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Supplementary Materials:  
 

Fig. S1. Schematic overview of main figures.  

Fig. S2. Generation of isogenic cell lines with HNF1A mutations in hESCs and MODY3 iPSCs. 

Fig. S3. HNF1A is not required to generate pancreatic endocrine cells in vitro. 

Fig. S4. Identification of thirteen stem cell-derived cell populations by single cell RNAseq in vitro. 

Fig. S5. Identification of scβ- and sca-like-cells and their gene regulatory network in vitro. 

Fig. S6. HNF1A deficiency results in a bias of endocrine cells towards the a-cell fate in vitro. 

Fig. S7. HNF1A deficiency results in a bias of endocrine cells towards the a-cell fate in vivo. 

Fig. S8. HNF1A deficiency affects insulin secretion in association with CACNA1A and SYT13 

down-regulation in vitro. 

Fig. S9. HNF1A deficiency causes abnormal insulin granule structure.  

Fig. S10. HNF1A deficient scβ-cells are unable to maintain glucose homeostasis in diabetic mice. 

Fig. S11. HNF1A R200Q mutation is pathogenic and causes developmental bias towards the a-

cell fate in vitro. 

Fig. S12. MODY3 iPSC-derived β-cells are initially glucose responsive. 

Fig. S13. HNF1A haploinsufficiency gradually impairs scβ-cell function in vivo. 
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Supplementary tables 

Table S1. Primer and oligo (sgRNA & ssDNA) sequence used for qPCR and CRISPR/Cas9 with 

HNF1A sgRNA off-target sites characterization. 

Table S2. Sanger sequencing for HNF1A sgRNAs off-target genes in different cell lines. 

Table S3. List of down/up-regulated genes from bulk RNAseq transcriptome of INSGFP/wt sorted 

cells in vitro. 

Table S4. GOTERM and KEGG analysis from single cell RNAseq transcriptome of INSGFP/wt 

sorted cells in vitro. 

Table S5. GOTERM and KEGG analysis from single cell RNAseq transcriptome of unsorted SC-

islet-like cells in vitro. 

Table S6. Genotypes and ClinVar analysis of three MODY3 patients. MODY3 patient 2 (Pt2), 

mother of patient 3 (Pt3) and segregating for same HNF1A (+/R200Q) mutation had a history of 

gestational diabetes in 2 pregnancies and was diagnosed as having T2D in 2003 at age 38. She was 

managed with oral agents until 2015 for increasing hyperglycemia (292 mg/dl and HbA1c of 

10.3%) when insulin was initiated and sulfonylurea discontinued. Since her last visit in 2016, 

fasting glucose levels remained elevated (216 mg/dl and HbA1c of 11.9%). MODY3 patient 3 

(Pt3) was misdiagnosed as having T1D at age 13 and was found to have a mutation in HNF1A 

(+/R200Q) at age 15. Insulin was discontinued and sulfonylurea treatment prescribed. Fasting 

glucose levels at age 19 were 177 mg/dl with an HbA1C of 7.8%, for which the sulfonylurea 

dosage was increased. Since then, Pt3’s fasting glucose and HbA1C levels have risen 

progressively, reaching 338 mg/dl and 6.9% by 2017 at age 22. During the patient’s last visit in 

2017, non-fasting C-peptide levels were within the normal range (724 pM) but insulin was 

undetectable (0 pM). 

Table S7. Primary and secondary antibodies used for immunohistochemistry 
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Fig. S1. Schematic overview of main figures. IPGTT = intraperitoneal glucose tolerance test, 

STZ = streptozotocin, IHC = immunohistochemistry, MODY = maturity onset diabetes of the 

young, Het = heterozygous, WT = wild type. Designed using Biorender. 
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Fig. S2. Generation of isogenic cell lines with HNF1A mutations in hESCs and MODY3 

iPSCs. (A) Diagram illustrating functional domains of HNF1A protein with sgRNAs #12 (on-

target score 77) and #14 (on-target score 76) targeting the DNA-binding domain (exon 3). (B) 
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FACs sorting of hESCs nucleofected with Cas9-GFP and sgRNA#12 or #14 with 2.4% and 1.4% 

trasnfection efficiency. (C) Surveyor assay to assess sgRNA indel efficiency in HNF1A gene. 

HNF1A PCR products with (+) or without (-) surveyor nuclease or sgRNA indicating cutting 

efficiency of 17.3% and 20.4% for sgRNA#12 and sgRNA#14, respectively, with indicated 

amplicon sizes (Table). The surveyor assay cleaves DNA at the site of heterozygosity. Bands with 

amplicon size of ~500bp are due to the linked heterozygous SNPs rs1169301, creating cleavage. 

(D) Table showing the percentage of mutant lines generated after CRISPR/Cas9 in hESCs leading 

to 17.3% heterozygous clones (17 clones out of 98 total) and 41.8% compound heterozygous 

clones (41 clones out of 98 total), indicating a 59.2% of mutation efficiency (58 clones out of 98 

total). 4 clones of the 98 (4%) appeared homozygous by Sanger sequencing, but also lacked two 

linked SNPs, rs1169301 (102 bp from PAM sequence of sgRNAs#14 to SNP) and rs2071190 (130 

bp from PAM sequence of sgRNAs#14 to SNP), which are both located in the second intron. These 

homozygous lines (4/98, 4%) could be caused by a large deletion, and were not used for further 

studies. In MODY3 iPSC, 92.1% of clones were (+/-, heterozygous) and (-/-, compound 

heterozygous). Mutation-correction efficiency of MODY3 iPSC Pt2/Pt3 was 7.9% (+/+, wild type) 

from total number of clones. (E) Sanger sequencing results showing heterozygous (Het) and 

knockout frameshift mutations (KO1 and KO2) from both alleles in exon3 and knockout frameshift 

mutations (KO3) in exon1 near the start codon (red box). (F) Sanger sequencing showing 

heterozygous R200Q mutation (red arrow) in MODY3 iPSC line, after correction of the mutation 

(blue arrow) in MODY3 iPSC line (MODY3 iPSC R200Q-corrected WT) using a ssDNA template 

donor #1 (198 bp). (G) Sanger sequencing after introduction of a frameshift mutations in the wild 

type allele of MODY3 iPSC line (R200Q/-). (H) Sanger sequencing results showing R200Q 

homozygous mutation introduction (red arrow) in hESCs using a ssDNA template donor #2 (198 
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bp). PAM sequence in template donor was modified (C>T, silent mutation) to increase 

recombination efficiency (purple arrow). Heterozygosity at the upstream rs1169301 SNP C>T in 

HNF1A (green arrow; 102 bp from PAM sequence) indicates that both alleles are detected. All 

Sanger sequencing results were verified by TOPO® cloning of at least six clones per genotype. (I) 

Table showing the percentage of clones with R200Q homozygous mutation generated (20.8%) in 

hESCs from total number of clones. (J) Genetic information of cell lines (hESCs and iPSCs) 

included in the study. (K) Frameshift mutations in exon 3 of hESC cell lines leading to premature 

stop-codons (*) and generation of truncated versions of HNF1A protein (different amino acids 

from WT in red). For HNF1A KO3, mutation is at start codon in exon 1, indicated in red are 

different amino acids from WT sequence, red dash are deletions and in magenta the start codon. 

(L) Mutations in exon 3 of iPSC cell lines leading to heterozygous amino acid substitution (R200Q 

heterozygous), generation of R200Q homozygous (R200Q/-) and isogenic R200Q-corrected WT 

lines (+/+). For MODY3 iPSC 460_461ins Het line, CGGCATCCAGCACCTGC insertion is in 

exon 7 as shown by Sanger Sequencing, leading to frameshift mutations and premature stop codon 

(*). Different amino acids from WT in red, amino acid correction in bleu and amino acid silent 

mutation in green. (M) Cytogenic analysis performed on 20 G-banded metaphase cells from hESC 

and (N) iPSC lines indicating normal karyotypes.  
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Fig. S3. HNF1A is not required to generate pancreatic endocrine cells in vitro. (A) Overview 

of the different stages of stem cell differentiation to pancreatic progenitor cells. The initial stages 

of differentiation were conducted in planar culture from day 0 to day 11 followed by 3D clustering 
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on day 12 to form aggregates or clusters of endocrine cells on day 27. (B) Percentage of total cell 

population by immunohistochemistry (IHC) expressing key markers of pluripotency stage (OCT4, 

d0), definitive endoderm stage (SOX17, d3), pancreatic progenitor stage (PDX1 and NKX6.1, 

d11) and endocrine stage (CPEP, c-peptide; GCG, glucagon, d27). (C) INS and (D) HNF1A 

relative mRNA expression levels determined by qPCR throughout the differentiation from hESC 

HNF1A WT cells (n=3-7). Each independent biological replicate (n) consists of 2-3 technical 

replicates for all experiments. (E) HNF1A gene expression levels (FPKM) determined by RNAseq 

after FACs sorting of INSGFP/wt positive cells from hESC-derived endocrine cells (WT n=3 and 

KO n=3) on day 27 of differentiation in vitro. Numbers on top of histogram denotes total number 

of single cells used for analysis. (F) Western blot for HNF1A (67 kDa) and β-Tubulin-III (55 kDa) 

from hESC-derived endocrine cells with respective quantification on day 27 of differentiation in 

vitro. (G) Representative IHC staining of hESC-derived cells in vitro at definitive endoderm stage 

with SOX17 (day 3) and pancreatic progenitor stage with PDX1 and NKX6.1 (day 11). Scale bars: 

50 µm. White cells are PDX1/NKX6.1 double positive cells. (H) Representative GFP images. 

Scale bars at 200 µm. (I) Percentage of scβ-like-cells (CPEP+/PDX1+ in red), sca-like-cells (GCG+ 

in white) and scδ-like-cells (SST+ in blue) by IHC (day 27). (J) Representative IHC image of 

hESC-derived endocrine cell lines with for indicated markers with (K) quantification of PDX1+ 

and NKX6.1+ cells (day 27). (L) CPEP+, PDX1+ and NKX6.1+ populations by flow cytometry at 

day 27 of differentiation in vitro. Scale bars: 20 µm. 20 clusters (~10k cells per cluster) of 

endocrine cells were used flow cytometry. For scatter plots, each point in plots represents an 

independent biological experiment (n). Data are represented as mean ± SEM. p-values: *p<0.05, 

**p<0.01, ***p<0.001, two-tailed t-test. 
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Fig. S4. Identification of thirteen stem cell-derived cell populations by single cell RNAseq in 

vitro. (A-D) Single cell RNA sequencing of 22164 (all genotypes combined) unsorted hESC-

derived endocrine cells (n=3 for each genotype) in vitro. (A) Cell type clustering of cells based on 

their normalized expression of different pancreatic markers: COL1A2 (pancreatic stellate cell), 

KRT19 (ductal cell), PPY (g-cell), SST (d-cell), INS (b-cell), and GCG (a-cell). A total of 13 

clusters were identified. Size is the percentage of cells expressing the indicated marker and color 

intensity the average expression level of the indicated marker, where blue indicates the highest 

expression level and gray the lowest. (B) Feature plot based on tSNE projection of cells where the 
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colors denote different cell type clusters identified (total of 13 identified) by HNF1A genotype line 

via Louvain algorithm performed by Seurat. (C) Feature plot based on tSNE projection of cells 

based on the normalized expression of endocrine markers SYP (synaptophysin), INS (insulin), 

GCG (glucagon) and SST (somatostatin) and (D) pancreatic transcription factors (NKX6.1, PDX1, 

MAFA and HNF1A) where blue indicates the highest expression level and gray the lowest. Genes 

expressed at low levels will have fewer labeled cells because of dropout. All stem cell 

differentiations were done for 27-30 days.  
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Fig. S5. Identification of scβ- and sca-like-cells and their gene regulatory network in vitro. 

(A) Scatter plot of 3133 hESC-derived β-like-cells from cluster 0 displayed (Fig. S4) based on 

GCG and INS expression (expo_logrpm). Total cell number from all genotypes combined. 

Encircled are scβ-like-cells (total of 1846 cells) with violin plot displayed based on INS expression 

(log1(rpm+1)). (B) Barplot showing genes differentially expressed as log2FC and enriched in 

specific pathway from scβ-like-cells. (C) Scatter plot of 2670 hESC-derived a-like-cells from 

cluster 2 (Fig. S4) displayed based on GCG and INS expression (expo_logrpm). Total cell number 

from all genotypes combined. Encircled are monohormonal sca-like-cells (Cluster 2a) (total of 

641 cells) and bihormonal sca-like-cells (Cluster 2b) (total of 1054 cells). (D) Violin plot of 

indicated cluster of cells displayed based on GCG and INS expression (log1(rpm+1)). 

Monohormonal scβ-like-cells (cluster 0) and bihormonal sca-like-cells (cluster 2b) were identified 

and displayed as |logFC|>0.35 and adjusted p-value <1e-4. Monohormonal sca-like-cells (cluster 

2a) displayed as |logFC|>0.25 and adjusted p-value <1e-2. (E) Heatmap showing differentially 

expressed genes from monohormonal sca-like-cells (Cluster 2a) by HNF1A genotypes. Total of 

641 sca-like-cells (cluster 2a) (all genotypes combined) were identified and displayed as 

|logFC|>0.25 and adjusted p-value <1e-2. (F and G) Barplot showing genes differentially 

expressed as log2FC and enriched in specific pathway from indicated endocrine cell type. (H) 

Heatmap showing top differentially expressed genes from bihormonal a/β-like-cells (Cluster 2b) 

across genotypes. Genes are listed in decreasing order of log2 fold change between HNF1A WT 

and HNF1A mutant genotypes. n=3 for each genotype. (I-M) Gene expression profile of 

LINC01139 in scβ-like-cells, sca-like-cells and cadaveric β-cells. (I) LINC01139 gene expression 

levels (FPKM) determined by bulk RNAseq and after FACs sorting of INSGFP/wt positive cells from 

hESC-derived endocrine cells (hESC WT n=3, hESC Het n=3, hESC KO n=3 and MODY3 iPSC 
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460ins Het n=2). (J) HNF1A gene expression levels (FPKM) determined by single-cell RNAseq 

after FACs sorting of INSGFP/wt positive cells from hESC-derived endocrine cells (hESC WT n=113 

cells and hESC KO n=158 cells). (K) Violin plot of scβ-like-cells and (L) sca-like-cells based on 

LINC01139 expression (log1(rpm+1)) by genotype. (M) LINC01139 transcript levels of sorted 

pancreatic β-cells from non-diabetic donors (n=5) and MODY3 donor (n=1) (Haliyur et al. 2019). 

All stem cell differentiations were done for 27 days.  
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Fig. S6. HNF1A deficiency causes a developmental bias towards the a-cell fate in vitro. (A) 

Representative IHC images of hESC-derived endocrine cell lines with indicated markers and (B) 
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quantification of percentage and total cell count of scβ-like-cells (CPEP+/PDX1+ in red), sca-like-

cells (GCG+ in white) and scδ-like-cells (SST+ in blue). Cell count performed from 20 clusters. 

Scale bars: 20 µm. (C and D) Representative CPEP+ and GCG+ populations by flow cytometry 

from HNF1A KO1, KO2 and KO3. (E) Endocrine cells as percentage from total cells from hESC-

derived clusters based on IHC staining. CPEP+/GCG-/SST- cells indicate monohormonal β-cells 

and CPEP+/GCG+/SST+ cells indicate polyhormonal a/β/δ-cells. (F) Barplot showing the 

percentage (%) of indicated endocrine cell types from total cells (22164 cells) analyzed by single 

cell RNAseq from hESC-derived endocrine cells by HNF1A genotype (n=3 for each genotype). 

Endocrine progenitor cells are SYP expressing cells and pancreatic progenitor cells are PDX1 

expressing cells. (G) Representative GCG+, SST+ and CPEP+ populations by flow cytometry with 

(H) respective quantification. (I and J) Flow cytometry for indicated markers with (K) respective 

quantification. All stem cell differentiations were done for 27 days. 20 clusters (~10k cells per 

cluster) of endocrine cells were used flow cytometry. For scatter plots, each point in plots 

represents an independent biological experiment (n). Data are represented as mean ± SEM. p-

values: *p<0.05, **p<0.01, ***p<0.001; Mann-Whitney test. n.s: non-significant. 
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Fig. S7. HNF1A deficiency causes a developmental bias towards the a-cell fate in vivo (A) 

Representative image and number (WT n=17 and KO n=7) of pancreatic islet-like clusters 

transplanted per mouse and per genotype. Scale bars at 200 µm. (B) Percentage (%) of 

CPEP+/PDX1+ cells from clusters before transplantation with (C) total number of CPEP+ cells 

(10x6) transplanted per mouse and per genotype. (D) % Bioluminescence intensity (BLI) 

normalized to week 0 (transplantation day) of mice transplanted with GAPDHLuciferase/wt reporter 

hESC lines 0, 2, 4 and 6 weeks post-transplantation. Engrafted hESC-derived islet-like cells (WT 

n=11 and KO n=4) resulted in >50 pM of circulating human c-peptide after 6 weeks. Non-

engrafted hESC-derived islet-like cells (WT n=4 and KO n=6) resulted in no or <5 pM of 

circulating human c-peptide after 30 weeks. Results are presented as mean of mice transplanted 

with both hESC genotypes. p-values were b: p<0.05. (E) Engraftment efficiency (%) from all mice 

transplanted with islet-like cells. (F) Teratoma-free mice transplanted with hESC-derived islet-

like cell lines. Graft tissue was considered a teratoma when larger than 2 cm and by IHC of the 

germ layers. (G) Representative image of graft tissue 30 weeks post-transplantation with hESC-

derived endocrine cells after explant from quadriceps muscle. Scale bars: 0.5 cm. (H) Graft weight 

in mg from explants. (I) Representative IHC image from isolated grafts for indicated markers. 

Scale bars: 20 µm. (J) GFP fluorescence ([p/s]/[µW/cm2)(log10) from isolated grafts. (K) IHC 

image from isolated graft for SCβ-cells (CPEP: c-peptide), sca-cells (GCG: glucagon) and scδ-

cells (SST: somatostatin). (L and N) Endocrine hormone content. (L) Human insulin and (M) 

human glucagon content per graft mass (pmol/mg) ex vivo. (N) Human glucagon secretion in 1h 

as % of content in static assay in response to indicated secretagogues from hESC-derived 

endocrine cells (WT n=4, KO n=7) in vitro. All protein concentrations were measured by ELISA. 

(O) Sanger sequencing results showing knockout frameshift mutation (A insertion) in hESC PAX4 
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KO from both alleles in exon3 near start codon (red box). (P) Representative flow cytometry of 

CPEP+ and CGC+ populations. Gating for GCG and CPEP negative cells (magenta) was 

determined by incubating cells without primary antibodies and with secondary antibodies. 20 

clusters (~10k cells per cluster) of endocrine cells were used flow cytometry. All stem cell 

differentiations were done for 27 days for in vitro assay and for transplantation. All grafts were 

isolated 30 weeks post-transplantation for ex vivo analysis. For scatter plots, each point in plots 

represents an independent biological experiment (n). Data are represented as mean ± SEM. 

Different letters designate significant differences within group. p-values: *p<0.05, **p<0.01, 

***p<0.001; Mann-Whitney test. n.s: non-significant. 
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Fig. S8. HNF1A deficiency affects insulin secretion in association with CACNA1A and SYT13 

down-regulation in vitro. (A) Human insulin secretion (mU/L) in 1h normalized to content 

(mU/L) in response to low glucose (LG, 3.3 mM) and high glucose (HG, 16.7 mM) stimulation in 

static assay. (B) Human insulin protein content per cell (fmol/cell) (Human islets n=6, WT n=17, 

KO n=21). (C) Sanger sequencing results showing knockout frameshift mutations in hESC 

CACNA1A KO and hESC SYT13 KO line from both alleles near start codon (red box). (D) 

Representative flow cytometry of CPEP+ and PDX1+ populations. (E) dispersed scβ-like-cells 
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(INS-GFP) with (F) representative intracellular calcium levels measured as R340/R380 and 

[Ca2+](nM) over time (sec) with indicated secretagogues. (G) Human c-peptide (pM) and (H) 

human insulin secretion (pM) in 1h normalized to DNA (ng/µl) in response to basal (3.3 mM) and 

high (16.7 mM) glucose stimulation in static assay (WT n= 7 and KO n=20). (I) 

hINS(pM)/hCPEP(pM) secretion ratio in response to basal (3.3 mM) and high (16.7 mM) glucose 

stimulation (WT n=9 and KO n=14). (J-L) Proinsulin(pM)/Insulin(pM) ratio from (J) secretion 

and (K) content from in vitro cells (WT n=8 and KO n=15) and (L) ex vivo grafts. (M) Plasma 

human C-peptide (pM) (left y-axis) and human insulin secretion (mU/L) (right y-axis) in plasma 

of ad libitum-fed mice transplanted with hESC HNF1A KO1 and HNF1A R200Q homozygous-

derived endocrine cells (n=3). All stem cell differentiations were done for 27 days. All protein 

concentrations were measured by ELISA. For scatter plots, each point in plots represents an 

independent biological experiment (n). Data are represented as mean ± SEM. p-values: *p<0.05, 

**p<0.01, ***p<0.001; Mann-Whitney test. n.s: non-significant. 
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Fig. S9.  HNF1A deficiency causes abnormal insulin granule structure. (A) Representative 

electron microcopy (EMC) image of scβ-cells ex vivo from isolated graft 30 weeks post-

transplantation. Explants are from euglycemic mice. (B) Representative EMC images of scβ-like-

scα-cell (ex vivo)D
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cells in vitro with (C) quantification of insulin granule diameter (µm), insulin granule core 

diameter (µm) and insulin granule core diameter to insulin granule diameter ratio (%) per cell. (D) 

Representative EMC images of sca-cells. For all images, scale bars: 2 µm in low and 0.5 µm in 

high magnification. Each point in plots is the average of insulin granules per scβ-like-cells. All 

stem cell differentiations were done for 27 days for in vitro assay and for transplantation. For 

scatter plots, each point in plots represents an independent biological experiment (n). Data are 

represented as mean ± SEM. p-value: *p<0.05, **p<0.01, ***p<0.001; two-tailed t-test. n.s: non-

significant. 
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Fig. S10. HNF1A deficient scβ-cells are unable to maintain glucose homeostasis in diabetic 

mice. (A and B) hESC-derived endocrine cells were treated with (4mg/ml; 15mM) or without STZ 

in vitro. (A) Apoptosis quantification after flow cytometry of TUNEL+ and CPEP+ cells. 10 

clusters (~10k cells per cluster) of endocrine cells were used flow cytometry. (B) Human c-peptide 
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secretion (pM) per cluster measured before and after STZ in vitro. (C) Mouse C-peptide secretion 

(pM) in plasma of ad libitum-fed mice transplanted with indicated cell lines or non-transplanted 

mice (Ctl) before (-) or >3 weeks after STZ injection (+). (D) Representative immunofluorescent 

staining of mouse pancreas showing islets (CPEP; red) before and after STZ treatment. Scale bars: 

20 µm. (E) HbA1C (%) in mice transplanted with hESC HNF1A WT-derived endocrine cells or 

without cells (Ctl) before (-) and 5-15 weeks after (+) STZ treatment. (F-H) IPGTT in mice 

transplanted with hESC HNF1A WT-derived endocrine cells (n=6) several weeks (>3 weeks) after 

STZ treatment in ad libitum-fed state and during an iPGTT (t0, t30 and t60). (F) Blood glucose 

concentrations (mg/dl), (G) human C-peptide (pM) and (H) human insulin secretion (mU/L) in 

plasma. p-values were b: p<0.001, c: p<0.05. All stem cell differentiations were done for 27 days. 

For scatter plots, each point in plots represents an independent biological experiment (n). Data are 

represented as mean ± SEM. Different letters designate significant differences within group. p-

values: *p<0.05, **p<0.01, ***p<0.001; two-tailed t-test.  

 

 

  



A STEM CELL MODEL OF HNF1A DEFICIENCY 

 27 

 

Fig. S11. HNF1A R200Q mutation is pathogenic and causes developmental bias towards the 

a-cell fate in vitro. (A) Representative IHC staining of stem cell-derived cell lines in vitro at 

definitive endoderm stage with SOX17 (day 3), pancreatic progenitor stage with PDX1 and 

NKX6.1 (day 11) and endocrine cell stage (day 27). Scale bars: 50 µm. White cells are 

PDX1/NKX6.1 double positive cells. (B) Representative bright-field images from MODY3 iPSC-

derived organoids and GFP image from hESC Het-derived organoids with IHC staining for 
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indicated markers. White cells are GCG/CPEP double positive cells. Scale bars: 20 µm. (C) 

Western blot for HNF1A (67 kDa) and β-Tubulin-III (55 kDa) from iPSC-derived endocrine cells 

with respective quantification on day 27 of differentiation in vitro. (D) Percentage of scβ-like-cells 

(CPEP+/PDX1+), sca-like-cells (GCG+) and scδ-like-cells (SST+) determined by IHC. (E) 

Quantification of GCG and CPEP positive cells from total CPEP positive cell population 

determined by IHC. (F) CPEP+ and GCG + populations from iPSC-derived endocrine cells and (G) 

hESC-derived endocrine ells by flow cytometry. Gating for GCG and CPEP negative cells 

(magenta) was determined by incubating cells without primary antibodies and with secondary 

antibodies. (H) Quantification of GCG and CPEP positive cells from total CPEP positive cell 

population (%) determined by flow cytometry. (I) Teratoma-free mice transplanted with MODY3 

iPSC-derived endocrine cells. Graft tissue was considered a teratoma when larger than 2 cm and 

by IHC of the germ layers. (J) Representative image of graft tissue (black arrows) 30 weeks post-

transplantation with MODY3 iPSC-derived endocrine cells before and after explant from 

quadriceps muscle. Scale bars: 0.5 cm. (K) Human glucagon content per graft mass (pmol/mg) ex 

vivo measured by ELISA. (L) Representative IHC images showing MODY3 iPSC-derived 

endocrine cells from isolated graft. Scale: 50 µm. All stem cell differentiations were done for 27 

days for in vitro assay and for transplantation. All grafts were isolated 30 weeks post-

transplantation for ex vivo analysis. For scatter plots, each point in plots represents an independent 

biological experiment (n). Data are represented as mean ± SEM. Different letters designate 

significant differences within group. p-values: *p<0.05, **p<0.01, ***p<0.001; Mann-Whitney 

test. n.s: non-significant. 
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Fig. S12. MODY3 iPSC-derived β-cells are initially glucose responsive. (A-C) Human C-

peptide (pM) and human insulin levels in plasma of ad libitum-fed mice transplanted with MODY3 

iPSC- and hESC-derived endocrine cells. (A) Plasma human C-peptide (pM) two, four and eight 

weeks post transplantation in mice transplanted with MODY3 iPSC lines (460ins Het n=4, R200Q 

Het n=12 and R200Q corr. WT n=12) and hESC lines (WT n=17, Het n=10 and R200Q Hom n=6). 

(B) Plasma human C-peptide (pM) thirty weeks post transplantation in mice transplanted with 

MODY3 iPSC lines (460ins Het n= 5, R200Q Het n=5 and R200Q corr. WT n=6) and hESC lines 

(WT n=7, Het n=4 and R200Q Hom n=3) and (C) human insulin (mU/L) thirty weeks post 

transplantation in mice transplanted with MODY3 iPSC lines (460ins Het n= 3, R200Q Het n=4 

and R200Q corr. WT n=6) and hESC lines (WT n=8, Het n=7 and R200Q Hom n=3). (D) Plasma 

human C-peptide (pM) and (E) human insulin secretion (mU/L) in plasma of ad libitum-fed mice 

transplanted with MODY3 iPSC-derived endocrine cells (R200Q Het n=14 and R200Q corr. WT 

n=12). (F) Blood glucose concentrations (mg/dl) in ad libitum-fed state and during an iPGTT (t0, 

t30 and t60) in mice with MODY3 iPSC-derived endocrine cells (R200Q Het n=12 and R200Q 

corr. WT n=10). (G-I) Glibenclamide injection in ad libitum-fed mice transplanted with MODY3 

iPSC-derived endocrine cells (R200Q Het n=5 and R200Q corr. WT n=9). (G) Human C-peptide 

secretion (pM), (H) human insulin secretion (mU/L) and (I) hINS (pM)/hCPEP (pM) secretion 

ratios. (J) Human insulin secretion in 1h from static assay as a fold change to 3.3 mM Glc in 

response to indicated secretagogues in vitro (iPSC WT n=5, 460ins Het n=5, R200Q Het n=10 and 

R200Q corr. WT n=7). (K) Human insulin protein content per cell (fmol/cell) in vitro (Human 

islets n=6, iPSC WT n=4, 460ins Het n=4, R200Q Het n=7 and R200Q corr. WT n=5). (L) Human 

insulin content per graft mass (pmol/mg). All stem cell differentiations were done for 27 days for 

in vitro assay and for transplantation. All grafts were isolated 30 weeks post-transplantation for ex 
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vivo analysis. All protein concentrations were measured by ELISA. For scatter plots, each point in 

plots represents an independent biological experiment (n). Data are represented as mean ± SEM. 

Different letters designate significant differences within group. p-values: *p<0.05, **p<0.01, 

***p<0.001; two-tailed t-test. n.s: non-significant. 
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Fig. S13. HNF1A haploinsufficiency gradually impairs scb-cell function in vivo. (A-F) IPGTT 

in mice transplanted with MODY3 iPSC-derived endocrine cells in ad libitum-fed state and during 

an iPGTT (t0, t30 and t60) 2, 4 and 8 weeks post STZ treatment. (A) Blood glucose concentrations 

(mg/dl) and (B) human insulin secretion (mU/L) in plasma of mice after 2 weeks post STZ (R200Q 

Het n=12; R200Q corr. WT n=10). (C) Blood glucose concentrations (mg/dl) and (D) human 

insulin secretion (mU/L) in plasma of mice after 4 weeks post STZ (R200Q Het n=5; R200Q corr. 

WT n=4). (E) Blood glucose concentrations (mg/dl) and (F) human insulin secretion (mU/L) in 

plasma of mice after 8 weeks post STZ (R200Q Het n=5; R200Q corr. WT n=2). p-values were b 
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and c: p<0.05. (G) Blood glucose levels (mg/dl) monitored in ad libitum-fed mice weeks before (-

1) or after (0 to 6) STZ injection (R200Q Het n=10; R200Q corr. Wt n=7). All protein 

concentrations were measured by ELISA. For scatter plots, each point in plots represents an 

independent biological experiment (n). Data are represented as mean ± SEM. Different letters 

designate significant differences between fed, t0, t30 and t60 for each genotype. p-values: *p<0.05, 

**p<0.01, ***p<0.001; two-tailed t-test. 

 

 

 

 

 


