.19 1 1 Isotropic 35 

Ca2Y2Cu5O10 -24 5.5 -0.23 1 1 Isotropic 36 

LiCuVO4 -2.4 3.4 -1.4 1 1 Isotropic 37 

LiCuVO4 -1.6 5.59 -3.5 1 1 Isotropic 38 

Li2CuO2 -18.7 5.8 -0.32 0.98 1 Ising 39 

Li2CuO2 -8.6 5.3 -0.62 1 1 Isotropic 40 

Li2ZrCuO4 -27 7.8 -0. 3 1 1 Isotropic 41 

PbCuSO4(OH)2 -9.8 2.6 -0.27 1 1 Isotropic 42 

PbCuSO4(OH)2 -9.8 3.2 -0.33 1 1 Isotropic 43 

LiCuSbO4 -6.5 2.9 -0.45 1.2 1 Easy plane 44 

Rb2Cu2Mo3O12 -11.9 4.4 -0.37 1 1 Isotropic 45 

La6Ca8Cu24O41 -18.5 6.7 -0.36 1 1 Isotropic 40 

LiCu2O2 -11 7 -0.64 1 1 Isotropic  46 

CoNb2O6 -2.8 0.42 -0.15 0.24 0 Ising 47 

Ti4MnBi2 -2.8 2.1 -0.75 1 0.425 Ising (This work) 

1    5  1    

(     ) ( . . .) (     ) ( . . .) (     ) ( . . .)
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Fig. S22 | The materials from Table S3 are placed on the phase diagram of the J1-J2 XXZ model (Fig. 1h). 

Ti4MnBi2 is singular among these materials, not only for being the only metal, but also because of its 

pronounced Ising (easy-axis) anisotropy. The red arrow pointed the critical value of J2/|J1| = 0.25 for an 

isotropic Heisenberg J1-J2 model.  
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