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SUPPLEMENTARY TEXT

1. Materials and Neutron scattering

1.1 Sample preparation and characterization

TisMnBi single crystals were grown using the flux method described in our previous work
1. We optimized the growth conditions to prepare large single crystals for neutron scattering
experiments. The crystals are rodlike, with typical dimensions of ~1 mm x 1 mm square cross-
section and ~5-10 mm in length. X-ray diffraction experiments were carried on a powder prepared
from single crystals out using a Bruker D8 Advance powder x-ray diffractometer. The crystals are
single phase and the expected structure was confirmed 22 (Fig. S1a). The crystals have shiny
metallic surfaces normal to the (110) and equivalent crystal directions and the (001) crystal
direction is along the rod axis (Fig. S1b). The double-sided sample used for the INS experiments
(AMATERAS and DNA@J-PARC) was assembled by co-aligning ~400 crystals on both sides of
two 0.3 mm thick aluminum sheets, using hydrogen-free Cytop CTL-809M as the adhesive * (Fig.
S1c). The sample size is roughly 20 mm (width) * 30 mm (height) * 4 mm (thickness) with a total
mass of 10.2 g TisMnBi> single crystals. The (110) axis of the crystals are normal to the aluminum
sheets, and the scattering plane is (H, H, L). The neutron diffraction peaks in the (H, H, L)
scattering plane (including peaks projected from outside of the scattering plane) are shown in Fig.
S1d, and their sharpness as well as the relatively narrow rocking curve for the sample assembly
(Fig. S1e) shows that the alignment of the crystals is excellent.
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Fig. S1 | TisMnBi> sample characterization. a, Room temperature powder x-ray diffraction data. The
indicated refinement used the tetragonal structure /4/mcm (No. 140) space-group symmetry, and the
refined lattice parameters are a = b = 10.5001(1) A and ¢ = 4.98985(8) A. There are no additional Bragg
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peaks that would be associated with possible impurity phases, beyond small inclusions of the flux. b,
Surface scan of a single crystal shows the Bragg peaks associated with the (H, H, 0) and (H, -H, 0) planes.
¢, The assembly of single crystals used for neutron scattering experiments at AMATERAS@J-PARC and
DNA@J-PARC, which consists of a total of four layers of TisMnBi, crystals on both sides of two 0.3 mm
thickness aluminum sheets. Individual TisMnBi, single crystals were aligned with their (110) direction
normal to the aluminum sheet, with the neutron scattering in the (H, H, L) plane. d, Elastic scattering in
the (H, H, L) plane from AMATERAS. e, Neutron scattering measured rocking curve of the (-1, -1, 0) Bragg
peak on TizMnBi, sample shown in (c). The solid line is a Gaussian fit to the peak, which extracted a FWHM
=3.1(1)".

1.2 Inelastic neutron scattering

The 10.2 g co-aligned sample (Fig. S1c) was mounted in the (H, H, L) scattering plane,
with the (1-10) direction vertical in the AMATERAS and DNA experiments at the MLF, J-PARC
in Japan. Both experiments used the same 3He cryostat sample environment with a base
temperature of 0.3 K. For measurements using the direct geometry instrument AMATERAS °, the
chopper configurations were set to select multiple incident energies E;j of 3.13518, 7.73595,
15.1464, and 41.9667 meV with corresponding energy resolutions AE (full width at half maximum
of the elastic peaks) of, respectively, 0.0581, 0.2244, 0.5652, and 2.4048 meV. The beam size was
defined by slits to be 25 mm (width) * 35 mm (height), so that the sample with dimensions of 20
mm (width) * 30 mm (height) is fully illuminated by the neutron beam. The AMATERAS
measurements were performed at 0.3, 1, 2, 5, 10, 25, and 100 K. The sample rotation angle is from
-40° to 140° with a 0.5° increment at 0.3 K and a 1° increment at other temperatures. The data
collecting time is ~ 30 hours at 0.3 K and ~ 12 hours at other temperatures. The initial data
reduction was completed using the software suite UTSUSEMI ®. The AMATERAS detectors are
position sensitive along the vertical direction, which provides access to the out-of-plane (H, -H, L)
direction and allows isolating contributions from the (H, H, L) scattering plane. The neutron
absorption correction, including both in-plane and out-of-plane directions, was carried out using
Mslice/DAVE 7, including the absorption cross section, as well as the coherent and incoherent
scattering cross sections. Details of the absorption corrections follow in the next section.

For the inverse geometry instrument DNA &, the chopper configurations were set to high-
resolution mode with Ef = 2.08 meV with energy resolution of AE = 0.004 meV (full width at half
maximum of the elastic peaks) which can measure -0.03 meV < E < 0.1 meV range. The beam
size was 20 mm (width) * 30 mm (height), well matched to the sample size. The measurements
were performed at 0.3, 1, 1.4, 2, and 5 K, respectively. The sample rotation angle is from -40° to
140° with 1° increment, and the data collecting time is ~ 24 hours, except for the 5 K data, which
were measured from -40° to -19° with 1° increment. The data reduction and analysis were
completed using the software suite UTSUSEMI 8 as well as Mslice/DAVE and PAN/DAVE .

A standard vanadium sample was measured under the same instrumental setup in both
AMATERAS and DNA experiments, which allows us to report results in terms of absolute units,
as shown below.



2. Data Analysis and Corrections

2.1 Absorption correction

Correcting for absorption effects is critical in TisMnBi., both because of the large
absorption cross sections for neutrons (Table S1), and the slab-like sample geometry (Fig. S1c).
The Ti and Mn atoms have relatively large neutron absorption cross sections (Table S1). We will
use the approach outlined in Wu et al ® and Mantid website ° in our treatment of the absorption,
as well as in subsequent steps of normalization that allow us to express the scattering in absolute
units.

Table S1: Neutron scattering and absorption cross sections for Ti, Mn, and Bi 1.

Ocon / barn Oinc / barn o, / barn
Ti 1.485 2.87 6.09
Mn 1.75 0.4 133
Bi 9.148 0.0084 0.0338

Note: 1 barn = 10?* cm?. g, is absorption cross section for 2200 m/s (1 = 1.7982 A) neutrons.

We will disregard the effects of the aluminum sheets in the sample holder, since their mass
is very small compared to that of the sample.

Neutron scattering events are characterized by two distances: l; is the distance traveled in
the sample before scattering, and I represents the length traveled by the neutron after scattering.
Following Mantid *° the number of neutrons per unit solid angle scattered once by a volume
element dV of the sample is given by:

do
d1,(6) = Jop 0 (Q)e—u(h)lru(lz)lzdv (S1)

where J, is the incident beam flux, p is the atomic humber density, Z—; () is the differential cross-

section, and A, and A, are the incident and scattered neutron wavelengths. The linear attenuation
coefficient w is determined from the sum of the neutron scattering cross section o, which includes
both the coherent and incoherent cross sections, and a,, which is the neutron absorption cross
section (Table S1).

p = po = p(gs + 0q) (52)

Given that the incident neutron energy for the AMATERAS experiment E;j = 3.13518 meV is low,
we will omit the coherent cross section from our determination of z.

The wavelength A dependence of the absorption cross section is given by:



0, (1) = 0,(1 = 1.79824) ( ) (S3)

1.7982

Although the dimensions of the sample are 20 mm (width) * 4 mm (thickness), the overall
shape of the sample for the AMATERAS with Ej = 3.13518 meV can be approximated by a
rectangle of width 13 mm along the crystal (001) direction, and thickness 1.6 mm along the crystal
(110) direction which is perpendicular to the sample holder surface with the sample density fixed
to the crystallographic density.

For the DNA data, the overall effective size has been tuned since the instrument is an
inverse geometry with Es = 2.08 meV. The absorption corrections for both AMATERAS and DNA
data have been carried out using the absorption correction option with both in-plane and out-of-
plane data corrected using the Mslice/DAVE analysis software package ’.

Figure S2 shows the effect of absorption on the AMATERAS measurements and
demonstrates the extent to which the data can be corrected for absorption.

V)

0.16

o
2
I(QE) (a.u.)
uonda.10d uondiosge oN

(0,0,L) (r.l.u.)
(QE

o

o

o
I(Q.E) (a.u.)
I(Q.E) (a.u.)

(0,0,L) (r.l.u.)
pa123.4402 uondiosqy

0 -
(H,H,0) (r.l.u.) (0,0,L) (r.l.u.) (H,H,0) (r.l.u.)

Fig. S2 | Effect of neutron absorption in TisMnBi, AMATERAS data. a, b, Plots of the 0.3 K elastic
scattering in the (H, H, L) scattering plane averaged within the ranges of £ =[-0.2, 0.2] meV and (H, -H, 0)
= [-0.5, 0.5] r.l.u. before (a) and after (b) the absorption correction has been applied. The blue arcs in (a)
occur when the neutron beam is parallel to the (001) direction, where the neutron path length in the
sample is the longest and absorption consequently the largest. This effect is practically absent in (b). c, d,
Contour plots of the energy dependencies of the neutron scattering intensity, /(Q, E), along the (0, 0, L)
direction with (H, H, 0) = [0, 2] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.l.u. measured at 0.3 K before (c) and after
(d) the absorption correction. e, f, Contour plots of the energy dependencies of the neutron scattering
intensity, /(Q, E), along the (H, H, 0) direction with (0, O, L) = [-1, 1] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.lL.u.
measured at 0.3 K before (e) and after (f) the absorption correction. The red arrows in (a) and (e) point to
the most apparent absorption areas.



2.2 Absolute normalization

We will next normalize both the AMATERAS and DNA data sets to absolute units.
According to Xu et al 2 and Wu et al °, there are four ways to carry out the absolute unit
normalization:

1) Using the incoherent elastic scattering of a standard vanadium sample.

2) Using the incoherent elastic scattering of the sample. Since the incoherent scattering of Bi and
Mn is very small (Table S1), the overall incoherent scattering is likely to be overwhelmed by the
elastic scattering background.

3) Using the phonon scattering of the sample. However, it is not available for TisMnBis.

4) Using the nuclear Bragg peaks of the sample. In practice, extinction in Bragg peak scattering
can significantly affect the absolute Bragg peak intensities in single crystal experiments, and a
thorough understanding of the instrument resolution is required.

We will use the incoherent elastic scattering of the standard vanadium sample method. A standard
vanadium sample has been measured under the same instrumental setup both in AMATERAS and
in DNA experiments.

Following Xu et al *? the measured INS intensity can be written as:

2

d0,dE,

1(Q.E) = j R(Qo, Eo, @, E)dQodE, (s4)

where R(Qy, Ey, Q, E) is the instrument resolution function mainly determined by the instrumental
setup, Q and E are the neutron wave vector and energy transfer.

For an experiment with unpolarized neutrons, the coherent magnetic scattering can be
written as:

d*o ke (¥70)? B — s
a5 = V2 () o1 @e ZW;(6a,ﬁ — Q.- 0p)5%(Q.E) (s5)

where N is the total number of the unit cells, (yr5)? = 0.291 X 1072* cm? = 0.291 barn with
1y IS the classical electron radius and y is the magnetic moment of the neutron in nuclear
magnetons, g is the Landé g-factor, f(Q) is the magnetic form factor, e 2 is the Debye-Waller
factor, which at the low temperatures and small wave vectors of our measurements is taken to be
unity, a and S denote the Cartesian coordinates, X, y, or z, which characterize the polarization of
magnetic fluctuations. Q_a’ =Q,/Q and Q_,; = Qp/Q are the projections of the unit vector along the

wave vector transfer direction onto the Cartesian axes, and S*#(Q, E) is the dynamic structure



factor. The k¢/ki calibration that is related to the incident neutron flux and scattering neutron flux
is corrected for during the data reduction phase using UTSUSEMI 8,

The measured INS intensity can be written as:
Y7o\? 2,2 —2W . )\ caB
1Q.5) ~ N (5) g2 @e™ ) (6~ Cu- ISP (@QE)Ro(QE)  (56)
aB

where Ry (Q,E) = [ R(Qo, Eo, Q, E)dQodE, is the resolution volume, which varies depending on
the instrument setup. Thus, one can ultimately write down:

13.75(barn™Y)I(Q, E)
Ng?f2(Q)e *"R,(Q, E)

S@.B) = ) (8 — Cu- Q)5 (@.F) = (57)
apB

where S(Q, E) has units of meV-1. The magnetic dynamic structure factor can be further written
as:

13.75(barn"Huz1(Q,E)
Ne ?WR,(Q,E)

M(Q,E) = g*uif*(@S(Q,E) = (58)

which has the units of u2-meV,

The Q-dependent magnetic susceptibility, »"(Q, E), is related to the magnetic dynamic
structure factor, M(Q, E), by the principle of detailed balance, leading to:

E
x'(Q.E) = [1- e | M(QB) (59)

E
where [1 - e_"BT] describes the Bose-Einstein statistics, kg is the Boltzmann constant, and T is

the temperature.

The Landé g-factor, magnetic form factor, and Debye-Waller factor are sample dependent,
and can be estimated. For instance, the Curie-Weiss fitting suggested g = 2 (Fig. S9). The Debye-
Waller factor e72" ~ 1 at low temperatures and small Q, and f(Q) is the magnetic form factor
which can be calculated by DFT or estimated by fitting the INS data (Fig. S15). Thus, to complete
the absolute unit calibration, one needs to know the resolution volume R,(@Q, E), which can be
calculated using the incoherent elastic scattering data of the standard vanadium sample. The cross-
section for incoherent elastic scattering is:

do N inc,V _—2w
- = meveo— 510
(dﬂ)inc,el 4r Z O-] ¢ ( )



where aji”C'V = 5.08 barn is the incoherent neutron scattering cross-section of the j™ vanadium

atom 1. So, from the standard vanadium sample measured scattering intensity, one can get:
N incV _—2w
1Q.E)E = ) of"¥e 2" R,(Q. ) (511)
j

Thus, the resolution volume R,(Q, E), can be calculated as:

47 [ 1(Q,E)dE

_incV _ow
Xjo; e

RO(QiE) =

(512)

For the AMATERAS experiment, a 1.5397 g standard vanadium sample was measured at
room temperature with a total counting time of about 8 hours. Thus, the measured resolution
volume of the AMATERAS setup is:

41 [ 1(Q, E)v amarerasdE
N Z] O'-inC’Ve_ZW
j

_,y MmeV
Ro(Q, E) amareras = =1.082 x 10 — (513)

For the DNA experiment, a 5.5666 g standard vanadium sample was measured from 7 to
4.5 K with a total counting time of about 7 hours. Thus, the measured resolution volume of the
DNA setup is:

4r [ 1(Q, E)y pnadE meV
Ji@. )VV'D"’A = 5.640 x 10725
NY; ajmc' e2w barn

Ro(Q,E)pna = (514)

Finally, the resolution volume R,(Q, E) values and Eq. S8 can be used together to express
the INS data of the TisMnBi2 sample in absolute units.

The large incoherent scattering cross section of the vanadium causes the above
normalization process to ignore the incoherent elastic scattering background from the sample
environment.

2.3 Temperature-independent background subtraction

The INS measured data can be separated into temperature-dependent and temperature-
independent parts, where the temperature-dependent part obeys the principle of detailed balance.
In contrast, the temperature-independent scattering, including the resolution broadened elastic
scattering tails and the sample environment's scattering, can be approximated as being temperature
independent at sufficiently low temperatures. Following Hong et al 3, the measured INS raw data
intensity I.(E, T,) at temperature T for any specific Q can be written as:

I.(E, T,) = B(E) + I(E,T,) (515a)



_1EL
I.(=|E|, T1) = B(=|ED) + I(IE], T )e ™ (515b)

where B(E) is the temperature-independent background, and I(E, T;) is the INS intensity that
obeys detailed balance. By measuring the sample at another temperature T», two additional
equations can be written as:

I.(E, T,) =B(E) + I(E,T,) (516a)

_1EL
I.(=|E|, T2) = B(=|E]) + I(IE|, T2)e *&T2 (S16b)

The temperature-dependent and the temperature-independent parts of the raw data intensity
can be determined by solving these four equations simultaneously. Solving for the temperature-
independent background gives:

|E| |E|
I.(E, T)e k8T — [ (—|E|, T,)+ L.(-|E|, T>,) — I.(E, T,)e ksT2
B(E) — r( 1) r( | | |E1|) r( |E!| | 2) r( 2) (517a)
e_kBTl— e_kBTZ
_IEl 1Bl _IEl _IEL _IEL 1B
B(—|E]) ZIT(E. Ty)e kBTr kBT2 — I (—|E|, T;)e kBT2+I.(—|E|, Ty)e *8Tr —I.(E, T,)e *BT1 kBT (S17b)

__|E| __|E|
e kpT1— g kBT

This method works well when the energy dependence of the energy resolution can be
ignored. In the analysis of the AMATERAS data, we used the data sets measured at T; = 0.3 K
and T2 = 100 K to determine the temperature-independent background, which is subsequently
subtracted from the data measured at all other temperatures. The effects of background subtraction
are demonstrated in Fig. S3.

Since the phonon density of states follows the Bose distribution, one can further subtract
the phonon contribution in order to isolate the magnetic part of the scattering. The phonon density
of states should be the same at low and high temperatures once the data have been corrected for
the Bose factor. Using Eq. S15 and Eq. S16,

_1EL _IEL __IE|
I(lEl'Tl)subtractphonon = l1(|E|,T1) <1 —€ kBTl) —I(|E|,T3) (1 —e€ kBTZ)]/<1 —€ kBTl)

= [I(E, T1) — ,(=|E|, T1) + I, (—|E|, To) — I, (E, Tz)]/<1 - ff%) (518)
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Fig. S3 | Temperature-independent background subtraction in TizMnBi,. a, b, The INS intensity /(Q, E)
measured at 0.3 K (a) and 100 K (b) at AMATERAS. The data are averaged over the ranges of (H, H, 0) = [0,
2] r.l.u.and (H, -H, 0) =[-0.5, 0.5] r.l.u. ¢, The temperature-independent background B(Q, E) was calculated
using the 0.3 K and 100 K data. Compared with the raw data shown in (a) and (b), the intensity of B(Q, E)
is quite weak. d, e, Data plots at 100 K (d) and 0.3 K (e) from which the temperature-independent
background has been subtracted. f, The 1D plots of the raw data, temperature-independent B(E) data,
and temperature-independent background subtracted data, averaged over the ranges of (H, H, 0) = [0, 2]
r.l.u., (H, -H, 0) = [-0.5, 0.5] r.l.u., and (0, O, L) = [-0.5, 0.5] r.l.u. The plots show that the subtraction of the
temperature-independent background for the energies £ =[0.5, 1.5] meV that is dominated by the spinon
continuum reduces the raw intensity by less than 4%.

Using Eq. S18 and Eg. S8 allows the calculation of the phonon subtracted M(Q, E), and
the effect of subtracting it from the temperature-independent background subtracted data at 0.3 K
is demonstrated in Fig. S4. The comparison of M(Q, E) at 0.3 K with and without the phonon
subtraction is shown in Fig. S4. We should note that the 100 K data has some residual magnetic
scattering, which is also subtracted in the above analysis. However, the phonon subtraction around
the Bragg peaks (0, 0, 1) and (0, 0, -1) should not be affected.
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a With phonon subtraction b Without phonon subtraction
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Fig. S4 | Phonon subtraction in TizMnBi,. a, b, The INS M(Q, E) measured at 0.3 K with phonon scattering
subtracted (a) using the 100 K data, and without phonon subtraction (b) plots. The data are averaged over
the ranges of (H, H, 0) = [0, 2] r.l.u. and (H, -H, 0) = [-0.5, 0.5] r.l.u. The comparison of (a) and (b) suggests
that phonon scattering is not significant at 0.3 K.

2.4 Magnetic moment sum rule

We will use the approach outlined in Wu et al ° to describe and calculate the moment sum
rule in TisMnBi.. The sum rule of the dynamic spin correlation function S*#(Q, E) is satisfied
when integrated over the first Brillouin zone (BZ):

Z +: 1st Sa,B(Q, E) deE
s oo Sz — = S(S+1)bap (519)

Jzy AQ

The energy E integration excludes elastic scattering, which is presumably dominated by different
sources of elastic scattering, apart from magnetic scattering. For an S = 1/2 system, the sum rule
is a combination of three independent sum rules, one for each polarization:

+o° ~1st
= I, SY(Q,E)dQdE 1
Lo Joz o =35 +1)85q =
BZ dQ

1
7’ a=xY7z (520)
The data normalized to absolute units can be used to verify the sum rules in TisMnBi..

The integrated M2, shown in Fig. 4c is calculated by:

M2 o 1{: ;z) (S21)
BZ

[ e MW@ E) yo4p

with the data integrated in E = [-2.4, 2.4] meV range (the elastic incoherent scattering range of [-
0.1, 0.1] meV has been excluded) and Q averaged in the first BZ. A factor of 3/2 is included in
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Fig. 4c, intended to represent the contribution from the longitudinal dynamic structure factor S;;(Q,
E), which is nearly absent in the measured and calculated S(Q, E), due to the easy axis character
of TisMnBi> (see sections 4.2 and 4.5).

The elastic moment M2, shown in Fig. 4c is calculated using Eq. S21 with the data
integrated over E = [-0.1, 0.1] meV and Q averaged over (0, 0, L) = [0, 1] r.l.u., (H, H, 0) = [-0.5,
0.5]r.l.u., and (H, -H, 0) = [-0.5, 0.5] r.l.u., where the strongest magnetic diffuse scattering is found
(Figs. 2a-d). The 100 K data are used as a background, which slightly underestimates the magnetic
signal, due to a very small residual magnetic signal at 100 K. The largest uncertainty affecting the
moment sum rule is the lack of an expression for the magnetic form factor that is valid for all
measured wave vectors. The data presented in Fig. 4c include a Lorentzian form factor that is,
strictly speaking, most accurate for wave vectors Q. < 0.7 r.l.u. The discussion of Fig. S15 shows
that the Lorentzian form factor underestimates the form factor for these larger values of Q, and
consequently the values of M3, in Fig. 4c are somewhat inflated.

2.5 Static magnetic susceptibility and the Kramers-Kronig relation

As described in Enderle et al 14, the imaginary part of the dynamic susceptibility is directly
related to the static susceptibility. The fluctuation-dissipation theorem gives the relationship

between S*A(Q, E) and y*#" (Q, E) as 1415

E
X" Q) = ng?ui (@) (1 - ¢ FoT ) 58 (Q, ) (522)

X“’ﬁ" (Q, E) is related to the bulk susceptibility via the Kramers-Kronig relation:

Ecutoff

! 1 1 n 1 _L
a,f — —yapB — 2,2 F2 - _ B a,p
27'(Q.0) n]dEEX (Q.E) = g°upf (Q)Jk ) dE (1 - ¢ T ) 5% (Q, E) (523)

The bulk susceptibility is measured in a magnetic field that is applied along one direction
in single crystal, which gives ¥®%'(Q = 0,0) with = x, Y, Z.

The integrated INS measured susceptibility ® shown in Fig. 4e is calculated using the
following expression:

1 Ecutoff

[ agzx@n

T J _kpr E
where the energy integration is carried out over the energy range E = [-ksT, 2.4] meV range,
excluding the elastic incoherent scattering with energies in the range [-0.1, 0.1] meV where y"'(E)
is not known. The average of »"(Q, E) within the first BZ is used to approximate »"(Q = 0, E).

Comparing the high temperatures data, an adjustment scaling factor is applied to estimate the
intensity attenuation at large Q due to the form factor.
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3. First-principles Density-functional Theory (DFET) Calculations

The DFT calculations of the electronic structure of TizsMnBi, were performed using the
augmented plane-wave all-electron package WIEN2k 1 and the gradient-corrected local density
approximation (GGA) by Perdew, Burke, and Ernzenhof 8 for the energy functional. The basis set
size is set by choosing RKmax = 7.0, while the BZ integration is performed using a /-centered 10
x 10 x 10 k-vector grid. The considered structural model of TisMnBi> is based on the
experimentally determined tetragonal unit cell with the space group 14/mcm and the lattice vectors
equal to a = b = 10.547214 A and ¢ = 4.974468 A 23, In addition to the non-spin-polarized
calculations that have been performed to obtain the Mn 3d projected densities of states presented
in Fig. 1b, we also carried out two spin-polarized calculations, one corresponding to a
ferromagnetic (FM) ordering of the molecular orbital (MO) *° spins and one corresponding to their
nearest-neighbor antiferromagnetic (AF) ordering. The spatial distribution of the spin density in
the latter solution is presented in Fig. 1f, clearly demonstrating the MO character of the localized
magnetic moments in TisMnBi, related to experimental and theoretical work identifying magnetic
MOs in MnSi °. The AF solution is by about 8 meV per Mn higher in energy compared with the
FM solution, confirming that the nearest-neighbor spin coupling Ji in our J:-J> Hamiltonian is FM.
We note, however, that our simple GGA approach is likely to significantly underestimate correlate
ion effects associated with the localized MO magnetic moments so that the realistic J; value may
be quite different from the one that one might deduce from the 8 meV energy difference given by
GGA. Unfortunately, the DFT+U method 2° which is often used to improve the treatment of local
correlation effects in DFT, cannot be applied to TisMnBi2 because of its known tendency to destroy
MOs 2, As a result of underestimated correlations, both spin-polarized GGA solutions were found
to be very difficult to converge, for which reason we found it helpful to turn off spatial
symmetrization (by setting the space group to P1) and to run spin-orbit (SO) coupled calculations
with the SO coupling artificially set to zero in order to disable any additional internal
symmetrization done by WIEN2K.

The Sommerfeld coefficient y,. was calculated using the expression 22

2

T
YprT = ?kéD(EF) (524)

where D(EF) is the density of states at the Fermi level Er in the FM DFT solution in which only
the itinerant electronic states contribute. D(Er) was obtained to be equal to 10.7 states/(Vu.c.-eV) or
9.74x10% states/(m?3-J).

4. Density Matrix Renormalization Group (DMRG)

4.1 Details of DMRG calculations and ground state phase diagram from DMRG
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The DMRG method is widely recognized as the best numerical method to solve for the
ground state of one-dimensional spin chains beyond the means of exact diagonalization methods.
It is variationally exact for ground state calculations, as the accuracies of ground state energies and
gap to the first excited state can be improved by increasing the so-called "bond-dimension™
parameter, which encapsulates the expressivity of the Matrix Product State (MPS) wave-function
ansatz underlying the method. For the calculation of spectral functions, such as the dynamical spin
structure factor, DMRG calculations are again variationally exact, but there are a few additional
and important limitations depending on the approach used. Dynamical spin structure factors are
defined as two-point, two-times spin-spin correlators, which are eventually space-time Fourier
Transformed to the momentum-energy domain.

While DMRG calculations are usually performed in real space, requiring a single space
Fourier Transform, there are two methods to evaluate spectral functions in the energy domain. The
first is to use the time evolution and then Fourier transform to the energy domain. This has the
main drawback of requiring long time evolutions to be able to perform a reliable time Fourier
transform. Besides requiring an increasing bond-dimension as a function of time, the time
evolution must be truncated resulting in an extrinsic broadening of the spectral peaks in energy.
The second method, which we adopt in our work, is to evaluate the dynamical structure factor
directly in the energy domain, and repeating the calculation for each energy slice in a pre-
determined energy interval (this can be done trivially in parallel in standard computing cluster
facilities). This second method introduces explicitly an extrinsic broadening parameter, which
however can be matched to the energy resolution of the INS experiment.

In summary, there are essentially four sources of error for the evaluation of the spectral
function using the DMRG method:
1) finite bond-dimension parameter to converge the ground state energy and MPS approximation
for the wave-function |¥>.
2) finite bond-dimension parameter to converge the two-point correlator resolvent at fixed Energy
= E* and related Krylov expansion error 2,
For both 1) and 2), we have checked that our results are converged with respect to the bond-
dimension parameter and Krylov expansion error.
3) finite precision of the space Fourier Transform in a finite size chain with open boundaries. This
is usually evaluated using the so-called center-trick 28, We have simulated chains up to L = 200
length, so that our results are converged in system size and representative of the thermodynamic
limit.
4) finite extrinsic broadening parameter, which however can be matched to the energy resolution
of the INS experiment, which is always finite.

To describe the behavior of the TisMnBi> chain, we used the anisotropic Ji:-J> model
Hamiltonian:

14



L-1 L-2
H=Jy ) [S5- Sha+ &a(S5 - Ska+ S3Sha)| + 2 ) [55 Shaa + 22(SK - Skaat ST - 531)] (525)

n=1 n=2

where J; and J; are the nearest-neighbors and next-nearest-neighbors exchange parameters while
&1 and & are the magnetic anisotropic parameters dictating the easy-axis (g1 < 1, €2 < 1) or easy-
plane (g1 > 1, & > 1) character of magnetic interactions. To compute the ground state phase
diagram of the model, we simulated chains of L sites (up to 200) with open boundary conditions
using the standard DMRG method 23?* implemented in the DMRG++ code %. For the ground state
calculations, we used up to m = 1000 DMRG states allowing for a maximum truncation error of
10°. We computed several quantities, such as the total magnetization:

L
Y |SE W
M, = Z(gdl,ﬁ (526)
i=1

(where s# is the spin operator on site i along the a = x, y, z directions), the longitudinal Ml./§ and
transverse Mj; spin-spin correlations:

Ml{ = <W95|SiZS]'Z|qIQS)’ MZL] = (q’gs|S;—Sj_|q]gs) (527)

As in other studies 2%, we also computed vector-chiral (VC) and quadrupolar (Q)
correlations functions:

M5 = (Wi [Py (528)
My = (Wi 167 |y (529)
M{ 5 = (Wys|iF il | Wys) (530)
Mg = (W] Q7 Q| %ys) (531)

— + _ ¢ctct
where k; = S; X Sj44 and Q7 = 57757 4.

Finally, to establish the presence of FM phases, we computed the spin S of the ground state
wavefunction from the standard formula:

Z 2(wgs|sglsja|wgs> =5(S+1) (532)

a=x,y,z i,j

where S is extracted from Siot = S(S+1) (Fig. S5). S can go up to L/2.
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Let’s start discuss the phase diagram of the model sketched in Fig. 1h in the main text,
where the parameters are & = J2/|J1|, and &2, and we have chosen &1 = 1.

A. 11| and polarized FM phases

For any value of the uniaxial anisotropy &> < 1, the most prominent feature of the phase
diagram is the presence of a 11| phase for sufficiently large a«. For & < at(e2), then Fig. S5
clearly shows that the system converged to a partially polarized FM phase.

1.0 1
0.8
Y 0.6 0.5
0.4
0.2
0
0" 10°

1

S/(L/2)

J |

Fig. S5 | Total spin S/(L/2) as functions of J1-J, XXZ parameters a, &; at T = 0. Based on the definition in
Eq. S31, S/(L/2) = 1 means fully polarized FM state. Here the chain length is L = 150 sites.

The 11]| phase was detected as follows: we first checked long distance behavior of the
two-point correlation function M{j which shows a 11]| character (see Fig. S6a). Note that a
standard 1 Ising order would show:

lim M/ = (=1)"*/m? (533)

li—j|—co
where (S7) ~ (S§7) = m,.
We then defined the 11| correlation function:

_ (85 +5554)

Ml _
M{[* = (Wys|DEDF| W), Df > (534)
which shows long range order,
lim M{* = (-1)*d2 (535)

li—j|—oo
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where (D7) = (Df) =~ d,. One can then think of d, = \/ lim Ml.TjT“’ as an order parameter for

li—j|-eo
the 71| phase. In a system with periodic boundary conditions, one would have expected a 4-fold
degeneracy for the ground state in this case, spanned by the states,

[¥hs) = [-TTL-), [W2g) = [=UTT-), [wie) = |-U1T), |Was) = [-TLLT) (S36)

As DMRG is most efficient with open boundaries, we found only a 2-fold degenerate ground state
manifold in this case. We verified numerically that open boundaries break the 4-fold degeneracy
energetically favoring the states |#;) and |3 ) which display FM bonds at the edge of the chain.

We then computed the gap A4(L) above this 2-fold degenerate state for different system
sizes up to L = 72. Since the correlation length is known to increase substantially for €2 — 1, we
hatched the part of the phase diagram depicted in Fig. 1h in the main text where we found harder
to extrapolate to extremely small gaps at larger sizes. Fig. S6b shows the exponential decay of the
transverse spin-spin correlations, M. We finally note that the VC correlations are also
exponentially decaying and therefore are short-ranged in this phase (Fig. S6c).

a b c
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.
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5 . Mo, E
=5 0.01 " ] '.\ 2 10°4
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-0.14 ] [S]
1 >
- EE 102 4
-0.24 —" " ]
0.3 1057 101

v v T T T T T T y T
0.01 0.1 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
sin(nr/L) sin(mr/L) sin(nr/L)

Fig. S6 | The two-point correlation function a, Mé, b, M‘ilj, and c, the VC correlations as functions of the
distance r of the spin c+r respect the spin c in the chain center. These results are performed with @ =
Jo/J1] =0.7 and &,=0.4, which isin the ™\ | phase but very close to the FM ™ | phase boundary.

Here the chain length is L = 150 sites.
B. Vector-Chiral phase

We have found that in the region of larger &2, and intermediate @ as indicated in the phase
diagram in Fig. 1h in the main text, the VC correlation functions show a power law decay as a
function of distance (it was difficult to distinguish a power law from an exponential with very large
correlation length), which is compatible with the vanishingly small gap found in this region. Note
that while the ML./§ show long range order in the 11| as discussed in the previous section (see the
black curve in Fig. S7b), these are exponentially decaying in the VC phase (Fig. S7a). On the other
hand, both the m;;* and M/ correlations function (green and blue curves in Fig. S7) show quasi-
long range order for &2 = 0.8 and & = 0.8. In both phases, m}; and M7 (red and magenta curves in
Fig. S7) are subdominant.
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Fig. S7 | Absolute value of various correlation functions, as indicated. a, These results are performed
with @=J,/|J1| =0.8 and &, = 0.8, which is in the VC phase. b, These results are performed with @ = J,/|J1]
=2 and & = 0.8, which is in the ™1\ \ phase. Here the chain length is L = 150 sites.

4.2 Dynamical spin structure factors with DMRG

We computed the longitudinal 57(E) and transverse S;;-‘ (E) spin structure factors in real

space:
SZZ(E)_—11m< ! SZly ) (837)
fos ’E H+Ey+in ‘| %
SH(E) = 11 Lz ! STlw.) (538)
— _Zm .
os |5 E-H+E,+in ‘| %

using the DMRG correction-vector method 2°%°. The corresponding correlation functions in
momentum space were then obtained by a Fourier transform. When calculating the dynamical
correlation functions, we fixed the broadening coefficient to » = 0.06J> and computed the spectral
functions for each E using the root-N Correction-Vector algorithm with Krylov decomposition and
a two-site DMRG update recently introduced, as implemented in the DMRG++ code ?°. We used
N = 8 and kept up to m = 800 states. To avoid the necessity of reorthogonalizing the Krylov vectors,
we allowed up to 200 Krylov vectors and truncated the effective Hamiltonian decomposition with
a tolerance of 1072, A representative transverse dynamic structure factor Sxx(Q, E) and
longitudinal dynamic structure factor Szz(Q, E) are shown in Fig. S8.

The Q* values shown in Fig. 3f are calculated by analyzing peaks of the Sxx(Q, E) cut at E
= 0, where two peaks are shown at (0, 0, Q*) and (0, 0, -Q*). They are consequences of satellite
peaks of the short-ranged conical spiral magnetic structure (see Fig. S19).
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Fig. S8 | Two-spinon dynamical structure factor at zero temperature calculated by DMRG. a, Transverse
dynamic structure factor Sxx(Q, E); b, Longitudinal dynamic structure factor Sz(Q, E). The simulation was
performed using the J1-J, Hamiltonian with J5/|J;] = 0.75, £; = 1, and &,= 0.425. The values of Sx(Q, E)
given in the scale bar is ten times that of Szz(Q, E). The anisotropic parameter &; causes their differences.
Here the chain length is L = 200 sites.

It is important to clarify the definitions of reciprocal space dimensions that are used in the
DMRG calculations and in the INS measurements. As shown in Fig. 1a, the lattice parameter ¢ =
4.98985(8) A, and the unit cell contains two spin S = 1/2 moments that are associated with
magnetic orbitals. The chemical and magnetic unit cells are identical in TisMnBia.

DMRG simulations use the length scale for individual Mn moments, i.e., ¢/2 = 2.495 A to
define the reciprocal space metric QL_pmre = 27/(c/2). This gives the first Brillouin Zone (BZ) for
DMRG as [-2nt/c, 2x/c], or [-2, 2] reciprocal lattice units (r.l.u) where 1 r.l.u = n/c.

INS measurements follow the convention that QL ns is related to the unit cell ¢, which
contains two spin S = 1/2 moments. This gives QL ins = 1/c, and the corresponding BZ for INS is
[-0.5/c, 0.5/c], or [-0.5, 0.5] r.l.u.

We use the INS BZ throughout, which involves artificially renormalizing the DMRG BZ
to be consistent with the INS data.

4.3 Magnetic anisotropy in TisMnBi>: comparison of calculations and magnetization
measurements

The temperature dependence of the magnetization data was measured with a 1 T field
applied along the (001) and the (110) crystal directions of TizMnBi; single crystal (Fig. S9). These
data were fitted by the Curie-Weiss law:

T)=777— 539
XM == 1 (539)
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Fig. S9 | Temperature dependencies of the magnetic susceptibility in TisMnBi,. a, The magnetization as
a function of temperature with a 1 T field applied along the (110) (black points) and (001) (red points)
crystal directions. The signal from the empty sample holder (cyan points, multiplied by 5) is compared to
the data. b, Corresponding plots of [(M/H) —)(0]‘1 with linear fits (blue and green lines) to data with
temperatures larger than 50 K.

where C is the Curie constant, fcw is the paramagnetic Curie-Weiss temperature, and y, is a
temperature-independent susceptibility, which is likely the Pauli susceptibility expected for
metallic TizMnBi2?! (Fig. S9). The fitted negative values of Ocw are -13.3(2) K for the applied field
along the (110) direction and -13.2(2) K for the applied field along the (001) direction, reflecting
the net AF interaction. The fitted Curie Weiss moment is 1.843(2) pus/Mn for the applied field
along the (110) direction and 1.756(2) us/Mn for the applied field along the (001) direction. Both
are close to the S = 1/2 value of 1.73 ps/Mn. The slight differences in the Curie-Weiss moments
suggest a weak anisotropy of the Landé g-factor, whose values are close to 2.

The weak anisotropy of the single ion Landé g-factor in TisMnBiz is proved by the loss of
magnetization anisotropies at high temperatures. The magnetization data along different single
crystal directions are measured by sample rotation. The sample rotates around the (001) axis for
the in-plane measurements (the top panels in Fig. S10) and rotates around the (1-10) axis for the
out-of-plane measurements (the bottom panels in Fig. S10). The magnetic interaction effect can
be ignored at temperatures much higher than the Ty~ 2.0 K 1. The consequence is that the weak
anisotropy of the magnetization at 100 K reflects the weak anisotropy of single ion Landé g-factor.
Thus, the magnetization anisotropies at low temperatures come from the anisotropic magnetic
interaction by assuming that the single ion Landé g-factor is temperature independent.
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Fig. S10 | Polar plots of M/H of Ti;MnBi, single crystal measured at indicated magnetic fields and
temperatures. These data show that the anisotropy in the low temperature magnetization is suppressed
at high temperatures, and in the presence of a magnetic field. However, 100 K and 7 T are not enough to
fully suppress it. The strongest anisotropy of (M/H)110/(M/H)oo1 ~ 3.3 was measured at 1.8 K with 0.1 T
applied magnetic field with the sample rotating around the (1-10) axis. We expect larger anisotropies to
be measured at lower temperatures using smaller external magnetic fields. The measured rotation angle
is reduced by 5% and shifted by 5° to adjust the pitch difference and sample mounting angle deviation.

The next question is whether the anisotropic magnetic interaction is an easy axis type or an
easy plane type. In the case of an FM interaction, the easy axis model gives a maximum
magnetization along the easy axis direction and an isotropic minimum magnetization in the plane
perpendicular to the easy axis direction. The easy plane model gives an isotropic maximum
magnetization in the plane, and a minimum magnetization in the direction perpendicular to the
easy plane. In contrast, in the case of an AF interaction, the easy axis model gives a minimum
magnetization along the easy axis direction and an isotropic maximum magnetization in the plane
perpendicular to the easy axis direction; while the easy plane model gives an isotropic minimum
magnetization in the plane, and a maximum magnetization in the direction perpendicular to the
easy plane (Table S2). Our measured magnetization results for AF TisMnBi2 shown in Fig. S10,
show a minimum magnetization along the (001) direction and a maximum isotropic magnetization
in the plane perpendicular to the (001) direction, which is consistent with the results of an easy
axis model, i.e., an Ising model with an Ising axis along the crystal (001) direction. This is
consistent with the expectations from DFT (main text Fig. 1g).

Table S2: Different variants of magnetization anisotropy in easy-axis (Ising) and easy-plane models.

. Ising axis
Ising
O Ising
Isotropic plane  axis
Axis LEasy plane
Easy-plane ve
Easy
AxisL pIane O
EEy Easy plane

plane
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The DMRG simulation data further prove the applicability of the Ising model with an Ising
axis along the (001) direction. The simulation results of a Ji-J> model with an Ising axis along the
chain direction at zero temperature are shown in Fig. S11, roughly consistent with the low-
temperature low-field experiment data shown in Fig. S10. The simulation data gives zero
magnetization along the chain direction due to AF; however, the measured magnetization along
the (001) direction has a non-zero minimum magnetization. This could be caused by several
reasons, such as the simulation is calculated at T = 0 while experiment data is measured at
temperatures higher than 1.8 K, Pauli susceptibility is not included in the simulation, a magnetic
field cannot apply perfectly along the (001) direction of the sample, and the sample may have
domains, etc.
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»0.01180 n
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S 0.11 =
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Fig. S11 | DMRG simulation of crystal rotation angle dependent magnetization in Ti;MnBi, calculated at
zero temperature. Ms is the saturated magnetization. The left panel is the in-plane magnetization, and
the right panel is the out-of-plane magnetization. Here the chain length is L = 150 sites.

4.4 Anisotropy of the electrical resistivity o(T)

As a complement to the magnetization anisotropy, we have measured the anisotropy in the
resistivity measured with the current along the c-axis (ooo1) and also perpendicular to the c-axis
(o110). All samples were taken from a single preparation batch. The former was measured in two
different samples, while the latter was measured in a single sample. The configurations of the
sample leads are shown in the inset to Fig. S12a, and the measurement current was 1 mA in all
cases. The temperature dependencies of all three resistivity measurements are presented in Fig.
S12a. Given the size of the electrical contacts, which were made with silver-filled epoxy, and
uncertainties in the geometrical factors the systematic uncertainties in the measurements are
considerable. The shaded regions in Fig. S12a denote the confidence intervals for the three
measurements, where poo1 #1,2 are the measurements for the current along the chain axis, and p110
#3 has the current perpendicular to the chain axis.
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Fig. S12| Transport anisotropy. a, The temperature dependencies of the resistivity in the chain direction
poo1 and perpendicular to the chain direction p110. The residual resistivities pp have been subtracted. Inset
shows the contact configurations for the three crystals, where the c-axes are along the axis of the
crystalline rods. b, The temperature dependencies of p(T) for all three samples. ¢, The temperature
dependencies of the anisotropy of the resistivity 110/ poo1.

All three of these measurements display a decidedly metallic resistivity, (Fig. S12b) with
very similar residual resistivity ratios RRR = 4.8 (p110) #3, 4.2 (oo01)#2, and 3.8 (poo1)#1,
suggesting uniform quality across the preparation batch. The resistivity anisotropy is defined
as o110/ poo1, and its temperature dependencies for samples #1, #2 are presented in Fig. S12c. The
anisotropy has a moderate temperature dependence of no more than ~ 25%, however, the average
anisotropy is close to ~2 for both samples. This is in stark contrast to similar measurements carried
out on organic conductors 3!, where this anisotropy is strongly temperature dependent, and in some
materials reaches values as large as 103-10*. This anisotropy in the organic conductors is a
consequence of the different conduction mechanisms along the stacks of organic ions, and between
them, and the interplay of the relative energies related to the Mott insulating gap and the strength
of the interchain coupling. As we have discussed in the main text, the chemical bonds in TizMnBi>
are much more isotropic, leading to very modest levels of resistivity anisotropy, as expected in a
good metal.

This modest anisotropy in the resistivity, paired with the Fermi liquid temperature
dependencies in the resistivity and the specific heat that we have reported previously ! are together
strong evidence that the conduction electrons have a three-dimensional character in TisMnBio.
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4.5 From DMRG simulation to INS experiment

DMRG calculated the transverse and longitudinal dynamic structure factors separately,
while the INS experiment measured a combination of them. In the case of an isotropic Heisenberg
Hamiltonian, the transverse and longitudinal dynamic structure factors are equal. However, in the
case of the Ising Hamiltonian, the longitudinal dynamic structure factor will be fully suppressed.
Between these two extreme cases, i.e., the Ising-like Heisenberg Hamiltonian, the relative intensity
ratio ru between longitudinal and transverse dynamic structure factors depends on the anisotropy
parameters &1 and 2. Generally, the ratio rr becomes smaller as the system becomes more Ising-
like. From Eq. S5, we know that several pre-factors are added in front of the dynamic structure
factor to the INS measured data, e.g., the Q-dependent polarization factor, magnetic form factor,
Debye-Waller factor, and some other Q-independent constants (e.g., Landé g-factor, resolution
volume, number of the unit cells, the classical electron radius, and the magnetic moment of the
neutron). The Q-independent constants can be ignored when qualitatively comparing between
simulation and experiment. The Debye-Waller factor can be approximated to a unit at low
temperatures, as the atomic thermal displacement should be weak. Thus, one needs to only deal
with the Q-dependent polarization factor and magnetic form factor. Here, we show how to get a
simulation result that can be compared with the INS-measured data by adding the polarization and
magnetic form factors to the DMRG calculated dynamic structure factors (Fig. S13). Note that the
DMRG simulation results are calculated at zero temperature, and the INS experiment data are
measured at 0.3 K (~ 1% of J> = 2.1 meV).

Starting from the transverse and longitudinal dynamic structure factors calculated from
DMRG (Fig. S8), the unit cell of the J:-J> model has one spin S = 1/2 moment along the chain
while there are two spin S = 1/2 moments along the chain in the crystal structure unit cell which
has been used in the INS data analysis. As explained in Sl 4.2, there is a factor of four difference
between the sizes of the DMRG BZ and INS BZ, calibrated in the following analysis. The
polarization factors related to the experimental scattering geometry can be computed using Eq. S5
based on an Ising model. Adding these polarization factors to the DMRG-calculated dynamic
structure factors produces the result shown in Fig. S13c. A comparison with the INS data reveals
that the magnetic form factor governs the primary disparities. Further, using a simple Lorentzian
function fitting of the INS data for small Q. gives a reasonable estimate of the form factor. The
results of adding this fitted form factor are shown in Fig. S13d. We will show the details of the
calculations for the polarization and magnetic form factors in the following paragraphs.
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Fig. S13 | Adding polarization and magnetic form factors to the DMRG calculated magnetic dynamic
structure factors. a, b, The DMRG simulated the transverse dynamic structure factor, Sxx(Q, E) (a), and the
longitudinal dynamic structure factor, S(Q, E) (b). Note that the scale bar of (a) is ten times of (b). c, The
polarization factors (PF) are added to the Sxx(Q, E) and Sz(Q, E). d, The Lorentzian-fitted magnetic form
factor (FF) is added to the Sxx(Q, E). e, The PF of Sxx(Q, E) is further added to the data shown in (d). f, The
572(Q, E) is further added to the data shown in (e). These data should be qualitatively comparable to the
INS-measured data shown in Fig. 3a. Here the chain length is L = 200 sites.

Next, we show how the neutron scattering polarization factors are calculated. The Ising-
like J1-J> model has been demonstrated by the crystal rotation angle-dependent magnetization data,
which shows that the antiferromagnetically coupled spins align along the c-axis. In that case, the

INS polarization factor can be calculated accurately using the formula Za,ﬁ(Sa,ﬁ—Q_,;-
Q_,;)S“'ﬁ (Q, E) for both the transverse structure factors Sxx, Syy, and longitudinal structure factor

Szz (Fig. S14). As Sxx is the same as Syv, their total polarization factors can be added as (cos?0 +
sin0sin®p) + (cos?@ + sin®fcos?p) = 1+cos?0, the polarization factor for Szz is sin?. The
polarization factors added result of the combination of Sxx, Svy, and Szz is shown in Fig. S13c.
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Fig. $14 | The geometry of the INS polarization factors. The Ising-axis is along the z-axis/(0, 0, L) direction.

Finally, we show how the magnetic form factor is included. Fig. S15b presents several
different form factors that we considered. Figs. S15c-f are DMRG computations of M(Q, E) using
these different form factors. There are two aspects of these calculations that are used to assess how
well the form factors that we used reproduce the actual form factor that is realized in the sample
itself. In Fig. S15c, we used the Mn?* atomic form factor. It does not reproduce the strong peak in
the INS data at Q. = 0, and the helimagnon 32 branches from the DMRG are hardly suppressed,
indicating that this form factor falls off much too slowly with Q.. The DFT calculations are better
suited for describing M(Q, E) for the large values of QL where the helimagnon excitations are
observed in the DMRG structure factor. Fig. S15d shows the DFT form factor when the MO
contains only Mn d-orbitals. It is clear that this form factor is an overestimate, driving the values
of M(Q, E) at large Q to very low levels that are not observed in the INS data. Assuming that the
MO has 70% Mn d-orbitals and 30% Ti d-orbitals results in a much better agreement (Fig. S15e),
where the helimagnons are scarcely visible in the DMRG calculations, in accord with their absence
in the INS data. This supports for our proposal that the S = 1/2 moments in TisMnBi> originate
from these MOs *°. While the DFT form factors peaked at Q. = 0, they do not reproduce the
sharpness of the fall-off found in the INS data. We fitted a Lorentzian function to the sharp fall-
off in the INS data for small Q. (Fig. S15f) with a width of W = 0.58(2) r.l.u., where 1/W = 1.72(7)
l.u. is approximately two chemical cells in TisMnBi>. This suggests that the magnetization density
that scatters the neutrons is extended along the chain and falls off more gradually in the transverse
direction, similar to the Mn?" atomic form factor. This phenomenological form factor
underestimates the form factor at larger Q., as clear signatures of the helimagnons are evident that
are absent in the INS data. Nevertheless, except where indicated otherwise, we will use the
Lorentzian form factor.
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Fig. S15 | Magnetic form factor in TisMnBi,. a, The INS data for M(Q, E). b, Different form factors (FF)
compared to the INS data. ¢, DMRG calculation of M(Q, E) using the Mn? FF. d, DMRG calculation using
DFT FF with only Mn d-orbital weight in the MO. e, Same as (d), but with 70% Mn d-orbital and 30% Ti d-
orbital admixture. f, DMRG calculation of M(Q, E) using a Lorentzian FF. Here the chain length is L = 200
sites.

4.6 Inelastic neutron scattering and the parameters of the J:-J» XXZ model

The parameters of the Ji-J2 XXZ model a = J2/|J1| and &2 are determined by comparing the
DMRG calculations to the INS measurements, with the optimal result in Fig. S16. Forty-two
different DMRG simulations were carried out, with 0.5 < a<2and 0 < & <05, with &1=1
throughout. Examples of the computed magnetic dynamical structure factor are shown for different
values of a and &; in Fig. S17. The comparisons between the most dispersing parts of the INS
spinon spectra and the DMRG spectra are shown in Fig. S18, from which the optimal parameters
of a = 0.75(5) and &2 = 0.43(3) have been selected, and are used throughout this work.
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Fig. S16 | Spinon dispersions in DMRG and INS data in TizMnBi,. The most sensitive determination of the
parameters for the Ji-/; XXZ model compares the spinon dispersions from DMRG to the dispersion
measured by INS. a, The DMRG calculated the transverse dynamic structure factors, S«(Q, E), with @ =
Jo/1J1] = 0.75 and & = 0.425. The polarization factor (PF) and form factor (FF) are added to compare the
INS data. The red circles indicate the spinon dispersion from the INS measurements in b. The black dot
lines are the spinon dispersion from the DMRG simulation in (a). Here the chain length is L = 200 sites.
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Fig. S17 | The complete magnetic dynamic structure factors from DMRG for different values of
parameters @ =J,/|J1| and & from the J;-J, XXZ model. The panel with &= 0.6, &= 0.425 is the only one
in the ungapped FM phase, while the others are in either the 1|1] phase or vector chiral (VC) phase.
Qualitatively, the INS date that most resemble the structure factors appear near the center of the figure.
Here the chain length is L = 200 sites.
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Fig. S18 | Parameterizing the INS spinon spectrum. Shown is a closeup of the spinon spectrum from the
INS measurements, overlaid with the spinon spectrum calculated by DMRG for a number of different
values of @ = J,/|J1| and &.. The red circles indicate the spinon dispersion from the INS measurements.
The black dot lines are the spinon dispersion from the DMRG simulations with &-and & values indicated.
The best agreement is obtained for 0.7 < & < 0.8, and for 0.4 < &, < 0.45 which roughly provides the
confidence limits. Based on this comparison, we have chosen @ = 0.75(5) and &, = 0.43(3) as the optimal
parameters for TizMnBi,.

5. Spinon Propagation in the S = 1/2 J1-J» XXZ Chain

The underlying state for the spinons in the Ji1-J2 FM XXZ chain is 11 |, with first neighbors
coupled by the FM exchange J1 and second neighbors by the AF exchange J.. Figure S19 shows
how a single spin flip (4S = 1, AE = 2J) subsequently creates domain walls (spinons) and how
they propagate by reversing additional spins. Second step of the spinon propagation creates an
energy difference AE = 2J, - 2|J1|, which is negative when Jz < |J1|. Subsequent spin flips cost zero
energy, as is the case for the conventional 1|1] XXZ chain, where a pair of spinons propagate
freely.
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Fig. S19 | Spin configuration and spinon propagation in an PPV { spin § = 1/2 chain. The MO
configurations that provide the moments are indicated in the leftmost column (for more information see
Fig. 1 and related text), resulting in the conical spiral spin configuration shown in the second column.
Column 3 is the underlying ™ { spin configuration along the chain direction, column 4 depicts a single
spin flip that subsequently generates a pair of spinons in column 5. Columns 6 and 7 show subsequent
steps in the spinon propagation. Unlike the conventional T M AF spin chain, in the J;-J, XXZ chain
there are single domain walls accompanied by spinon propagation (the spins that are marked by filled

circles).
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6. Low Energy Excitations: a comparison of AMATERAS and DNA measurements

Since both AMATERAS and DNA data are calibrated to the absolute units (see Sl 2.2),
one can plot the AMATERAS and DNA data together. The M(E) data shown in Fig. 4a are the
powder averaged data of the full 180° rotation angle data, averaged over Q space [1.1, 1.5] A to
avoid the Bragg peaks where elastic broadening usually contaminates the quasielastic signal. The
data are shown in raw data plots without any background subtraction. The 0.3 K DNA data (solid
black squares) serves as a background level reflecting the incoherent elastic nuclear scattering,
with the black dash line being an elastic line convolved with instrumental resolution. The insert
data present the y"(E) measured at 1, 2, and 5 K with this 0.3 K background subtracted.

7. Temperature Dependencies of M(Q, E) and #''(E)

The INS measured magnetic dynamic structure factor M(Q, E) and the imaginary part of
the dynamical magnetic susceptibility "(Q, E) 2D plots are shown for different temperatures in

Fig. S20.
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Fig. S20 | Temperature dependence of the INS measured magnetic dynamic structure factor M(Q, E)
and the corresponding dynamical magnetic susceptibility x”(Q, E) in TisMnBi,. The data are measured at
0.3,1,2,5, 10, 25, and 100 K using AMATERAS@J-PARC.

We plotted the magnetic dynamic susceptibility data, y"(Q, E), in different scale bars (top
row, bottom row) and compared them in Fig. S21. While there is evidently considerable
temperature dependence to these data, it is clear that the spinons contribute significantly to »"(Q,
E), even at 100 K.
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Fig. S21 | Temperature dependence of the INS measured dynamical magnetic susceptibility in TizMnBi,.
The top panels are the x“(Q, E) plots at indicated temperatures, and the bottom panels are the same data
plotted with an adjusted color bar.

8. J1-J2 XXZ Materials

A list of known materials described by the S = 1/2 FM J;1-J2 XXZ chain are presented in
Table S3 and Fig. S22.

Table S3. Materials described by the S = 1/2 FM Chain J:-J; XXZ model.

Ji/meV | Ji/meV | a=h/h &1 & Type/References
B-TeVO, -3.3 3.3 -1 0.9 1.1 -- 3
NaCuMoO4(OH) -4.4 3.1 -0.71 1 1 Isotropic 34
CayY,Cus019 -14.6 2.8 -0.19 1 1 Isotropic %
CayY,Cus019 -24 5.5 -0.23 1 1 Isotropic 3
LiCuVO4 2.4 3.4 -1.4 1 1 Isotropic 37
LiCuVO, -1.6 5.59 -3.5 1 1 Isotropic 8
Li,CuO; -18.7 5.8 -0.32 0.98 1 Ising 39
Li>CuO; -8.6 53 -0.62 1 1 Isotropic 40
Li2ZrCuOq -27 7.8 -0.3 1 1 Isotropic 4
PbCuSO4(OH); -9.8 2.6 -0.27 1 1 Isotropic 42
PbCuSO4(OH); -9.8 3.2 -0.33 1 1 Isotropic 43
LiCuSbO, -6.5 2.9 -0.45 1.2 1 Easy plane a4
Rb2Cu;M0301; -11.9 4.4 -0.37 1 1 Isotropic 4
LagCagCu24041 -18.5 6.7 -0.36 1 1 Isotropic 40
LiCu,0, -11 7 -0.64 1 1 Isotropic 46
CoNb0s -2.8 0.42 -0.15 0.24 0 Ising 47
TiaMnBi; -2.8 2.1 -0.75 1 0.425 Ising (This work)
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Fig. S22 | The materials from Table S3 are placed on the phase diagram of the Ji-J> XXZ model (Fig. 1h).
TizMnBi, is singular among these materials, not only for being the only metal, but also because of its
pronounced Ising (easy-axis) anisotropy. The red arrow pointed the critical value of J,/|J1| = 0.25 for an
isotropic Heisenberg J;-J, model.
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