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1. Data Information

1.1. Data Demographics

In this study, we aggregated data from 1,228 macaques, including 1,861 scans from 33
research studies. The total volume of cortical gray matter, white matter, subcortical gray
matter, and ventricles for prenatal macaques (N=28) were extracted from a previously
published study’. Postnatal MRI data, comprising 1,776 scans from 1,198 macaques, were
aggregated and preprocessed using a standardized pipeline. After quality control (see section
$2.2), 1,024 macaques and 1,522 scans were included in the developmental modeling in
GAMLSS. Fig. S1.1-1 illustrates the age distribution of the macaque data included in the final
analyses. Table $1.1-2 details the number of scans and macaques per research site before

and after quality control.
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Fig. $1.1-1 | Histogram distribution of ages, stratified by sex. The colored bars represent
approximate life stages of macaque. The histograms are displayed on a log scale of age.

Table $1.1-2 | Total demographic distributions by site.

Study site Animals | M/F Scans | Age (min - max) f;\ci)r;ale C) (S;:;SQ C)
site-amu 4 3/1 4 7.5(7-8) 4 4
site-amu-2 20 14/6 21 7.28 (3.13 - 17.64) 15 15
site-ecnu 4 4/0 4 3.4 (2.67 - 3.75) 4 4
site-ecnu-chen 10 10/0 10 N.A 0 0
site-emory 148 82/66 148 0.58 (0.04 - 1.5) 40 83
site-ion 8 7M1 8 5.02 (3.8 -5.81) 8 8
site-kmust 31 8/23 31 14.23 (10 - 20) 30 30
site-lyon 4 0/4 4 N.A 0 0
site-mcgill 1 0/1 1 12 (12-12) 0 0
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site-mountsinai-P | 8 8/0 8 44(3.4-5.1) 8 8
site-mountsinai-S | 5 5/0 5 5.94 (5.3-6.3) 5 5
site-neurodev & 18/15 160 1.06 (0 - 3) & 148
site-newcastle 14 12/2 14 7.53 (3.9-13.14) 0 0
site-NIMH 3 1/2 3 6(5-7) 0 0
site-NIMH-CT 3 2/1 3 4.67 (3-6) 0 0
site-nin 2 2/0 4.5 (4-5) 0 0
site-nki 2 1/1 2 6.5(6-7) 2 2
site-NKldev 3 1/2 84 0.62 (0.06 - 1.52) 3 83
site-ohsu 2 2/0 2 5(5-5) 0 0
site-OHSU-CU 24 12/12 24 2.09 (1-2.93) 23 23
site-OHSU-fetal 28 13/15 84 -0.16 (-0.23--0.08) | 28 43
site-OHSU-UIUC | 22 10/12 65 0.33(0.16 - 0.5) 22 56
site-oxford 20 20/0 20 4.01(2.41-6.72) 19 19
site-princeton 2 2/0 2 3(3-3) 0 0
site-queens 13 13/0 13 7.31(6-12) 13 13
site-rockefeller 6 6/0 6 N.A 0 0
site-sbri 16 97 16 7.02 (3.6 -13.7) 15 15
site-ucdavis 19 0/19 19 20.38 (18.6 - 22.5) 19 19
site-ucdavis-2 56 28/28 385 1.13 (0.02 - 11.48) 54 265
site-ucdavis-3 94 50/44 94 2.94 (2 -6) 90 90
site-uminn 2 0/2 2 N.A 0 0
site-uwmadison 584 322/262 | 584 1.91 (0.84 - 4.42) 572 572
site-uwo 12 12/0 12 5.33(4-8) 2 2
site-wake-forest | 21 0/21 21 10.81 (2.53-30.64) | 15 15
Total 1224 677/547 | 1861 2.27 (-0.23 - 30.64) 1024 1522
2. Data Preprocessing, Quality Control, and
Harmonization

The raw T1-weighted (and T2-weighted, if available) MRI scans of for postnatal data obtained
from 23 sites were preprocessed on the high-performance computing system through the
Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS:
https://access-ci.org). The preprocessing steps included denoising, brain extraction, tissue

segmentation, and surface reconstruction (82.1.1-S2.1.2). To ensure the quality of the
preprocessing, visual inspections were performed after each step (S2.2.1-1). Supplementary
Table 1.2-2 provides details on the number of animals and scans per site before and after
preprocessing and quality control. The pipeline was effective for most scans with an age over
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4 months. For data that did not pass through the pipeline (a subset of failed infant scans with
age < 4 months), we customized the atlases used in the segmentation step and performed
manual edits to correct the brain segmentation, facilitating accurate surface reconstruction
(S2.1.2). Quality control procedures were conducted to ensure the accuracy of the
preprocessed data. In total, 1,522 out of 1,861 scans successfully passed the preprocessing
and quality controls were used in the lifespan model. To minimize variance in the
preprocessing, we conducted data harmonization (S2.3) and pipeline validation (S2.3.2). Total
tissue volumes were extracted from the aseg.stats output from the FreeSurfer ‘recon-all’
process. Similar to the human study?, we extracted 'Total gray matter volume' which includes
cortical, subcortical, and cerebellum gray matter as GMV; 'Total cortical/cerebral (FreeSurfer
version 7.3.2) white matter volume' for WMV; ‘Subcortical gray matter volume’ for sGMV
(inclusive of thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and
nucleus accumbens area); and ‘Lateral Ventricles’ for ventricular volume. The regional
volume, cortical thickness, and surface area were estimated for each 91 bilaterally-averaged
cortical regions using the Markov parcellation (Fig. S4-1)°.

2.1 Data Preprocessing

2.1.1 Denoising and Brain Extraction

The raw T1w and T1w images were first denoised using the adaptive non-local means
denoising algorithm via the ANTs Denoiselmage function to eliminate salt-and-pepper noise*.
Following this, we performed skull-stripping using (https://github.com/HumanBrainED/NHP-
BrainExtraction)®. Deepbet is a U-Net based deep learning tool which leverages a transfer-
learning framework from a larger cohort of human imaging data and then retrained for brain
extraction in NHPs to facilitate brain extraction of NHP data. This architecture allows for further
retraining to account for differences in scanning acquisition, image quality, and animal age,
requiring minimal retraining data and computational time in order to generalize models for new
datasets. Deepbet includes models previously trained on a subset of data from the PRIME-
DE and 136 masks generated for the first release of PRIME-DE data. In our study, we first
applied the model ‘Site-All-T-epoch_36_update_with_Site_6_plus_7-epoch_09’ provided in
Deepbet—which was initially trained on 19 macaques across 13 sites—as the starting model
for generating brain masks for our data. When this model performed inadequately, we
retrained it using manually corrected the failed masks of 2-3 scans from the same site to
improve the performance. This approach was often iterative, requiring visual inspection,
correction and retraining steps for specific sites where the initial model’s generalizability was
limited. Figure S$2.1.1-1 shows masks of four example datasets spanning infant and adult
macaque scans. From this process brain masks were successfully created for all T1w images.
T2w images within the same session were co-registered using rigid-body transformation to
the T1w image to ensure consistent brain masks. For sessions with more than one scan, we
created masks for the first scan and used rigid-body registration to align all subsequent scans
with the first scan. After alignment, multiple scans within a session were averaged for further
preprocessing. All masks generated for the T1w images data from PRIME-DE have been
shared on GitHub: https://github.com/HumanBrainED/PRIME-
Preprocessed/releases/tag/v0.1_anat brainmask.
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Fig. S2.1.1-1 | Example of brain extraction of Deepbet on data from four unique sites,
spanning infancy (a, b) to adulthood (c, d). Each panel depicts two unique subject from a
subset of sites: a) site-ucdavis-2, b) site-neurodev, c) site-emory, d) site-sbri.

2.1.2 Segmentation and Surface Reconstruction

With the brain mask generated, the T1w and T2w images were further preprocessed using
the HCP-style macaque preprocessing pipeline ‘nhp-abcd-bids-pipeline’®®. Briefly, the
pipeline includes anterior-posterior commissural (AC-PC) alignment, bias field correction,
linear and nonlinear registration to the MacaqueYerkes19 template’, tissue segmentation for
gray matter, white matter, and subcortical regions, and surface reconstruction®. The pipeline
was customized for NHP data, particularly for the segmentation and surface reconstruction
steps®®.

To improve segmentation, the Joint Label Fusion approach was carried out using Advanced
Normalization Tools (ANTs)®. In this approach, multiple annotated atlases are non-linearly
registered to the target image (i.e. individual T1w images). Each atlas contributes to the
labeling of the target image, weighted by its similarity between the deformed atlas and the
target. By jointly considering all atlases during the label fusion step, a weighted voting process
generates the final label of the target image. The atlases used as a joint label council were
customized for rhesus macaques using a set of manually segmented images in the common
template space in the HCP-style NHP preprocessing pipeline ‘nhp-abcd-bids-pipeline’®®. The
default council included annotated segmentations from the Yerkes19 template along with nine
segmentations created from macaques aged 4 months to 3 years, which was effective for
most scans with an age older than 4 months. In total, 92.6% of 1,405 scans from animals older
than 4 months successfully passed preprocessing and quality control. However, this default
council does not accurately represent infant data, due to the ongoing process of myelination
during the early developmental stage and differences in intensity contrast in T1w and T2w
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images compared to adult macaques. To address this issue, we further customized the council
by adding additional manually segmented animals from this infant age range. Overall, the
inclusion of these additional segmentations improved the accuracy of the segmentation
process for younger animals. To ensure the quality of the segmentation for infant data (age <
4 months), we conducted another round of visual inspections and performed manual
corrections to fix minor errors. In total, 34 infant scans were corrected and passed the
preprocessing and quality control (Section 2.2).

Surface reconstruction was performed using FreeSurfer v5.3.0'°. Specifically, the data was
scaled up by a factor of two, converting into a ‘fake’ space where the original 0.5 mm resolution
was interpreted as 1 mm in FreeSurfer. Using the gray and white matter segmentation, the
while and pial surfaces were reconstructed. Subsequently, the volume and surface data were
reverted to the original size. The middle surface (midthickness) was then estimated by
averaging the white and pial surfaces. The native surfaces were registered and resampled to
the MacaqueYerkes19 template. To assess the quality of the surface reconstruction, the Euler
Index was calculated (Section S2.2.2). Additionally, a visual inspection was carried out to
ensure the accuracy of the surface reconstruction (Section $2.2.1). After quality control, 1,522
out of 1,860 scans (81.8%) successfully passed all preprocessing steps.

2.2. Quality Control (QC)

To ensure data quality, visual inspections were performed on the raw data received from
collaborators, the organized BIDS formatted data downloaded from the PRIME-DE, as well as
at each stage of the preprocessing pipeline. For the raw data, quality control involved visually
inspecting the incoming anatomical images for discrepancies in orientation, metadata
accuracy, and any evident abnormalities. The data was meticulously checked and corrected
before converting into BIDS format and proceeding with preprocessing.

2.2.1 Visual Inspection

During MRI preprocessing, QC visual inspection images were generated for each step. The
QC images for volumetric preprocessing steps, including brain extraction, segmentation, and
registration, consist of multiple slices in the axial, coronal, and sagittal views. For the surface
reconstruction, QC images include the snapshots of segmentation, gray-white matter
boundaries overlaying the T1w image, and white and pial surface maps (Fig. $2.2.1-1). The
QC images were rated on a scale from ‘1’ (pass), ‘2’ (small error), and ‘3’ (bad) by three raters:
SA, JR, and ZXW. The discordant ratings were reviewed and discussed with senior expert TX
to reach a final consensus.

In brain extraction steps, we manually corrected some data rated with ‘small error’ or ‘bad’ to
retrain the brain extraction model within site. Following this, we reran the model on the data
rated 2-3 to assess whether their brain masks were improved. This process was repeated
iteratively until all brain masks were successfully generated. For the segmentation and
surface-reconstruction, QC images were first rated for all 1,861 scans. Data from infant
macaques (age < 4 month) proved particularly challenging, with a failed example rated as a 3
shown in Fig. $2.2.1-1. To improve segmentation, we employed a customized joint label
council in the preprocessing pipeline. The resulting segmentation rated as 2’ was manually
edited and reprocessed through the pipeline for surface reconstruction. Visual inspections
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were conducted iteratively. Finally, data rated ‘1’ were included in the final analyses, with data
rated a score of 2 or 3 (i.e. labeled as ‘fail’ in Fig. $2.2.1-2) being excluded, resulting in 1,522
out of 1,861 scans. Fig. $2.2.1-2 demonstrates the distribution of the ‘pass’ and ‘fail’ ratings.

“ﬁfé’wwg* @%@k«?

Fig. S2.2.1-1 | Example visual inspections of segmentation and surface reconstruction.
a) A successful case with gray-white matter delineation, subcortical segmentation, and surface
reconstruction. b) A ‘bad’ case with poor quality of data, segmentation and surface
reconstruction.
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Fig. S2.2.1-2 | Distribution of ‘pass’ and ‘fail’ ratings across the aggregate dataset.

2.2.2 Euler Index

In addition to visual inspection, we examined the Euler Index (El) to assess its impact on
estimating the modeled brain development trajectories. The El metric was calculated and
extracted from the FreeSurfer pipeline which characterizes the topological complexity of the
initial surface. Specifically, it summarizes the number of ‘holes’ or topological defects in the
surface reconstruction. Fig. $2.2.2-1 shows the El scores for each study site, revealing that
the El is generally consistent across research sites. No significant relationship was detected
in EI among 17 study sites (ANOVA, Fso216=1.127 p=0.326), with the exception of site-oxford,
site-sbri, site-uwmadison, site-ucdavis-2, and site-ucdavis-3. We also examined the
relationship between age variability and El variability (Fig. $2.2.2-2), finding negligible
correlations for both male (r=0.148) and female (r=0.168). Notably, several scans had
susceptible high El scores. Therefore, we further examined the impact of the El's on the
development models by comparing the El with the centile scores estimated from GAMLSS
(Fig. S2.2.2-3). The Spearman correlations between El and centile scores were negligible
across all four cerebrum tissue volumes (GMV: r=-0.17, sGMV: r=-0.14, WMV: r=0.09,
Ventricles: r=0.03).
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Fig. S2.2.2-1 | Euler Indices by study site. Boxplot shows the distribution of Euler Index for
each site.
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Fig. S2.2.2-2 | Age-related variability in image quality measured by the Euler Index. Black
dots represent the median age (x-axis) and median El (y-axis) for each study site (Male: left
panel; Female: right panel). Crosshairs along the x-axis indicate the standard deviation of age
per site, while crosshairs along the y-axis represent standard deviation of El per site. The
relationship between Euler Index and age was negligible for male (p=0.148) and female
(p=0.168).
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Fig. S2.2.2-3 | El scores of each scan over centile distributions for four global tissue
types. Spearman correlations between Euler Index and centile scores are negligible (GMV,
p=0.17; WMV, p=-0.09, sGMV, p=0.14, Ventricle, p=-0.02).

2.3 Data Harmonization

In this study, all postnatal data was preprocessed using a standardized pipeline within a
container on the same high-performance computing system. However, to improve
segmentation accuracy for infant data (< 4 months), where the default pipeline was insufficient,
we customized the segmentation step by incorporating additional infant-specific atlases into
the joint-label fusion templates. Minor segmentation errors were further corrected through
manual editing (Section 2.1.2). Due to differences in tissue segmentation step in
preprocessing pipeline, we applied an additional batch harmonization step. For this subset of
data (N=34, 2.2% of total scans), batch correction was performed using ComBat''. In
alignment with previous study on human brain development, we also modeled site-specific
datasets as a random effect in the GAMLSS framework to account for between-site
heterogeneity. Of note, the prenatal data, which were derived from a single study with a small
sample size, were included into the GAMLSS model to account for batch correction, rather
than using ComBat'". This approach was chosen to prevent potential confounds between age
and batch effects during early development. The specific procedures are detailed below.

2.3.1 ComBat Batch Correction

Customized infant atlases and manual correction was applied to a subset of data (rated as ‘2-
3’ score in QC during initial preprocessing) for infants below the age of 4 months. To mitigate
potential discrepancies in tissue segmentation introduced by these adjustments, we
performed batch correction to harmonize the global and regional volume, surface area, and
cortical thickness. This was accomplished using the ‘ComBat”" function in R package ‘sva’
(version 3.46.0) with sex included as a covariate in the model. To avoid potential batch
correction and confounds of the age effect, data was harmonized specifically within the 0 to 4
month age range. Fig. S2.3.1-1 illustrates the distribution of the scans that were preprocessed
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with the adjusted infant-specific atlases. Fig. $2.3.1-2 presents pre-harmonized estimates of
the global measurements color-coded by segmentation variation, with some noticeable
differences in tissue estimation for WMV. Fig. S$2.3.1-3 shows tissue segmentation
estimations post-ComBat harmonization with final median trajectories overlaid. The GAMLSS
model fits on the final ComBat-harmonized data more clearly and adequately fits the dataset.
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Fig. S2.3.1-1 | Distribution of scans processed with the standard or ‘modified’ pipeline.
Modified pipeline used infant-specific segmentation atlases and additional manual correction.
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2.3.2 Evaluation from an External Pipeline for Infant Data

To further assess whether the tissue segmentation from our preprocessing pipeline, which
utilizes an adjusted infant template for the early development data, introduces any bias in
estimating age effects, we applied an additional pipeline'? to the same infant dataset from site-
neurodev. Fig. $2.3.2-1 compares the estimated total volume, surface area, and mean
thickness between two pipelines. The correlations were relatively high (total cortical volume:
r=0.83, surface area: r=0.88, cortical thickness: r=0.75), indicating that both pipelines achieved
good reliability.

Total Volume Total Area Mean Thickness

Additional Pipeline

2 0 2 3 2 1 0 1 2 4 0 1 2 3
Default Pipeline

Fig. S2.3.2-1 | Between pipeline similarity of total cortical volume, surface area, and
average cortical thickness of the same dataset (site-neurodev, N=160). X-axis indicates
our ‘default’ preprocessing pipelines and y-axis indicates the additional pipeline from'.
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3. Model Evaluation

3.1 Model Diagnostics

Consistent with the previous study?, we validated the model fits by examining the residuals of
GAMLSS models from the four global tissue types to ensure goodness of fit. Specifically, we
generated Detrended Transformed Owen’s plots and traditional Quantile-Quantile (Q-Q)
residual plots for each tissue type. Owen’s plot is a general diagnostic tool in regression
analysis used to visually assess the distribution of a fitted model. It is recommended for testing
the adequacy of the model and guiding the selection of an appropriate distribution from a broad
range of available distributions within a flexible GAMLSS framework'®'. In Owen’s plot, we
expect the confidence interval to include the zero-horizontal line; otherwise, it suggests the
parametric distribution model is inadequate. Fig. $3.1-1 illustrates that the model residuals for
GMV, WMV, sGMV, and ventricles were normally distributed, supporting the adequacy of the
fitted generalized gamma distributions.

Gray Matter Volume White Matter Volume

o )

°
[ . %
° ~_ o

%
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%
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O, w0 S o
couogog ——— 0§ 0 o
o gl — "‘%O S

05

95% confident intevals
95% confident intevals

-0.5

-1.5

1.0 05 00

ordered quantile residuals ordered quantile residuals

Subcortical Gray Matter Volume Ventricular Volume

95% confident intevals
0

95% confident intevals
-10 05 00 05 10

ordered quantile residuals ordered quantile residuals

Fig. S3.1-1 | Detrended Transformed Owen’s plots of model residuals. Visual inspection
of residuals showes that the zero-horizontal line is mostly within the confidence interval for
four global phenotypes, indicating the adequacy of the fitted distributions.

In addition, we also visualized the standard Q-Q plots for each tissue type. Q-Q plots compare
the quantiles of the theoretical distribution with those of the sample data. When the residuals
follow the reference line closely, it indicates that they are normally distributed, suggesting that
the model fits the data well. Fig. $3.1-2 shows the Q-Q plots for GMV, WMV, sGMV, and
ventricles. The residuals visually appear to align with the reference line for each global tissue
type (GMV: skewness = 2.021e-05, kurtosis = 3.049, Filliben coefficient = 0.999, WMV:
skewness = -0.003, kurtosis = 3.872, Filliben coefficient = 0.996, sGMV: skewness = 0.008,
kurtosis = 3.165, Filliben coefficient = 0.999, and ventricle volume: skewness = 0.0008,
kurtosis = 4.56, Filliben = 0.992).
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Fig. $3.1-2 | Q-Q plots for the four global brain phenotypes. Plots suggest residuals are
normally distributed for Gray Matter Volume (skewness = 2.021e-05, kurtosis = 3.049, Filliben
coefficient = 0.999), Cortical White Matter Volume (skewness = -0.003, kurtosis = 3.872,
Filliben coefficient = 0.996), SubCortical Gray Matter Volume (skewness = 0.008, kurtosis =
3.165, Filliben coefficient = 0.999), and Ventricular Volume (skewness = 0.0008, kurtosis =
4.56, Filliben = 0.992), supporting the adequacy of fitted distributions

3.2 Bootstrapping Analysis

To assess model stability for GAMLSS fits for trajectory parameters estimated for both global
and regional phenotypes, we conducted 1,000 bootstrap iterations of the fitting procedure with
stratified resampling with replacement. This allows us to derive confidence intervals of all
GAMLSS fits and parameter estimates, including normative trajectories, centiled trajectories,
and site-specific u effects. Fig. $3.2-1 shows normative trajectories for each of the four global
volumes and their corresponding confidence intervals. Overall, the confidence “ribbons” of the
trajectories were relatively narrow across the lifespan, particularly for GMV and WMV. Greater
variance was observed in the early and late stages of life for ventricular volume and subcortical
gray matter volume. This variability is likely due to the limited data available for these age
ranges, as most of our dataset covers animals aged between 6 months to 6 years. Additionally,
subcortical regions in MRI data are commonly noisier with low signal-to-noise ratio compared
to gray matter and white matter contrast. Therefore, the segmentation of sGMV and ventricular
volume tend to be less stable.
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Fig. S3.2-1 | Normative trajectories with boostrapped confidence intervals for four
global brain phenotypes. Shaded ribbons indicate 95% confidence intervals calculated
across 1,000 sex-stratified bootstrapping resampling with replacement. Sex-balance is
perserved in each resampling iteration. Four global phenotypes are total gray matter volume
(GMV), total white matter volume (WMV), subcortical gray matter volume (sGMV), and
ventricular volume.

3.3 Parameter Estimations

We also calculated confidence intervals of model parameters (i.e. u) from the 1,000
bootstrapping procedure of GAMLSS for each study site. Confidence intervals with relatively
narrow ranges for the GAMLSS parameter u indicate a stable estimation for a specific site. In
our GAMLSS model, we incorporated site-specific random effects. Fig. $3.3-1 shows the
offset of the u estimation and bootstrapped 95% confidence intervals. The average site-
specific u is colored by the average age of scans per site. In general, the confidence intervals
are relatively narrow for all study sites, suggesting stable and robust estimation of u in
GAMLSS models.
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Fig. S3.3-1 | Site-specific random effects on estimation of u with 95% confidence
intervals across 1000 bootstrapping iterations. Study sites were sorted by average age of
each site.

To test the extent to which the age effect is potentially driven by site-specific effects, we
conducted regression models to investigate relationships between median age of each site
and the resulting u parameter. Fig. $3.3-2 shows the average estimation of u and median age
for each site with their linearly fit curves. No significant effect was detected across all four
global phenotypes (GMV: t=0.142, p=0.888; WMV: t=-1.075, p=0.295; sGMV: t=-0.121,
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p=0.905; Ventricle: t=0.766, p=0.452). Similarly, we conducted regression to assess the effect
for standard deviation of age and sample size on the u for each site (Fig. $3.3-3-S3.3-4) with
no significant effect observed either (GMV: t=0.788, p=0.440; WMV: t=0.810, p=0.427; sGMV:
t=1.309, p=0.205; Ventricle: t=0.258, p=0.799) (GMV: t=0.021, p=0.983; WMV: t=0.327,
p=0.747; sGMV: t=0.694, p=0.496; Ventricle: t=-0.174, p=0.863). This analysis confirmed that
GAMLSS parameter estimates for site-specific effect ¢ are not influenced by the age

distribution or sample size.
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Fig. $3.3-2 | Linear model fits on the relationship between site random effect and
median age by global metrics. Linear testing reveals no significant relationship between u
effect and age for any global phenotype (GMV: t=0.142, p=0.888; WMV: t=-1.075, p=0.295;
sGMV: t=-0.121, p=0.905; Ventricle: t=0.766, p=0.452).
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Fig. S3.3-3 | Scatterplots of i intercept estimation over standard deviation of age, with
linear model fits. No significant linear relationship between standard deviation of age and
random effect parameters is present (GMV: t=0.788, p=0.440; WMV: t=0.810, p=0.427; sGMV:
t=1.309, p=0.205; Ventricle: t=0.258, p=0.799).
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Fig. S3.3-4 | Scatterplots between site 1 random effect and log sample size. Linear
models reveal no significant relationship (GMV: t=0.021, p=0.983; WMV: t=0.327, p=0.747;
sGMV: t=0.694, p=0.496; Ventricle: t=-0.174, p=0.863).
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4. Developmental Trajectories and Milestones

Beyond the developmental charts for global phenotypes, we also modeled age-related
trajectories for finer-grained cortical and subcortical regions. As with the global phenotypes,
quality-controlled data were used for these analyses. Fig. 4-1 shows the Markov parcellation
applied to the cortical regions in the study, which defined 91 symmetric parcels across
hemispheres. For each parcel, we extracted bilateral cortical volume, surface area, and mean
thickness. Additionally, we extracted the volumes of the cerebellum and key subcortical
regions, including the thalamus, amygdala, hippocampus, pallidum, and putamen. Notably,
only postnatal data were available and included in the regional analyses. ComBat correction
was first applied to the infant data, which were preprocessed using the default pipeline with
an adjusted infant template. We used the same GAMLSS framework with fractional polynomial
distributions to fit nonlinear, sex-stratified growth curves for regional measurements. The same
model selection process was applied, with the optimal combination of fractional polynomial
models for each region determined based on the BIC. To estimate confidence intervals for the
model parameters, we performed 1,000 bootstrap resampling iterations on the original data.
Finally, we identified the ages at which each regional measurement reached its maximum size
(i.e., peak), as well as the corresponding growth rates (i.e., first derivative of the estimated
growth curves).

Fig. S4-1 | Markov parcellation and parcel annotations®.

4.1 Regional Trajectories

In this section, we report the ComBat corrected data used in the GAMLSS models (Fig. S4.1-
1, S4.1-3, S4.1-6, S4.1-9), the normative trajectories with 2.5% and 97.5% centiles (Fig S4.1-
2,84.1-4, S4.1-7, S.4.1-10), and the proportional scores at the key developmental milestones
of the macaque lifespan, including birth, infancy (4 months), juvenility (1 year), adolescence
(6 years), adulthood (15 years), and older age (25 years). Proportional scores were calculated
by dividing the 50th centile estimate (i.e. median) of the GAMLSS trajectory (50th centile) by
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the regional maximum at key developmental stages, stratified by sex (Fig. $4.1-5,

S4.1-11).
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Fig. S4.1-1 | Regional volumetric (mm?®) data

regions, as defined by the Markov parcellation®.

across lifespan for 91 bilateral cortical

22


https://paperpile.com/c/M48RBz/cinJ

yarea1 3 yareas area9 area.10 area 11
3 140 50 - .
120 :fz o ey 40 30
100 100 * i 30 %,
/. 90 0 A, R 20
I 80 - RN 80 i 2 2 15 ToanrriiitreeL
" - . 4 ; ceeenas :
Bith 1y Gy Gyrioyr 30y Bith  tyr 3y GyriOyr 30yr  Bith  1yr  3yr 6yn0yr  30yr Bh  yr 3yr B0y 30yr Bith 1y Byr GyriOyr  30yr Bith 1y 3y 6yroyr 30y
area 12 area.13 area.14 area 25 area 31 area 32
100 . 2% .
%0 : 50 50 15 . o N Sl
80 0 : 25 20 Piiyg,
0z 10 20 . e
00 -# s nsedsossies 30 e 1Bt
50 :* 20 | . 5 3 ' s 10
Bih 1y Byr Gyrioyr  30yr tyr 3y eyriOyr 30y Bith  1yr yr 6Oy 30yr Iy 3y Gyroyr 30y BN 1y By Gyrioyr  3oyr Bitn 1y 3yr Gyridyr  30yr Bith  yr 3y eyioyr 30y
area.44 area24a area.24b area.24c area 24d area.29.30 area 45A
Y Y s LA L 0 Siairzlze 25 s0 DS IS L
2 s 20 ! o - - Piigy
0 N 15 - wf.\ '5\
L ¢ 0 4= s ottt - 10
Bith 1y 3y Gyrioyr 30y Bitn  tyr 3y GyriOyr  S0yr Bt 1yr  3yr 6yriOyr  30yr Ty By Gyriyr  B0yr  Bith  tyr  3yr 6yr0yr  30yr Bitn  tyr 3y Gyrioyr  30yr Bith  yr 3yr 6yryr 30y
area 458 area.46.dorsal part area.46.ventral part area 7A area78 area7m area 7op.parietal.operculum
18 w© 80 X 2 % 50
15 : 70 —jie e ’ 5 80
o 50 2 60
9 @ . 2F a Nttt o 15 50 e, 4
' 20 7 ' P ' e ot R
Bith  fy 3y GyriGyr 30y Bith  fyr 3y GyriOyr 30y Bith  fyr 3y 6yriOyr 30y oty 3y Gyrt0y 30y Bith  yr 3y Gyri0yr 30y Bitn Ty 3y GyriOyr  30yr Bith 1y 3y Gyrioyr 30y
area 88 lateral part.of.area 8 medial part of.area 8 rostral part of.area 8 area.9.46.dorsal part area 9.46.ventral part anterior.intraparietal.area
: . R 7 50
50 : 60 6 2
40 20 30 "
» 30 30 > . shak 8
20 ¢ -2 st . 20 4
Bith  lyr Sy GyrOyr S0y Bith  tyr By Gyriyr  80yr  Bith  tyr 3y 6Oy 30y Bith  lyr 3y GyiOyr 30y Bith  tyr Byr GyriOyr  30yr Bith 1y Syr GyriOyr  30yr Bith 1y 3y Gyoyr 30y
core.region.of the auditory.cortex dorsal.prelunate.area entorhinal frontal.area.F1 frontal.area.F2 frontal.area F3 frontal.area F4
. o frigrzeas 300 e e 180 gsafototos w 2 st s oo
. 0 250 o o e, B
25 30 ’ seveesesssnenas B0 iaiahaaas 10 Tk w0 7 . - L o S Sy i
20 + v o & 2 i+ 150, o 20 s 4
Bith 1y Gyr Gyrioyr Bith  tyr By 6yridyr 0y Bih  tyr Gy 6yriOyr 30y B tyr Gy 6yridyr 3yr B tyr Syr GOy 30yr Bith 1y Byr Gyrioyr  30yr Bith  lyr 3y 6yrtoyr 30y
frontal. area. F5 frontal area F6 frontal.area. F7 fundus.of.superior.temporal.area qustatory.cortex insula arealPa
s 50 110 .- 4
100 ® i foo feeiiiiiliniag, 0 Sex
2 % - . :
80 t -
20 - 8 —— ?Sf\ -
o - ¢ teeeee 70 aaas 3 16 - ot kol -_
¥ 5 = : . 2 g froteresrediiicng a2 o
Bith 1y 3y GyriGyr 30y Bith  fyr Oy 6yriOyr 30y Bih  tyr Gy 6yriOyr 30y Bitn  tyr Gy Gyridyr 3yr B tyr dyr 6yridyr  3oyr Bitn 1y 3y Gyrioyr  30yr Bith 1y 3y Gytoyr 30y
lateral belt lateral.intraparietal area medial belt medial area medial. area middle temporal. area orbital periallocortex
“ Bl RIERRX = MR EREEE 80 - 5 -
b Cell 30 40 SO 0 -* 2 el o —
9 T ; : A
2 iiiiiiii % 0 e . L & I 3-F e
. : Yriirrster 20 coocesRiiiiizig AR o o (O B B ST P i bl foe
Bith Ty 3y GGy 30y Bith  fyr 3y GyriOyr 30y Bith Ty 3y 6yriOyr 30y Ty 3y Gyrioyr 30y Bty 3y Gyrioyr  30yr Bith Ty 3y GyriOyr  30yr Bith 1y 3y Gyrtoyr 30y
orbital proisocortex parainsula parabelt caudal part parabelt rostral part perirhinal area PGa posterior intraparietal area
B0t 30 ottt : .
2 ' e 40 T 80 - 2
—_—— 0
p Fe———— o “
4 s piiiRRLIIILL i %0 £* 15
f N s Yt e
Bih 1y 3y yrioyr 0y B iy Oy 30y Bih  yr 3y 6ynOyr 30y Bith  tyr Byr GyriOyr  30yr Bith 1y Byr Gyrioyr  30yr Bith 1y oyr  30yr
piriform prostriata i part
..... 35 . 8
04 . 0 e et 100 e 0
t 30 h . % BRTes 6
L —— -——————— 9| ;\ 50
02 20 2 s S B ST 4
et e o PREEEEEEEEE iy 60 o tiias : .
01 arnt 15 s = sie g0 . 20 .
Bith  tyr Gy GyrOyr S0y Bith  tyr By 6yriOyr 80yr Bt 1yr 3y 6Oy 30y Bt lyr 3y Gyrioyr 30y Bith 3yr Gyrtoyr 30y Bith 1y Byr Gyrioyr  30yr Bith 1y 3y 6yoyr 30y
subiculum area. TE.anterior.dorsal. padrea. TE.of the superior.temporal. sulansafEpafithe. superior.temporal sulcus. post. patea. TE anterior.ventral. part temporal pole area TEO
2 Jepprrrees 5 n 50 . 80 1
20 w1 “t
15 20
10 20
: 30 e 10 % i 0
Bih 1y Gyr Gyrioyr 30y Bitn  tyr 3y Gyriyr 30y B 1yr 3y 6Oy 30y B 1y Sy Gyroyr 30y Bith 3yr eynoyr  30yr Bitn 1y 3y Gyrioyr  30yr Bith 1y 3y eyoyr 30y
area TEO.medial part area TE part area TE part area TH.TF temporo parietal area visual area.1 visual area 2
as . 120 ; . - 00 ..
0 e 100 At e % ot R P e N 800 it
35 EEonn e w0 ‘ IR 500
2 #on, 80 f-2  treiiiiiians g 15 Prritaa oo 300
¥ il 0 I } o+ e 200 T o ! L LY PSRN
Bih 1y Bith  tyr Gy GyriOyr 30y Bith  fyr 3y Gyridyr  30yr iy 3y G0y 30y Bin 1ty Syr Gyrioyr 30y Bitn Ty 3y Gyrioyr 30y Bith 1y 3y Gytoyr 30y
visual.area.3 visual.area.3A visual.area 4 transitional visual.area 4 area. V6 area V6A ventral intraparietal area
1490 .
120 20 il I % 175
Z = o 150
100 % o6
© M 20 125
. : Iy . Vi, f Tiitiai: 15 . 50 N 100 AR
60 = % 5 i S PR
Bith Ty 3y Gyri0yr 30y Bith  tyr Qyr 6yriOyr 0y Bih  tyr By 6ynOyr 30y Bith  tyr G Gyridyr 30y Bih  tyr 3y 6Oy 30yr Bith Ty 3y Gyrioyr  30yr Brth 1y 3y Gyrioyr 30y

Fig. S4.1-2 | Normative trajectories of regional volume, with confidence intervals, were
modeled across the lifespan for 91 bilateral cortical regions as defined by the Markov
parcellation®. Dotted lines indicate the 2.5% and 97.5% centiles for each modeled region.
These trajectories were fit from optimal models selected from the GAMLSS framework based
on the data shown in Fig. S4.1-1, similar to the global trajectories shown in Fig 1.
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Fig. S4.1-3 | Regional volumetric (mm?®) data for cerebellum and subcortical regions, including
the thalamus, caudate, putamen, pallidum, amygdala, and hippocampus.
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Fig. S4.1-4 | Normative trajectories of regional volume, with confidence intervals, were
modeled across the lifespan for cerebellum and subcortical regions. Dotted lines indicate
the 2.5% and 97.5% centile lines for each modeled region. These trajectories were fit from
optimal models selected from the GAMLSS framework based on the data shown in Fig. S4.1-

3, similar to the global trajectories shown in Fig 1.
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Fig. S4.1-5 | Regional volumetric proportional size (mm?*/ maximum) at key development
milestones shown in Fig. 3. Proportional scores were calculated by dividing the 50th centile
estimate of the trajectory by the regional maximum at key developmental stages across the
macaque lifespan, including birth, infancy (0.33 years, or 4 months), childhood (1 year),

juvenility (3 years), adolescence (6 years), adulthood (15 years), and older age (25 years).
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Fig. S4.1-6 | Regional surface area (mm?) data across lifespan for 91 bilateral cortical
regions, as defined by the Markov parcellation®.
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Fig. S4.1-7 | Normative trajectories of regional surface area, with confidence intervals,
were modeled across the lifespan for 91 bilateral cortical regions as defined by the
Markov parcellation®. Dotted lines indicate the 2.5% and 97.5% centiles for each modeled
region. These trajectories were fit from optimal models selected from the GAMLSS framework
based on the data shown in S$4.1-6, similar to the global trajectories shown in Fig 1.
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Fig. S4.1-8 | Regional areal proportional size (mm?maximum) at key development
milestones shown in Fig. 3. Proportional scores were calculated by dividing the 50th centile
estimate of the trajectory by the regional maximum at key developmental stages across the
macaque lifespan, including birth, infancy (0.33 years, or 4 months), juvenility (1 year and 3
years), adolescence (6 years), adulthood (15 years), and older age (25 years).
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Fig. S4.1-9 | Regional cortical thickness (mm) data across lifespan for 91 bilateral
cortical regions, as defined by the Markov parcellation®.
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Fig. S4.1-10 | Normative trajectories of regional cortical thickness, with confidence
intervals, were modeled across the lifespan for 91 bilateral cortical regions as defined
by the Markov parcellation®. Dotted lines indicate the 2.5% and 97.5% centiles for each
modeled region. These trajectories were fit from optimal models selected from the GAMLSS
framework based on the data shown in Fig. 4.1-9, similar to the global trajectories shown in
Fig 1.
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Fig. S4.1-11 | Regional cortical thickness (mm) at key development milestones shown
in Fig. 3. Milestones include birth, infancy (0.33 years, or 4 months), juvenility (1 year and 3
years), adolescence (6 years), adulthood (15 years), and older age (25 years).

4.2 Regional Peak Age

In addition to the regional peak ages reported in Fig 2, we fit 1,000 bootstraps to estimate the
confidence intervals for the peak ages of regional volume, surface area, and cortical thickness.
Peak age was identified as the age at which the regional measurement plateaued (i.e.,
slope=0). For regions where the measurement approaches, but does not reach a true
maximum, we defined the age at which the rate of change is nearly zero (i.e. slope < 0.05).
Fig. S4.2-1 ranks regions by their median peak age estimated in GAMLSS with the range of
each point representing the 95% bootstrapped confidence intervals. Results showed that
peak ages are relatively stable across bootstraps, with narrow 95% confidence interval ranges
(volume: 0.26 + 0.34 years, surface area: 1.01 £ 1.82 years, and mean thickness: 0.14 + 0.15
years). These results underscore the robustness of the peak age estimation.
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Fig. S4.2-1 | Regional peak age estimations with 95% bootstrapping confidence
intervals of regional volume, surface area, and cortical thickness. Regions are ranked by
peak age and colored by the range of 95% bootstrapped confidence intervals. Black, dashed
line represents the average peak across all regions.
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Fig. S4.2-2 | Regional peak age (in years) of bilateral regions for cortical gray matter
volume, cortical surface area, and cortical thickness. Peak age was identified as the age
at which the regional measurement plateaued (i.e., slope=0). For regions where the
measurement approaches, but does not reach a true maximum, we define the age at which
the rate of change is nearly zero (i.e. slope < 0.05).

4.3 Regional Growth Rate

We also estimated growth rates by calculating the first derivative of the 50th centile (i.e.
median) trajectory from the GAMLSS models, representing the daily change (i.e. velocity) in
regional volume (mm?®/day), surface area (mm?%day), and cortical thickness (mm/day). Fig.
$4.3-1, $4.3-3, and $4.3-5 show the growth rate for each region individually. For both volume
and surface area, growth rates were positive postnatally for most regions but decreased over
time, indicating continued growth with a deceleration during development. In contrast, several
regions of cortical thickness reached a plateau prenatally and exhibited negative growth rates
after birth. Additionally, we visualized growth rates at key developmental milestones across
the macaque lifespan—birth, infancy (4 months), childhood (1 year), juvenility (3 years),
adolescence (6 years), adulthood (15 years), and older age (25 years), stratified by sex (Fig
S$4.3-2, S4.3-4, S4.3-6).
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Fig. S4.3-1 | Rate of growth of regional volumes across the lifespan for 91 bilateral
regions defined by the Markov parcellation®. Rate of growth calculation is estimated
identically to the global metrics, as seen in Fig. 1 and Fig. 2 of the main text. Intersection of
rate of growth lines with the horizontal line at y=0 denotes peak maturity, while vertical lines
intersect at peak rate of growth.
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Fig. S4.3-2 | Growth rate of regional volumes (mm®day) at key developmental
milestones, including birth, infancy (0.33 years, or 4 months), childhood (1 year),
juvenility (3 years), adolescence (6 years), adulthood (15 years), and older age (25

years).
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Fig. S4.3-3 | Rate of growth of regional surface areas across the lifespan for 91 bilateral
regions defined by the Markov parcellation®. Rate of growth calculation was estimated
identically to the global metrics, as seen in Fig. 1 and Fig. 2. Intersection of rate of growth lines
with the horizontal line at y=0 denotes peak maturity, while vertical lines intersect at peak rate

of growth.
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Fig. S4.3-4 | Growth rate of regional surface area (mm?/day) at key developmental
milestones, including birth, infancy (0.33 years, or 4 months), childhood (1 year),
juvenility (3 years), adolescence (6 years), adulthood (15 years), and older age (25
years).
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Fig. S4.3-5 | Rate of growth of regional cortical thickness across the lifespan for 91
bilateral regions defined by the Markov parcellation®. Rate of growth calculation was
estimated identically to the global metrics, as seen in Fig. 1 and Fig. 2. Intersection of rate of
growth lines with the horizontal line at y=0 denotes peak maturity, while vertical lines intersect
at peak rate of growth.
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Fig. S4.3-6 | Growth rate of regional cortical thickness (mm?/day) at key developmental
milestones, including birth, infancy (0.33 years, or 4 months), childhood (1 year),
juvenility (3 years), adolescence (6 years), adulthood (15 years), and older age (25
years).
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Fig. S4.3-7 | Regional growth rates for macaque at the age of peak total gray matter
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volume (0.74 years). Sex-stratified models were generated for bilateral averages of each

region. Growth rates for male and female are shown on the left hemisphere for visualization
(the left panel is identical to Fig 2d).
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5. Neurosynth Meta-Analysis

To understand the associated cognitive development of brain growth, we performed a meta-
analysis, decoding incremental, proportional volumetric growth maps over cognitive functions.
Growth maps were calculated by taking regional changes in proportional volume in humans
and macaques at 3 month and 1 month increments, respectively, from birth to adolescence
(0-18 years for humans, 0-6 years for macaques). This resulted in 72 growth change maps for
each species. Each map for humans were then correlated with activation maps of cognitive
terms from the meta-analytical tool “Neurosynth”'®. The macaque maps were first transformed
into human space then decoded accordinally. All cognitive terms were categorized into a sets
of 24 cognitive topics previously reported (e.g. “person”, “empathy”, “people” are grouped into
the topic “social cognition”)'® (see Method).

To generate the cognition development curves for each topic, we employed two approaches
to summarize the terms into topic from birth to adolescence: (1) averaging the correlation
scores across team within the same topic at each time window (as shown in Fig 4), and (2)
fitting the correlation scores using Generalized Additive Models (GAM). As shown in Fig. S5-
1, solid lines represent the GAM-fitted curves based on the correlations of all contributing
terms while dashed lines are correlations of individual terms for each topic.
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Fig. S5-1 | Decoded cognitive development trajectories from birth to adolescence for
human (0-18 years) and macaque (0-6 years). Regional growth maps of gray matter volume
with a progressively increased interval (human: per 3 months; macaque: per month) were
decoded into cognitive terms using Neurosynth' meta-analysis. Dashed lines represent
decoding correlation scores of individual terms. Solid lines represent the GAM-fitted curves
from all contributing terms.
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Fig. S5-2 | Distribution of decoded correlation scores from neurosynth'® database for
human and macaque. Each box shows the spread of correlations across developmental
stages from birth to adolescence for all contributing terms within each topic.

6. Dataset Descriptions

Site-amu

The Aix-Marseille Université (AMU) dataset contains structural data from 4 rhesus macaques,
3 males and 1 female, ranging from 7 - 8 years of age. Animals were housed at the Institut de
Neurosciences de La Timone. Animals were anesthetized with Isoflurane, and a Kopf frame
and ear bars were used to hold the head for scanning. Monkeys entered the scanner in a
sphinx position with a fiducial marker placed on the right side of the head. Heart rate and
respiration were monitored during scanning.

Structural data was acquired with a Siemens Prisma 3T scanner, with a T1w voxel resolution
of 0.8mm (TE: 2.04ms, TR: 2900 ms, TI: 1000ms), and a T2w voxel resolution of 0.8mm (TE:
561ms, TR: 3200 ms).

Site-amu-2

The second Aix-Marseille Universite (AMU) dataset'” contains structural data from 20 rhesus
macaques with 21 unique scans (6 male and 14 female). All experimental procedures were in
compliance with the National Institutes of Health’s Guide for the Care and Use of Laboratory
Animals and approved by the Ethical board of Institut de Neurosciences de la Timone and
authorized by the French Ministry of Higher Education, Research and Innovation.

The animals were housed in groups of 2 in enriched cages in a temperature and hygrometer-
controlled room with a 12:12h light-dark cycle. A laboratory diet was provided twice daily,
supplemented with fresh fruit and vegetables and ad libitum access to water. All procedures
were performed under veterinary supervision with the objective to limit pain and discomfort
and to promote animal welfare.
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NHPs were first sedated by intramuscular injection of ketamine (10 mg/kg), midazolam (0.1
mg/kg), and glycopyrrolate (0.005 mg/kg). After the trachea was intubated and the lungs
ventilated mechanically (ventilator Zeus, Drager, Libeck, Germany) with 2.3 vol% end-tidal
sevoflurane (Baxter, Guyancourt, France) in a gas mixture of 40% oxygen and 60% nitrogen
(figure 1A), a tidal volume of 6 mL/kg, and a PEP = 3 cmH20. Ventilation was adjusted to
maintain an exhaled CO; level between 30 to 40 mmHg. NHPs were warmed by a heated
blanket (Bair Hugger®, 3M, Minnesota, USA) to maintain a body temperature of 38.0+0.5°C
throughout the procedure. Anesthesia was induced right before scanning and maintain
throughout the MRI acquisition. During scanning, the animals were supine and anesthetized
with foam in the MRI head coil. The MRI was performed on a Siemens 3T Prisma MRI scanner
(Siemens Medical Solutions, Saint-Denis, France) and with different coils. More details on
subject scanning acquisition parameters are specified below.

Scanning procedures involved collecting using a Scanmed (16CH pediatric coil) or a Siemens
(Loop 11cm coil, 20CH Head-Neck coil, 24 CH macaque coil, or a 64CH Head-Neck coil)
scanner. T1w images were collected using a selection of 6 sequences for different subjects,
including: (1) T1w at 0.4mm isotropic with a slice thickness of 0.4mm, TR/TE/TI=
3300/3.13/1130ms, bandwidth (BW) of 210 Hz/pix, FOV of 128mmx128mm, flip angle of 8
degrees, matrix size of 320%x320, GRAPPA=2, and 3 averages; (2) T1w at 0.7mm isotropic
(sub-16) with a slice thickness of 0.7mm, TR/TE/TI= 2300/2.82ms, BW=210 Hz/pix, FOV of
180mmx151mm, flip angle of 8 degrees, matrix size of 256x216; (3) T1w at 0.8mm isotropic
(MPRAGE sequence) with TR/TE/TI= 2300/4.05/912ms, flip angle of 8 degrees, BW=200
Hz/pix, FOV of 128mmx128mm, slice thickness of 0.8mm, matrix size of 160%x160, and
GRAPPA=2; (4) T1iw at 0.6mm isotropic (MP2RAGE sequence) with TR/TE/TI1/TI2=
5000/2.91/700/2500ms, flip angles of 4/5 degrees, BW=270 Hz/pix, FOV of 135x126.6mm,
slice thickness of 0.6mm, matrix size of 224x210, and 2 averages; (5) T1w at 0.5mm isotropic
(MPRAGE sequence) with TR/TE/TI= 2800/4.24/1100ms, flip angle of 8 degrees, BW=210
Hz/pix, FOV of 128x128mm, slice thickness of 0.5mm, matrix size of 256x256, repeated 3
times separately; (6) T1w at 0.4mm isotropic (MPRAGE sequence) with TR/TE/TI=
2800/2.39/1150ms, flip angle of 8 degrees, BW=270 Hz/pix, FOV of 128x120mm, slice
thickness of 0.5mm, matrix size of 320x300, repeated 3 times separately.

Site-ecnu

The East China Normal University (ECNU) dataset'®'® includes anatomical data from 4 male
rhesus macaques ranging from 32-45 months of age. Animals were housed at the University,
either singly or in pairs, with automatically regulated lighting, and monkey chow and fruit
provided twice a day. Water was available ad libitum. Monkeys were trained to watch videos
and respond on touch screen apparatus. For scanning, monkeys were first anesthetized with
atropine via injection, followed by Zoletil. Monkeys were then head fixed in a Stereotaxic frame
with ear bars in a sphinx position in the MRI. During scanning, subjects were monitored with
ECG and for respiration.

Structural scans were acquired with a Siemens 3T horizontal bore scanner and a surface coil.
T1w data was acquired at a voxel resolution of 0.75 x 0.75 x 0.8mm (TE: 77 ms, TR: 3000ms)
at a flip angle of 15 degrees. T2w data was acquired at a voxel resolution of 0.5 x 0.5 x 1.0mm
(TE: 3.38 ms, TR: 2200 ms) at a flip angle of 120 degrees.
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Site-ecnu-chen

The dataset from East China Normal University (Chen) contains T1w images from 10 male
rhesus macaques. Monkeys were housed singly, with automatically regulated lighting; monkey
chow and fruit given twice a day (280g in total) and water given twice a day (1000ml in total).
For anesthesia, Atropine was applied via subcutaneous injection 20 min before anesthesia
(dosage = body weight * 0.05mg/kg). Ketamine was used via subcutaneous injection (dosage
= body weight * 0.15mg/kg ). After, the monkeys were head-fixed on the Stereotaxic, Zoletil
50# was injected (dosage = body weight * 0.05ml/kg). Monkeys were scanned in the sphinx
position in MRI stereotaxic apparatus.

T1w images were acquired with a 3T Siemens Trio with a surface coil. T1w data was acquired
at a voxel resolution of 0.6mm isotropic and 0.75 x 0.75 x 0.8mm (TE: 2.69-3.71ms, TR: 2200
ms) and a flip angle of 7 and 9 degrees.

Site-emory

The Emory University longitudinal datase comprises 40 unique infant and juvenile rhesus
macaques (23 males, 17 females), with a total of 83 scans. Age distribution ranges from 0.21
to 1.5 years, where most animals were scanned longitudinally at 2 weeks and 3, 6, 12 and 18
months of age. Animals were housed in big social groups in outdoor compounds with
access to climate-controlled indoor areas. Standard, high fiber, and low-fat monkey chow diet
(Purina Mills Int., Lab Diets, St. Louis, MO), seasonal fruits and vegetables were provided
twice daily, in addition to enrichment items. Water was available ad libitum. All procedures
were in accordance with the Animal Welfare Act and the U.S. Department of Health and
Human Services “Guide for the Care and Use of Laboratory Animals” and approved by the
Emory Institutional Animal Care and Use Committee (IACUC).

t20—25

All monkeys were scanned at the Emory National Primate Research Center (ENPRC) Imaging
Center, Emory University, and data were acquired with a Siemens 3T Trio scanner and an 8-
channel surface coil. T1w data was acquired at a voxel resolution of 0.5mm3, isotropic (TR:
3000ms, TE: 3.51ms, Tl: 950 ms) and a flip angle of 8 degrees. T2w data was acquired at
0.5x0.5x1mm3 voxel resolution (TR: 7900ms, TE: 125ms) and a flip angle of 90 degrees.
Animals were scanned supine and the head immobilized in a custom-made head holder with
ear bars and a mouthpiece to minimize motion. Following initial induction of light anesthesia
with telazol and endotracheal intubation, MRI scans were collected under isoflurane
anesthesia (0.8-1%, inhalation) following published approaches for studies of macaque
neurodevelopment (Kovacs-Balint et al., 2021; Mavigner et al., 2018; Raper et al, 2020; Shi
et al, 2017). Physiological parameters were monitored using an oximeter, ECG, rectal
thermistor, and blood pressure monitor. An intravenous catheter was used to administer
dextrose/NaCl for hydration, and the animal was placed over an MRI-compatible heating pad
to maintain temperature.

Site-ion

The Institute of Neuroscience (ION) dataset®™ contains data from 8 rhesus macaques, 7 male
and 1 female, with an age distribution of 3.8 - 6 years. Animals were housed at the Institute of
Neuroscience, Shanghai, in single cages. Anesthesia of the animals was inducted with an
intramuscular injection of a cocktail of dexmedetomidine (18 - 30 pg/kg) and midazolam (0.2
- 0.3 mg/kg), supplemented with atropine sulfate (0.05 mg/kg). After intubation, anesthesia
was maintained using the lowest possible concentration of isoflurane gas via a MRI-

t26
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compatible ventilator. Monkeys were fixed in the sphinx position for scanning with a custom-
built MRI-compatible stereotaxic frame. Physiological parameters including blood
oxygenation, ECG, rectal temperature, respiration rate and end-tidal CO2 were monitored.
Oxygen saturation was kept over 95%. Animals were ventilated by an MRI-compatible
ventilator. Body temperature was kept constant using a hot water blanket.

Data was acquired with a Siemens Tim Trio 3T whole-body scanner and an 8-channel phased-
array transceiver coil. Structural MRI data was acquired for T1w with an MPRAGE sequence,
at a voxel resolution of 0.5mm (TE: 3.12 ms, TR: 2500ms, TI: 1100ms) and a flip angle of 9
degrees.

Site-kmust

The rhesus macaques were randomly selected from a large monkey group housed at the State
Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine,
Kunming University of Science and Technology for MRI scanning. Thirty-one macaques were
included in the current study (8 males and 23 females, age range = 10-20 years). All the
experimental procedures were in accordance with the guidelines for the National Care and
Use of Animals and the experimental protocols and were approved by the National Animal
Research Authority of China and the Institutional Animal Care and Committee of the State Key
Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine,
Kunming University of Science and Technology.

The MRI data were acquired using Siemens 3T Prisma scanner. Before scanning, the
monkeys were untrained and pre-anesthetized with Sumianxin (0.1 ml/kg), Zolatil (0.1 ml/kg)
and atropine (0.1 ml/kg). After the anesthesia is stable, the MRI scanning of T1-weighted
images were acquired using the following parameters: TR/TE = 1400/3.55 ms, FA = 8°, in-
plane acquisition matrix = 224 x 224, at a voxel resolution of 0.6 mm isotropic.

Site-lyon

The dataset from the Lyon Neuroscience Research Center includes scans from female 4
rhesus macaques with an age range of 5 - 12 years. The project was authorized by the French
Ministry for Higher Education and Research (project no. 20-12-0401-005) in accordance with
the French transposition texts of Directive 2010/63/UE, based on ethical evaluation by the
French Committee on the Ethics of Experiments in Animals (C2EA) CELYNE registered at the
national level as C2EA number 42. T1w data was acquired with a Siemens Sonata 1.5T and
a Siemens Prisma 3T scanner. T1w data was collected with an isotropic resolution of 0.6mm
(TE: 2.89ms, TR: 2.16s, TI: 1.1s) with a flip angle of 15 degrees.

Site-mcqill

McGill University’s McConnell Brain Imaging Centre dataset includes 1 rhesus macaque
(female), aged 12 years. Animals were housed in pairs, and animal care protocols followed
the Animal Care Committees of the Montreal Neurological Institute and McGill University. For
scanning, the animal was intubated and anesthetized with 0.6%-1.2% isoflurane. The animal
was scanned 30 minutes after intubation. Anesthesia was maintained throughout the MRI
session and scanned in the supine position. Heart beat and oxygen saturation were monitored
by means of pulse oximetry. The macaque was ventilated, and core temperature was
monitored and maintained at 38 degrees by means of a heating pad.
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T1w and T2w data was acquired with a Siemens 3T Trio scanner, and a custom-made 8-
channel phased-array receive head coil. T1w data was acquired with a MP2RAGE sequence
with a voxel resolution of 0.6mm isotropic (TE: 3.65 ms, TR: 5000 ms, Tl: 700 ms) and a flip
angle of 4 degrees. T2w data was acquired with a T2 SPACE sequence, at a voxel resolution
of 0.6mm isotropic (TE: 320 ms, TR: 3200 ms) and a flip angle of 120 degrees.

Site-mountsinai-P

Site-mountsinai-P contains data?’ of 8 male rhesus macaques with an age distribution of 3.4
- 8 years. Monkeys were housed at the Icahn School of Medicine at Mount Sinai (ISMMS).
Monkeys were housed in groups, indoors, in standard primate caging. All monkeys received
environmental enrichment consisting of toys and novel food items. All monkeys received
cognitive tests in touch screen apparatus. For scanning, monkeys were anesthetized with
ketamine and buprenorphine prior to intubation and placement in a stereotaxic frame, where
they entered the MRI in a sphinx position feet first. Monkeys were physiologically monitored
throughout scanning to ensure body temperatures, pulse rates, blood pressure, etc.

All imaging data was acquired with a Philips Achieva 3T scanner, and a 4-channel phased
array coil. Anatomical T1w scans were acquired at a voxel resolution of 0.5mm (TE: 6.93ms,
TR: 1500ms, TI: 1100ms), with a flip angle of 8 degrees. T2w scans were also acquired at
0.5mm voxel resolution (TE: 366ms, TR: 2500ms).

Site-mountsinai-S

The Mount Sinai School of Medicine (Siemens) contains MRI data of 6 adult male rhesus
macaques, aged from 5.3-6.3 years. All animals were housed at the Icahn School of Medicine
at Mount Sinai. Monkeys were housed in groups of 6 indoors in standard primate caging, in
housing rooms containing other monkeys. All monkeys received environmental enrichment
consisting of toys and novel food items, in addition to cognitive tests via touch screen
apparatus. For scanning, animals were anesthetized with ketamine, meloxicam, and
buprenorphine prior to intubation and placement in a stereotaxic frame. Monkeys were
scanned in the sphinx position, head first.

Structural data was acquired with a Siemens Skyra 3T scanner and a 4-channel clamshell
coil. T1w data was acquired at a voxel resolution of 0.5mm (TE: 3.02ms, TR: 2700 ms, TI:
800ms). T2w scans were also acquired at a resolution of 0.5mm (TE:539ms, TR: 3200 ms).

Site-neurodev

The longitudinal dataset™ includes 33 macaques (macaca mulatta) with a total of 160 scans.
The dataset includes 18 males and 15 females, with an age range of 0.003 and 3 years.
Housing consisted of stainless steel caging (each 0.9 x 0.9 x 0.9 m), where each female
monkey lived with her infant, either individually or as a pair with another adult female in double
cages. Animals were fed a standardized diet of commercial biscuits and fruit supplements and
foraging devices for enrichment. Water was available ad libitum, the temperature was
controlled at 21.5 degrees celsius, and the light/dark cycle was maintained at 14:10 with lights
on at 06:00. All infants were reared normally by their mothers until weaning occurred at 6-7
months of age. Afterwards, the older juveniles were housed in small social groups or as a pair
to provide companionship. The research protocol was approved by the Institutional Animal
Care and Use Committee (IACUC). Care and treatment of the animals at HPL are designed
to meet and exceed the guidelines promulgated by the National Institutes of Health Guide for
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the Care and Use of Laboratory Animals. The quality of the research findings is predicated on
the high quality of care.

Subjects were given a pre-anesthetic (ketamine hydrochloride 10 mg/kg I.M.) for transport to
the MR facility. For infants younger than 6 months of age, immobilization during the scan was
achieved with inhalant isoflurane (1.5%). Older subjects were immobilized throughout the
scanning procedure by an initial administration of ketamine hydrochloride (10 mg/kg 1.M.)
followed by dexdomitor (0.015 mg/kg |.M.). The effects were reversed at the end of the session
by administering atipamezole (0.15 mg/kg 1.V.). The plane of anesthesia was monitored with
a pulse oximeter to track heart rate and oxygen saturation in both younger and older subjects.

Scans were performed on a GE MR750 3.0T scanner (General Electric Medical, Milwaukee
WI) using the human 8-channel brain array coil at the Waisman Laboratory for Brain Imaging
and Behavior at the University of Wisconsin-Madison. In order to ensure a safe plane of
anesthesia and recovery, the scanning protocol for animals younger than 6 months lasted
approximately 30 min. For subjects older than 6 months of age, the scanning procedure was
extended to slightly <1 h to improve the signal-to-noise ratio on the diffusion weighted image
(DWI) scan.

High-resolution 3D T1-weighted imaging was performed using an axial Inversion Recovery
(IR) prepared fast gradient echo (fGRE) sequence (GE BRAVO) (T/ =450 ms, TR = 8.684 ms,

TE = 3.652 ms, FOV = 140 x 140 mm, flip angle = 12°, matrix = 256 x 256, thickness = 0.8
mm, gap = -0.4 mm, 80 percent field-of-view in phase encoding direction, bandwidth = 31.25
kHz, 2 averages, total time = 10:46 min) provided an effective voxel resolution of 0.55 x 0.55
x 0.8 mm across the entire cranium. The T2-weighted scan was performed using a sagittal 3D

CUBE FSE sequence (TR = 2500 ms, TE = 87 ms, FOV = 154 x 154 mm, flip angle = 90°,

matrix = 256 x 256, 90 percent field of view in the phase encoding direction, slice thickness =
0.6 mm, gap = 0 mm, bandwidth = 62.5 kHz, ARC parallel imaging with a factor of 2
acceleration in both phase encoding and slice encoding directions, total time = 6:36 min)
across the cranium was acquired with a voxel resolution of 0.6 x 0.6 x 0.6 mm.

Site-newcastle

Newcastle University provided a dataset®®*=° of 14 macaques (12 male, 2 female), aged 3.9 to
13.14 years. All animals were housed and cared for in a group-housed colony, and animals
performed behavioral training on various tasks for auditory and visual neuroscience. Animals
head fixation included an MRI compatible head-post or non-invasive head immobilization,
scanned upright and working on tasks or at rest. All animals had eye tracking, video, and audio
monitoring during the procedure. All but two animals were scanned awake.

All scans were performed using a Vertical Bruker 4.7T scanner specifically designed for
primates, with either a single-channel or a 4-8 channel parallel imaging coil. For each subject's
session, the MDEFT sequence was used. The anatomical (T1) images were captured using a
magnetization-prepared rapid gradient echo (MPRAGE) technique. Each subject had one
scan with no acceleration applied. The settings included a flip angle of 90 degrees, an echo
time (TE) of 3.74 ms, a repetition time (TR) of 2000 ms, and a bandwidth of 284.
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Site-NIMH

The NIMH dataset®®=® includes T1 and T2 data from 3 rhesus macaques, with an age
distribution of 5-7 years (2 female, 1 male). All procedures were approved by the Animal Care
and Use Committee of the US National Institutes of Health (National Institute of Mental Health)
and followed US National Institutes of Health guidelines. The animals were on water restriction
and received their daily fluid intake during their daily testing. Each subject's weight and
hydration level was monitored closely and maintained throughout the experimental testing
phases. Animals were pair-housed throughout the length of the study. Animals were implanted
with a custom-designed and fabricated fiberglass head-post, which was used to immobilize
the head during testing. During testing, animals eye movements were monitored.

MRI data was acquired with a Bruker BioSpec Vertical 4.7T scanner with a Bruker S380
gradient coil. T1 data was acquired at a voxel resolution of (1.5mm x 0.5mm x 0.5mm).

Site-NIMH-CT

The NIMH-CT dataset® includes 3 macaques (2 male, 1 female) with an age distribution of 3
- 6 years. Animals were housed according to the National Institutes of Health Guide for the
Care and Use of Laboratory Animals, at the Central Animal Facility at the NIMH. Monkeys
were trained to perform a fixation task, with a central fixation spot and complex visual objects.
All subjects were anesthetized with isoflurane before anatomical scans. One eye was
monitored visually and gaze direction was recorded for periods when the eye was open.

Anatomical scans for morphometric analysis and alignment of resting state data were collected
on a horizontal 4.7T Bruker scanner. Anatomical scans for morphometric analysis and
alignment of resting state data were collected with a single loop volume coil. T1w data was
collected with an isotropic resolution of 0.6mm (TE: 2.89ms, TR: 2.16s, Tl: 1.1s) with a flip
angle of 15 degrees.

Site-nin

The Netherlands Institute for Neuroscience (NIN) dataset includes data for 2 rhesus
macaques, both male. Data ranges from 5-6 years old. All experiments were approved by the
Institutional Animal Care and Use Committee of the Royal Netherlands Academy of Arts and
Sciences. The animals were implanted with custom-made PEI/PEEK head holders fixed to the
skulls with ceramic screws (Thomas Recording) and acrylic cement (Palacos R+G). The
macaques were sedated with Medetomidine 0.08 ml/kg (concentration 1 mg/ml) and Ketamine
0.07 ml/kg (concentration 100 mg/ml) is given intramuscularly. If the procedure is still ongoing
after ~60 minutes, another dose of 0.07 ml/kg Ketamine is given.

Data was scanned with a Philips Ingenia 3T and an 8-channel phased array receive coil (KU
Leuven). T1w’s were acquired at 0.6mm voxel resolution (TE: 6ms, TR: 13ms, Tl: 900ms) with
a flip angle of 8 degrees.

Site-nki

The Nathan Kline Institute (NKI) dataset*® includes data for 2 rhesus macaques, one male and
one female. Data ranges from 6-7 years old. All methods and procedures were approved by
the NKI Institutional Animal Care and Use Committee (IACUC) protocol. The monkeys were
previously implanted with an MRI-compatible custom built acrylic head post. The macaques
were sedated with an initial dose of atropine (0.05 mg/kg IM), dexdomitor (0.02 mg/kg IM) and
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ketamine (8 mg/kg IM) intubated, and maintained with 0.75% isoflurane anesthesia for the
duration of structural MRI procedures.

Data was scanned with a Siemens Tim Trio 3T and an 8-channel surface coil. T1w’s were
acquired at 0.5mm voxel resolution (TE: 3.87ms, TR: 2500ms, Tl: 1200ms) with a flip angle of
8 degrees.

Site-NKldev

The Nathan Kline Institute (NKI) development dataset collected longitudinal MRI data from 3
animals including 83 scans in total. Dataset comprises of 1 male and 2 females, scanning
from around birth to 1.5 years of age. Data was scanned with a Siemens Tim Trio 3T and a
32 channel siemen’s coil. T1w data was acquired with a voxel resolution of 0.7mm.

The macaques were sedated with an initial dose of dexdomitor (0.01-0.015 mg/kg IM) and
ketamine (5 mg/kg IM). An IV was placed and a saline drip that administered 0.001 mg/kg/hr
of dexdomitor to help maintain anesthesia levels. In addition, the animals were masked and
maintained with 0.75-1.0% isoflurane for the duration of the MRI procedures.

Site-ohsu

The dataset from Oregon Health and Science University contains 2 rhesus macaques (both
male) aged 5 years. Animals were indoor housed with pre-established male partners of similar
age. Pairs were separated for fasting the night before a scan and reunited once fully awake
post scan. Animal husbandry and care is maintained by ONPRC Department of Comparative
Medicine clinical and behavioral support was provided by the Clinical Services Unit and the
Behavioral Services Unit respectively. The animal procedures were conducted in accordance
with National Institutes of Health guidelines on the ethical use of animals and were approved
by the Oregon National Primate Research Center (ONPRC) Institutional Animal Care and Use
Committee. After an overnight fast, the animals were sedated by IM injection with 10 mg/kg of
ketamine for removal from cage and transport, intubation and catheter placement. Once
intubated the sedation level was maintained with 1-1.5% isoflurane. At this time 8-12 mils of
blood was drawn from the femoral vein for blood iron level monitoring and blood banking.
Rectal temperature was taken pre and post scan. Time between initial ketamine sedation and
placement in the coil averaged 20 mins.

During scanning, the head was supported in coil with the use of foam padding and wedges.
Animals were continuously monitored remotely for SpO2, respiratory rate, ETCOZ2, pulse and
blood pressure throughout the scan with measurements being recorded every 10-15 mins.
Body temperature was maintained with a recirculating water mat and room temperature
regulation. Catheter was kept patent with the remote administration of 0.5-1 mL of saline
solution IV at regular intervals.

All scans were collected using a 3 Tesla Siemens Tim Trio scanner with a 15-channel knee
coil. Optimization of the magnetic field was performed prior to data acquisition. T1w data was
acquired with a MPRAGE sequence at a voxel resolution of 0.5 x 0.5 x 0.5 mm (TE: 3.33ms,
TR: 2600ms, TI: 900ms) with a flip angle of 8°. T2w data was acquired at a voxel resolution of
0.5 x 0.5 x 0.5 mm (TE: 407 ms, TR: 3200 ms).
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Site-OHSU-CU

This dataset came from a study that was approved by the Institutional Animal Care and Use
Committee (IACUC) of the Oregon National Primate Research Center (ONPRC)*' and met all
federal regulatory requirements set forth in the Guide for the Care and Use of Laboratory
Animals. The dataset includes 24 macaques with 24 scans, consisting of 12 males and 12
females scanned across an age range of 1 to 2.92 years. The NHPs were first sedated with

ketamine 5 mg kg™ i.m. and subsequently anesthetized with 3% isoflurane with tracheal

intubation. The NHPs were then placed on a mechanical ventilator and isoflurane reduced to
1%. This concentration of isoflurane, which was maintained for the entire duration of the MRI
(3045 min). The NHPs were monitored, and their physiological parameters controlled
throughout anesthesia. were placed headfirst and supine into a Siemens 3T Tim Trio
(Erlangen, Germany) paired with a quadrature transmit, 15-channel receive human “extremity”
RF coil (QED, Cleveland, OH). Data acquisition included four T1-weighted structural images
(repetition time [TR]=2500 ms, time echo [TE]=3.86 ms; 0.5 mm iso-voxels, 128 slices, field
of view [FOV]=108%128 mm).

Site-OHSU-fetal

The dataset from the Oregon National Primate Research Center' contains brain volumes
derived from T2 weighted Half-fourier Acquisition Single-shot Turbo spin-Echo (HASTE)
acquisitions of 28 pregnant macaques consisting of 43 total scans. Subjects ranged from
gestational day (G)85 to G135 (before birth) at time of scanning. The dataset consists of 13
male and 15 female fetuses. Experimental procedures were approved by the Oregon National
Primate Research Center (ONPRC) Institutional Animal Care and Utilization Committee
(IACUC) and conformed to the guidelines set by the National Institute of Health (NIH). Dams
were socially housed indoors and given chow rations twice daily and ad libitum access to
water. Light cycle was set at 12 hrs light/dark. For scanning, dams were first sedated with 5-
15 mg/kg ketamine IM, followed by intubation and maintenance of anesthesia with 1-2%
isoflurane vaporized in 100% oxygen. Dams were placed headfirst and supine into a Siemens
3T Tim Trio (Erlangen, Germany) paired with a quadrature transmit, 15-channel receive
human “extremity” RF coil (QED, Cleveland, OH). Physiological parameters including pulse
rate, arterial oxygen saturation, and respiration were monitored through scanning procedures.

Site-OHSU-UIUC

Site-OHSU-UIUC, provided from Oregon Health and Science University*?, comprises 22 (10
males, 12 females) macaques with 65 scans, ranging from 0.16 to 0.5 years of age. Data was
acquired with a 3T Siemens Tim Trio and a 15 channel knee coil. T1w data was acquired with
an MPRAGE sequence at a voxel resolution of 0.5mm (TE: 3.33ms, TR: 2600ms, TIl: 900ms)
and a flip angle of 8 degrees. T2w data was acquired at a voxel resolution of 0.5mm (TE: 407
ms, TR: 3200 ms).

Animals were born and housed at the Oregon National Primate Research Center. They
received from birth either 1) a combination of breastmilk, a standard nonhuman primate
laboratory diet (Monkey Diet Jumbo 5037, Lab Diet, St. Louis, MO, USA) and a variety of fruits
and vegetables, or 2) one of two nutritionally adequate infant formulas differing in carotenoid
content (Liu et al., 2018; Miranda-Dominguez et al, 2022).

For scanning, monkeys were sedated with an initial dose of ketamine (5 mg/kg), intubated,
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and maintained at ~1% isoflurane anesthesia; respiratory rate, pulse rate, end tidal CO2, and
oxygen saturation were monitored every 10 minutes throughout the procedure.

Site-oxford

The Oxford dataset***° contains structural MRI data from 20 male rhesus macaques ranging
from 2.41 - 6.72 years of age. Monkeys were housed in groups at the Wellcome Centre for
Integrative Neuroimaging. Data was acquired with a 3T whole body scanner and a four-
channel, phased-array, radio-frequency coil in conjunction with a local transmission coil. Due
to an agreement between the initial data collectors and the scanner manufacturer, they did
not disclose the scanner manufacturer. Monkeys were anesthetized during scanning with
ketamine (10 mg/kg) combined with either xylazine (0.125-0.25mg/kg) or midazolam
(0.1mg/kg) and buprenorphine (0.01mg/kg). Macaques also received injections of atropine
(0.05 mg/kg, i.m.), meloxicam (0.2 mg/kg, i.v.), and ranitidine (0.05 mg/kg, i.v.). Local
anesthetic (5% lidocaine/prilocaine cream and 2.5% bupivacaine injected subcutaneously
around the ears to block peripheral nerve stimulation) was also used at least 15 min before
placing the macaque in the stereotaxic frame. Anesthesia was maintained with isoflurane.
Scanning commenced 1.5-2 hours after induction, when the peak effect of ketamine was
unlikely to still be present. Animals were placed in an MRI-compatible stereotactic frame in a
sphinx position for data acquisition. Structural data was acquired with an MPRAGE sequence
at a voxel resolution of 0.5mm (TE: 4.01ms, TR: 2500ms, TI: 1100ms) with a flip angle of 8
degrees.

Site-princeton

The Princeton University Animal Care and Use Committee approved all procedures, which
conformed to the National Institutes of Health guidelines for the humane care and use of
laboratory animals.

Two male rhesus macaques (Macaca mulatta, ages = 3 years, body weights = 4.7/5.5kg) were
scanned on a Siemens MAGNETOM Prisma 3T using an 11cm loop coil (Siemens, Erlangen,
Germany). For all scan sessions, animals were first sedated with ketamine (10 mg/kg IM) and
maintained with isoflurane gas (2.5-3.0%) using an MR-compatible anesthesia workstation
(Integra SP I, DRE Inc, Louisville KY). Animals were placed in the "sphinx" position and their
heads fixed using an MR-compatible stereotaxic frame (1430M, David Kopf Instruments,
Tujunga CA). Siemens wireless physiology sensors were used to monitor EKG, pulse, and
respiratory rate. Body temperature was monitored using a fiber optic probe (FOTS100, BioPac
Systems Inc, Goleta CA). Blood oxygen (SpO2) and end-tidal carbon dioxide (ETCO2) were
monitored with an MR-compatible patient monitor (Model 3150, InVivo Corp, Pleasanton CA).
Artificial ventilation was used to maintain normocapnia. Normothermia was maintained using
blankets and a warm water recirculating pump (Gaymar STP700 T/Pump, Stryker Corp,
Kalamazoo MI) modified with long tubing to reach the MRI bore.

Three T1-weighted volumes were collected with an 3D MPRAGE sequence at a 0.5mm voxel
resolution (TR=2700 ms, TE=2.32ms, TI=850 ms, flip angle=9 deg, averages=3). One T2-
weighted volume was collected at the same resolution with a 3D SPACE sequence
(TR=3500ms, TE=398ms, averages=1).
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Site-queens
The dataset from Queens University includes 13 scans from 13 cynomolgus macaques

(Macaca fascicularis, 6-11 yrs, mean=7.5yrs; body weight: 6.3-12.8 kg). All non-human
primates were housed at the Centre for Neuroscience Studies at Queen’s University
(Kingston, Ontario, Canada) under the care of a lab animal technician and the Institute
Veterinarian. All procedures were approved by the Queen’s University Animal Care Committee
and were in full compliance with the Canadian Council on Animal Care. The neuroimaging
data was acquired using a 3T MRI scanner (MAGNETOM Prisma, Siemens, Erlangen,
Germany) and a 24-channel macaque head coil designed by the Robarts Research Institute
for use in the 3T environment (University of Western Ontario).

During scanning, anesthesia was induced with ketamine (6 mg/kg, intramuscular) and
dexmedetomidine (4.5 ug/kg, intramuscular). Glycopyrrolate (0.013 mg/kg, intramuscular) was
given and the animal was intubated (4.0 endotracheal tube) and placed on isoflurane
anesthesia (0.5-1%). A catheter was inserted into the saphenous vein, and after the animal
was transferred into the MRI bore, anesthesia was maintained using intravenous
dexmedetomidine (DEX) (4.5 ug/kg/hr) and 0.6% isoflurane via a calibrated vaporizer with
100% oxygen at 1.5l/min. The anesthesia protocol was based on literature on relative
preservation of functional connectivity in DEX anesthesia in macaques (Autio et al., 2020).
Body temperature was maintained with an MRI-safe ConRad Thermal Blanket (DRE
Veterinary). SPO2, heart rate, EKG, respiration rate and non-invasive blood pressure.

T1w data was collected with an isotropic resolution of 0.5mm (TE: 2.23ms, TR: 2.2s, Tl: 0.9s)
with a flip angle of 8 degrees. T2w data was also collected with an isotropic resolution of
0.5mm (TE: 0.562s, TR: 3.2s) and a flip angle of 120 degrees.

Site-rockefeller

The Rockefeller University dataset* includes anatomical data from 6 monkeys. The species
included were 5 Macaca mulatta and 1 Macaca fascicularis, with an age distribution of 3-5
years and weight distribution between 5.4-7.3 kg. All animals were male. The animals were
pair-housed, with all animal procedures conducted following the National Institutes of Health
Guide for Care and Use of Laboratory Animals, and were approved by the Institutional Animal
Care and Use Committees of The Rockefeller University (protocol number 12585-H) and Weill-
Cornell Medical College (protocol number 2010-0029).

Monkeys were induced with ketamine (3 mg/kg) and dexmedetomidine hydrochloride (0.02
mg/kg), and anesthesia was maintained with isoflurane (0.5%-0.6%). The time between
anesthesia and scanning was minimal, with monkeys placed in the scanner as soon as
isoflurane anesthesia was stable. Head fixation was achieved with a head-post attached to an
acrylic headcap, and monkeys were scanned in the sphinx position. An IV contrast agent,
ferumoxytol (8-10 mg per kg of body weight), was administered. During scanning,
physiological monitoring included electrocardiogram (sampling rate 400 Hz) and breathing
rate (sampling rate 50 Hz).

All scans were collected using a Siemens TIM Trio 3T scanner with AC88 gradient. An 8-
channel phased-array receive coil with a single loop transmit coil was used. Structural T1:
MPRAGE sequence was used, with a voxel resolution of 0.5 x 0.5 x 0.5 mm, TE: 2.95ms, TR:
2300ms, Tl: 1100ms, and a flip angle of 8°.
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Site-sbri

The Stem Cell and Brain Research Institute (SBRI) provided a dataset*’~>® of 16 rhesus
macaques, 9 male and 7 female, with an age distribution of 3.6 - 13.7 years. Animals were all
housed at the Stem Cell and Brain Research Institute in groups. For structural acquisition,
monkeys were anesthetized with 15mg/kg of Zoletil 30 minutes after premedication with 0.1
mg/kg atropine sulfate. A MRI-compatible stereotaxic frame (Kopf, CA, USA) was used to
secure the head and reduce variability in the measure. Scans were acquired with the monkey
in a sphinx position, head first into the scanner. During all procedures heart rate and PO2 were
monitored. During isoflurane anesthesia, ventilation parameters and C02 were also monitored.
Data were sampled at 1/15min for vet record. None of these parameters were recorded
continuously. The animal was intubated and ventilated with oxygen enriched air and 1%
Isoflurane. Data was acquired with a Siemens 1.5T scanner, with a T1w voxel resolution of
0.6mm (TR: 2.16s, TE: 2.89s).

Site-ucdavis

In the first data release, site-ucdavis (University of California, Davis, Center for Neuroscience
and California National Primate Research Center, Davis) provided anatomical data from 19
female rhesus macaques, ranging from 18.5-22.5 years of age. The California National
Primate Research Center (CNPRC) is staffed with 7 full-time veterinarians and an extensive
staff of veterinary and husbandry technicians. Monkeys were housed in pairs (N=16) or singly
(N=4) indoors in standard primate caging, in housing rooms containing other rhesus monkeys.
Single-housed monkeys had failed repeated attempts to find compatible cage mates from
elsewhere in the colony. All monkeys received environmental enrichment consisting of toys
and novel food items. Monkeys were anesthetized with ketamine, dexmedetomidine, and
buprenorphine prior to intubation and placement in stereotaxic frame, with isoflurane
maintenance anesthesia. Monkeys were scanned in the sphinx position, head first. During
scanning, monkeys had the following measurements monitored: pulse rate, SpO2, end tidal
CO2, inspired/expired isoflurane, blood pressure.

Structural data was acquired with a Siemens Skyra 3T and a 4-channel clamshell coil. T1w
data was collected with a voxel resolution of 0.3mm (TE: 3.65ms, TR: 2500ms, TI: 1100ms),
and a flip angle of 7 degrees. T2w data was also collected with a voxel resolution of 0.3mm
(TE: 307ms, TR: 3000ms).

Site-ucdavis-2

The second release of data from the University of California, Davis is comprised of two
longitudinal datasets, with 388 structural scans from 56 unique macaques. The dataset
includes 28 females and 28 males, with an age range of 0.02 - 11.48 years. Data was acquired
with two different MRI scanners; a 3T Siemens Trio scanner (T1w sagittal data was collected
with a voxel resolution of 0.7mm isotropic (TE: 4.73ms, TR: 2.2s, Tl: 1.1s with a flip angle of
7 degrees.) and a 1.5T GE Genesis Signa (TE:6ms, TR: 27ms, flip angle 30, voxel size 0.625
x 0.625 x 0.7 mm). T2w data was also collected with a voxel resolution of 0.3mm and a flip
angle of 5 degrees. Propofol was the anesthetic used at both scanners and was delivered
with an MRI compatible IV pump.

56-60
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Site-ucdavis-3

The third release of data from the University of California, Davis®' includes 95 scans from 95
rhesus macaques, with 44 males and 51 females, and an age range of 2 to 6 years. Subjects
were selected from large social groups living in outdoor corrals, and were temporarily pair
housed indoors during the week of scanning. All procedures were approved by and adhered
to guidelines established by the Institutional Animal Care and Use Committee. Prior to
scanning, the subjects were anesthetized with ketamine (~10 mg/kg body weight), intubated,
and placed on isoflurane anesthesia. Anesthesia was maintained with 1-2% isoflurane gas
throughout the scanning. Once fully anesthetized, the subjects were fixed within an MRI-
compatible stereotaxic frame and placed inside the magnet in the sphinx position. Heart rate,
respiration, and oxygen saturation were continuously monitored during the scan.

Structural data was acquired using a 3T Siemens Skyra scanner and a dedicated rhesus 8-
channel surface coil. T1-weighted scans were collected at a voxel resolution of 0.3 mm
isotropic (TE: 3.368 ms, TR: 2.5 s, Tl: 1.1 s) with a flip angle of 7 degrees.

Site-uwmadison

The UW-Madison Rhesus MRI dataset®”"® is one of the PRIME-DE datasets, including
anatomical data from 592 macaque monkeys at two different sites. Subject ages range from
0.8-4.5 years, with 327 males and 265 females. Monkeys were housed at the Wisconsin
National Primate Research Center and the Harlow Center for Biological Psychology. Standard
husbandry in a temperature- and humidity-controlled vivarium included a 12-h light/dark cycle,
daily feeding sessions, ad libitum access to water, and daily enrichment. For scanning,
monkeys were anesthetized using ketamine (15mg/kg, IM), then given medetomidine (0.03
mg/kg, IM) or dexmedetomidine (0.015 mg/kg, IM). Additional doses of ketamine were
administered as needed to maintain anesthesia. Head fixation for scanning included a custom
MRI compatible stereotaxic frame, with ear and tooth bars that fit inside the MR coil. Monkeys
were scanned in the sphinx position with the nose pointing into the scanner. Heart rate and
oxygen saturation were monitored continuously and recorded at minimum every 15 minutes
throughout the MR imaging procedure. Heated water bags, bottles, or pads and towels,
blankets, and bubble wrap were used to maintain body temperature during imaging.

Scanning sequences at the Wisconsin National Primate Research Center included anatomical
scans with a GE Discovery MR750 3T scanner. Voxel resolution is 0.2734 x 0.5 x 0.2734 mm
(TE: 5.412ms, TR: 11.4ms, Tl: 600ms), with a flip angle of 10 degrees and a slice gap of
0.5mm. Monkey MRI data at the Harlow Center for Biological Psychology was acquired with
a GE Signa Excite 3T scanner, at a voxel resolution of 0.2734 x 0.5 x 0.2734 mm (TE: 1.88ms,
TR: 8.648ms, Tl: 600ms), with a flip angle of 10 degrees and a slice gap of 0.5mm.

Site-uminn

Ten rhesus macaque monkeys’'™"® (macaca mulatta) were scanned on a Siemens 7T with a
4-channel clamshell coil (Langore NMRBio_2020). All animal procedures were approved by
the Institutional Animal Care and Use Committee of the University of Minnesota and complied
with United States Public Health Service policy on the humane care and use of laboratory
animals. Monkeys received ketamine 10 mg/kg, midazolam 0.25mg/kg, and atropine
0.04mg/kg IM and were intubated and maintained on isoflurane (1-3%, inhalation) during the
scan. The animal was wrapped in warm packs to maintain body temperature. A circulating
water bath was used to provide additional heat. A ventilator was used to prevent atelectasis
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of the lungs, and to regulate CO2 levels. The animal was observed continuously, and vital
signs and depth of anesthesia were monitored and recorded at 15-min intervals. Rectal
temperature (99.6 F), respiration (10-15 breaths/min), end-tidal CO2 (25-40),
electrocardiogram (70-150 bpm), and oxygen saturation (>90%) were monitored using an MRI
compatible monitor (IRadimed 3880 MRI Monitor, Winter Springs, FL).

All animal procedures were approved by the Institutional Animal Care and Use Committee of
the University of Minnesota and complied with United States Public Health Service policy on
the humane care and use of laboratory animals.

For scanning, T1w data was acquired with an MPRAGE sequence at 0.5mm isotropic
resolution (TR: 3500 ms, TE: 3.56 ms, FOV: 131 x 150). T2w data was acquired with a 2D
Turbo spin echo sequence, at 0.58 mm isotropic resolution (TR: 8000 ms, TE: 68 ms, FOV:
112 x 150) with a flip angle of 120 degrees.

Site-uwo

The University of Western Ontario (UWO) dataset’® includes T1w scans from 2 rhesus
macaques, both male, ranging from 4 to 7 years of age. Experimental procedures on
nonhuman primates were in accordance with the Canadian Council of Animal Care policy and
a protocol approved by the Animal Use Subcommittee of the University of Western Ontario
Council on Animal Care. Animals were housed in pairs. For scanning, animals were first
sedated with 0.1-0.2 mg/kg acepromazine, followed by 7.5 mg/kg ketamine hydrochloride by
intramuscular injection. Anesthetic induction was accomplished by the administration of
2.5mg/kg propofol via an intravenous catheter in the saphenous vein. Anesthesia was
maintained with 1 to 2% isoflurane with oxygen (1.5-2 L/min) through endotracheal intubation
and it was reduced to 1% during fMRI acquisition. Monkeys entered the scanner in the sphinx
position. Heart rate and SpO2 were monitored throughout via a pulse oximeter and end-tidal
CO2 and respiration rate were monitored via a capnometer. Temperature was recorded before
and after the scans and was maintained within the normal range using heating discs, covers,
and thermal insulation. Animals received subcutaneous fluids (10 mi/kg/hr) before and after
the scan.

Structural scans were acquired with a Siemens Magnetom 7T scanner and a custom-made
24-channel phased array receive coil with an 8-channel transmit coil. An MPRAGE sequence
was used for T1w, acquired at a voxel resolution of 0.5mm (TE: 3.88ms, TR: 6500ms, TI:
800ms) at a flip angle of 4 degrees.

Site-wake-forest

The dataset from the Wake Forest University School of Medicine’’ includes 17 (17 female)
rhesus monkeys (Macaca mulatta) with a total of 17 scans. Structural MRIs were collected
every 3 months from 2.63 years (31.56 months) of age to 30.64 years of age. All surgical and
animal use procedures were reviewed and approved by the Institutional Animal Care and Use
Committees of Wake Forest University, in accordance with the U.S. Public Health Service
Policy on Humane Care and Use of Laboratory Animals and the National Research Council’s
Guide for the Care and Use of Laboratory Animals.

In preparation for the MRI scan, anesthesia was induced using ketamine (5-10 mg/kg) and
dexmedetomidine (0.015mg/kg), and was maintained using isoflurane. The animals were
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intubated and artificially ventilated at about 20 breaths per minute. Expired CO2 was
monitored and maintained between 35 and 45 mmHg. Animals were scanned under isoflurane
anesthesia at 1%—1.5%. Heart rate and oxygen saturation levels were monitored using a pulse
oximeter. Their body temperature was maintained using warm blankets. The MRI system was
a 3 Tesla Siemens MAGNETOM Skyra (Siemens Healthcare, Erlangen, Germany).
Anatomical images were acquired using a T1-weighted MPRAGE sequence: TR = 2700 ms,
TE = 3.32 ms, inversion time = 880, FOV = 128 x 128 mm, 192 slices of 0.5 mm thickness,
resolution = 0.5 mm isotropic.
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