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Abstract

The biotechnology of spatial omics has advanced rapidly over the past few years, with
enhancements in both throughput and resolution. However, existing annotation pipelines
in spatial omics predominantly rely on clustering methods and lack the flexibility to
integrate extensive annotated information from single-cell RNA sequencing (scRNA-seq)
due to discrepancies in spatial resolutions, species, or modalities. Here we introduce
the CAESAR suite, an open-source software package that provides image-based spatial
co-embedding of locations and genomic features. It uniquely transfers labels from scRNA-
seq reference data, enabling the annotation of spatial omics datasets across different
technologies, resolutions, species, and modalities, based on the conserved relationship
between signature genes and cells/locations at an appropriate level of granularity. Notably,
CAESAR enriches for location-level pathways, allowing for the detection of gradual
biological pathway activation within spatially defined domain types. We demonstrate the
advantages of CAESAR through a comprehensive analysis of five spatial omics datasets
encompassing diverse technologies, resolutions, and modalities. Across these applications,
CAESAR achieved substantial improvements in annotation accuracy (45.45%-4333.33%)
by transferring cell-type labels from either multiple reference data, or across different
species and modalities. As a result, CAESAR effectively recovers intricate structures in
mouse olfactory bulb and embryo, and unveils tumor microenvironment heterogeneity,
with exceptional efficiency and flexibility.
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Introduction

Spatial omics is accomplished via a set of breakthrough technologies that enable the spatial
profiling of molecular parameters, including gene and protein expression and chromatin structure.
One of the techniques used, spatially resolved transcriptomics (SRT), requires a range of
advanced technologies that enhance the throughput of expression profiling , from targeted to
transcriptome-wide gene measurements, and improve the spatial resolution, from low resolution
to subcellular resolution [IH3]. In parallel with the evolution of SRT technologies, other
spatial omics technologies, such as spatial-ATAC-seq [4] and spatial-CITE-seq [5], have also
seen rapid advancements. By mapping cell/domain types in a scalable manner, emerging
spatial omics technologies offer unprecedented opportunities to characterize transcriptomic
and cellular landscapes within a spatial context. Many spatial omics methods have been
developed that incorporate routine analytical steps, such as the detection of spatially variable
genes, dimensionality reduction, clustering, differential gene expression analysis, and gene set
enrichment analysis [6H10]. However, most of these methods are “cluster-centric”, predominantly
relying on accurately defined clustering to identify meaningful gene features. This reliance
becomes problematic when samples contain cells that are undergoing active state transitions,
a phenomenon commonly observed in tumor or developmental datasets [I1HI4]. Moreover,
a large number of single-cell RNA sequencing (scRNA-seq) datasets have been thoroughly
characterized, providing abundant transcriptomic information with annotations for both human
and mouse samples.

To annotate scRNA-seq datasets using these predefined references, the use of cluster-centric
methods for cell annotation has been proposed. These methods typically either transfer cell-type
labels from reference data to target data [I5HI7] or model marker-gene expression patterns
in the target data [I8-20]. The former strategy requires an additional batch-removal step,
while the latter demands access to high-quality marker genes. Due to discrepancies between
spatial omics and scRNA-seq data, annotating spatial omics data from diverse technologies,
spatial resolutions, species, or modalities that leverage reference information from predefined
scRNA-seq datasets is challenging. To fully harness the potential of these emerging technologies
and drive breakthrough discoveries in molecular biology, co-embedding has emerged as a
promising approach to overcome the limitations of clustering-centric pipelines [21H23]. Existing
co-embedding methods based on multiple correspondence analysis (MCA) [21], 23] or multi-
relation graph models [22] are employed for various tasks, including signature gene detection,
pathway enrichment analysis, and multimodality co-embedding. However, as cluster-agnostic
methods, they often fail to fully incorporate spatial information or histology images during
co-embedding, leading them to potentially overlook valuable information. Moreover, these
methods are limited in their ability to use labels from rich reference datasets to annotate spatial
omics datasets across different technologies, resolutions, species, and modalities.

To overcome these limitations, we have designed the CAESAR suite, a unified and versatile
software package that offers a general spatial co-embedding framework based on a feature-
weighted scheme that leverages both spatial information and histology images. By assuming a
conserved relationship between genomic features and cells/locations within each cell/domain
type at an appropriate level of granularity, the CAESAR suite flexibly annotates spatial
omics datasets across technologies, resolutions, species, and modalities by transferring cell-type
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labels from predefined scRNA-seq reference data in a cluster-agnostic manner, and detects
cell/domain-type-specific signature genes. Moreover, the CAESAR suite includes functions for
hypothesis testing to identify pathways enriched in each cell/location or cell/domain type. We
illustrate the benefits of using the CAESAR suite through extensive simulations and analyses of
a diverse range of example datasets collected using various spatial omics technologies, species,
and resolutions: 10x Xenium datasets of four human breast cancer (BC) sections, 10x Visium
datasets of four human hepatocellular carcinoma (HCC) sections, Pixel-seq and ST datasets of
the mouse olfactory bulb (MOB), and a spatial ATAC-seq dataset of a mouse embryo.

Results

Overview of CAESAR

The CAESAR suite is a novel open-source software package that co-embeds spatial locations
and gene features into a unified low-dimensional space, utilizing both histology images and
spatial coordinates. Within this space, the relative distance between locations and gene features
can be used to characterize transcriptomic specificity, enabling a range of downstream analytical
tasks (Fig. |l] and Methods). When cell types/domains are predefined, as in labeled reference
datasets, the CAESAR suite detects cell- or domain-type-specific signature genes by evaluating
the relative distances between the cells/locations and gene features. In scenarios where reference
data originate from multiple batches or sections, heterogeneous batch effects can significantly
distort expression patterns, complicating data integration. However, within a single batch or
section, the relationships between cells/locations and genomic features remain conserved with
respect to the cell or domain types, with batch effects merely introducing systematic noise.
Leveraging these conserved relationships, the CAESAR suite exhibits remarkable flexibility
in detecting signature genes, annotating cells or locations through knowledge transfer via
labeled reference data and seamlessly integrating multiple reference and target datasets. As
a proof of concept, we demonstrate that the CAESAR suite is capable of performing spatial
annotations, with confidence level assessed via a permutation test, using knowledge transferred
from scRNA-seq or SRT reference data to spatial omics data derived from diverse technologies,
species, resolutions, and modalities. By analyzing the distances between spatial locations and
sets of genes, such as pathway genes, the CAESAR suite detects gradual changes in pathway
activation across different spatial domains. This is achieved through permutation and Wilcoxon
tests, providing spot-level and cell- or domain-type-level enrichment significance, respectively.

Validation using CosMx data

We conducted comprehensive simulations using a CosMx dataset for lung cancer [24] and
rigorously evaluated the performance of the CAESAR suite by comparing it with Cell-ID in
terms of dimensionality reduction, signature gene detection, and annotation accuracy. The
evaluation metrics included average silhouette width (ASW) [25], signature score (SigScore; see
Methods) and classification accuracy (ACC) [26]. Ideally, when given a set of genes specific to
a particular cell type, the optimal method should co-embed these genes in close proximity to
the corresponding cells. To quantify this specificity, we introduced the SigScore, which attains
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a value of 1 when all cell-type-specific genes are top-ranked by their average distance to cells of
the corresponding type.

In Scenario 1, we used all fields of view (FOVs) from section Lung5 repl as the reference
dataset and FOVs from three other sections (Lungb rep2, Lungl3, and Lungl2) as target
datasets, representing varying levels of heterogeneity between reference and target datasets
(Supplementary Fig. S1). In this scenario, Lungb repl and Lungb rep2, derived from two
consecutive sections from the same donor, exhibited a high degree of similarity. In Scenario 2,
we binned 5 cells per location in the target datasets while maintaining the same reference data,
to evaluate the performance of the CAESAR suite when confronted with a low-resolution target
dataset. Conversely, in Scenario 3, the target data remained consistent with Scenario 1, and we
binned 5 cells per location in the reference datasets to assess the CAESAR suite’s performance
using a low-resolution reference dataset. The details of these simulations are provided in the
“Methods” section.

We first evaluated the CAESAR suite’s ability to generate informative embeddings compared
to the MCA employed by Cell-ID and GSDensity in co-embeddings, using ASW as the metric
(Fig. [1] ¢, top panel). The CAESAR suite yielded higher ASW values in the estimated image-
based spatial embedding of locations, indicating that its (co)-embeddings better preserved the
biological differentiation. We then assessed the performance of both the CAESAR suite and
Cell-ID in signature gene detection (Fig. [1| ¢, middle panel). The CAESAR suite exhibited
a higher SigScore, indicating its superior capability in detecting signature genes. While the
ACC of all the methods declined with increasing heterogeneity, the CAESAR suite consistently
outperformed Cell-ID (Fig. c, bottom panel, and Supplementary Fig. S2). Notably, iCAESAR,
which integrates information from multiple reference datasets, demonstrated the most stable
performance with minimal variation in its ACC, highlighting the advantage of utilizing multiple
references. Furthermore, use of the CAESAR suite resulted in a substantially smaller proportion
of unassigned cells than Cell-ID, with iCAESAR providing an even further reduced proportion
(Supplementary Fig. S3), indicating the enhanced cell-type detection performance of iICAESAR.

Subsequently, we evaluated the performance of the CAESAR suite for pathway detection
in comparison to other methods. In our simulations, pathway gene sets were generated using
differentially expressed genes specific to cell types, and the area under the curve (AUC) was
used to evaluate the performance in pathway recovery across various pathway scores. As
illustrated in Fig. [Id, the CAESAR suite demonstrated superior performance in pathway
detection, consistently surpassing Cell-ID and GSDensity in terms of AUC values.

CAESAR suite facilitates spatial annotations using multiple scRNA-
seq reference datasets

We applied the CAESAR suite and other methods to analyze five published spatial omics datasets
from different sequencing platforms: 10x Xenium, 10x Visium, ST, Pixel-seq, and Spatial
ATAC-seq. For spatial annotation, we leveraged scRNA-seq reference data and transferred
the labels to spatial omics datasets derived from diverse technologies, species, resolutions, and
modalities. Upon annotating the target spatial omics data, the CAESAR suite was used to
detect cell- or domain-type-specific signature genes and perform hypothesis testing for the
detection of pathways enriched within each cell or location and/or cell or domain type.
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To harness the reference scRNA-seq data from 26 human BC patients [27], we first analyzed
human BC data generated using 10x Xenium [28] comprising four sections from two BC patients,
with two serial replicates for each patient (Supplementary Fig. S4). We observed striking
batch effects among the 26 scRNA-seq reference data in UMAP (Fig. 2h) with substantial
heterogeneity exhibited in the annotated cell-type proportions, especially for cancer epithelial
cells (Fig. 2b). Using the CAESAR suite that integrates all 26 reference datasets (named
iCAESAR), we sequentially (a) detected cell-type-specific signature genes in each of the 26
reference datasets, (b) aggregated a signature gene list from the 26 reference datasets by
weighting their occurrence across the references, (c) estimated spatial co-embeddings with
histology images for the target BC sections, and (d) performed spatial annotations based on
the average distance between each location and signature genes identified in step (b), with
the entire annotation process performed as shown in Fig. [2k. The resulting co-embedding of
cells/locations and the top-ranked signature genes revealed conserved relationships across both
the reference and target datasets (Fig. 2c and Supplementary Fig. S5). In the reference data,
we detected CDSFE (in 20 samples, including Samples 1 and 25) and CD3D (in 18 samples,
including Sample 1) as signature genes for T cells, among others (Supplementary Data 1).
CDSFE functions as a subunit of the T-cell receptor complex, playing a crucial role in CAR-T
cell therapy [29], while CD3D has been implicated to participate in lymphocyte infiltration
and immune checkpoint regulation, and serves as a prognostic biomarker for BC [30]. These
signature genes were aggregated into a gene list used for annotating the target BC dataset
by iCAESAR (Supplementary Fig. S6). By removing unwanted variations, we visualized
the expression patterns of the top five signature genes for each annotated cell type across
all four sections and observed the distinct signature profiles for each cell type (Fig. [2d; see
Methods). Notably, many of these genes were reported to be differentially expressed across
various cell types, i.e., MS4A1 and BANKI1 in B cells [31, B2]; CD3E, IL7R, CD3D, and
CD247in T cells [29, B3H35]; and LYPDS3, FASN, and FOXA1 in cancer epithelial cells [36H3§],
while the roles of MLPH and SERHL2, specifically detected in cancer epithelial cells, remain
underexplored in BC.

To evaluate the performance of CAESAR in spatial annotation, we applied CAESAR and
Cell-ID to each of the 26 references, and iCAESAR to all 26 references to annotate the BC
dataset, and generated spatial heatmaps illustrating the cell-type assignments, as shown in
Fig. and Supplementary Fig. S7-S8. The majority of the CAESAR annotation results
demonstrated high confidence levels (Supplementary Fig. S9). iCAESAR precisely detected
cancer epithelial cells and other immune-relevant cell types, while Cell-ID labeled most cells as
cancer epithelial in BC sections 1 and 2, with a higher proportion of normal epithelial cells in
sections 3 and 4. Notably, the iCAESAR results exhibited a significantly lower proportion of
unassigned cells than those of Cell-ID, with an average of 1.22% unassigned cells compared
to Cell-ID’s 95.04% across the four sections, indicating its enhanced capability in cell type
detection (Supplementary Fig. S10). Using all 26 reference datasets, iCAESAR demonstrated
further improved stability compared to the use of each reference individually with CAESAR,
although both showed substantial improvements in annotation accuracy over Cell-ID, with mean
(standard deviation) ACC values of 0.819 (0.055), 0.665 (0.186), and 0.015 (0.066), respectively
(Fig. 2, upper panel). While CAESAR/iCAESAR demonstrated superior performance over
Cell-ID in its ability to generate co-embeddings to distinguish among distinct cell types, with
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mean ASW scores of 0.115 and 0.042, respectively.

Next, we examined the pathways enriched within the BC dataset. First, we detected
significantly enriched pathways within the categories of GO biological process (GOBP), KEGG,
Reactome, chemical and genetic perturbations (CGP), and cancer modules (CM) using a graph-
based test (see Methods), with 393, 19, 38, 327, and 69 pathways detected, respectively, under
an adjusted p-value of less than 0.05. Subsequently, we applied CAESAR to detect differentially
enriched pathways among annotated cell types, summarizing the top five most significantly
enriched pathways for each cell type using a dot plot (Fig. ) Among these, cancer-related
module 139 and Doane breast cancer classes up were enriched in cancer epithelial cells, while
vasculature development was enriched in perivascular-like cells (PVLs), endothelial and cancer-
associated fibroblasts (CAFs). To further examine the enrichment of pathways in each location,
we applied CAESAR to perform spot-level enrichment analysis. CAESAR exhibited superior
performance to Cell-ID in pathway activity scoring, with mean SigScore values of 0.898 and
0.624, respectively (Fig. , bottom panel). We summarized the cell-type-specific pathway
activation data across each section using a spatial heatmap (Fig. and Supplementary Fig.
S11-14), which highlighted that vasculature development was highly enriched at the boundary
of cancer epithelial cells, while Doane breast cancer classes up was predominantly enriched
in cancer epithelial cells. Further enrichment analysis revealed that the cell types from each
section were highly enriched in several common pathways, suggesting that the annotations
provided by the CAESAR suite were well-aligned across sections (Supplementary Fig. S15-16).

CAESAR suite enables spatial annotations of human HCC data
transferred from scRNA-seq in mouse HCC

Next, we applied the CAESAR suite and Cell-ID to analyze four sections of human HCC
data obtained from 10X Visium [39]. The dataset comprised two tumor sections (HCC1 and
HCC2) and two tumor-adjacent tissue sections (HCC3 and HCC4) from an HCC patient
(Supplementary Fig. S17a). To demonstrate the robustness of the CAESAR suite using
reference data across species, we performed annotations of the four target HCC sections using
either human [40] or mouse [41] scRNA-seq data as references (Fig. [Bp; see Methods). Taking
manual annotations as the ground truth (Fig. and Supplementary Fig. S17a), the spatial
heatmaps generated by CAESAR, using either human (Fig. |3c and Supplementary Fig. S17b) or
mouse reference data (Fig. [3d and Supplementary Fig. S17c), exhibited marked improvements
over those generated by Cell-ID, which showed a substantial proportion of unassigned cells.
Notably, the annotations CAESAR made using mouse reference data closely aligned with
those obtained using the human reference data, achieving mean accuracies of 0.702 and 0.669,
respectively (Fig. [3g). Compared to those made by Cell-ID, CAESAR achieved a substantial
gain in accuracy, 495.5% and 677.7%, respectively. A detailed examination of the annotations
based on the human and mouse references revealed that HPC-like cells, an annotation absent
from the mouse data, were detected as HCC cells using the mouse reference (Supplementary
Fig. S18). HPC-like cells are known to exhibit similarities to HCC cells and contribute to
HCC formation through their activation [42, [43]. An analysis of annotation confidence further
demonstrated consistent species-agnostic results (Supplementary Fig. S19).

Using CAESAR with a single mouse HCC reference dataset, we first (a) detected cell-type-



243

244

245

246

247

248

249

250

251

252

253

254

255

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

274

275

276

278

279

280

281

282

283

284

specific signature genes within the reference data, (b) estimated spatial co-embedding in the
target HCC sections, and (c¢) performed spatial annotations based on homologous genes of
human and mouse. The resulting visualization of co-embeddings for the cells/locations and
the top signature genes revealed conserved relationships across both the reference and target
datasets (Fig. ) For example, the genes Rnf128 and Acoz2, which are unique to HCC cells in
mice, were detected as signature genes in human HCC sections. Similarly, Mmp23 and Tpm2,
associated with fibroblasts, were also detected in the human HCC sections. After removing
unwanted variations, we visualized the expression levels of the top six signature genes for each
cell type across all four sections (Fig. [Blg; see Methods). Several of these genes have been
reported to be enriched in specific HCC cell types, such as IGLC2 in B/Plasma cells [44] and
RNF128 and ABCB11 in HCC cells [45], 46]. Notably, RNF'128 promotes HCC progression
through the activation of the EGFR/MEK/ERK signaling pathway [45] while ABCB11 is
associated with a patient’s susceptibility to HCC development [46].

We further applied CAESAR to an enrichment analysis, identifying 1,303, 61, 253, 1,312, 194,
and 2,213 significantly enriched pathways in categories in the GOBP, KEGG, Reactome, CGP,
CM, and immune signatures database (ImmuneSigDB), respectively, all with an adjusted p-
value of less than 0.05. Subsequent analysis revealed significant differences in these pathways at
the cell/domain-type level (Fig. ) Pathways predominantly enriched in HCC cells contained
liver cancer subtypes and survival and proliferation mechanisms, such as the Reactome pathway
involving SREBF and SREBP. The high expression of SREBP-1 in tumors has been linked
to improved 3-year overall and disease-free survival rates in HCC patients, and thus SREBP-
1 potentially promotes tumor progression by enhancing cell growth and metastasis [47-49].
Pathways enriched in stroma/immune cells are involved in the regulation of immune responses,
cell signaling, protein interactions, and vasculature development. The spatial heatmaps of
these differentially enriched pathways (Fig. [3i and Supplementary Fig. S20) indicated that the
vasculature development pathway was prominently activated at the boundaries of HCC cells
but not within HCC regions. This suggests that the role of vasculature development at the
tumor periphery and within the tumor microenvironment may be consistent across various
cancer types [50, [51].

CAESAR suite accurately recovers M OB layers in SRT datasets with
low or high resolution

To demonstrate the ability to annotate cell/domain types in SRT data with varying resolutions,
we applied the CAESAR suite to an analyses of MOB datasets from the ST or Pixel-seq
platform. ST represents an earlier SRT technology with a 100-um diameter resolution, while
Pixel-seq is a more recent technology offering near-single-cell resolution.

We first applied CAESAR and Cell-ID to annotate low-resolution ST MOB dataset using
scRNA-seq reference data with coarse-grained labels for five layers: granule cell (GC), mitral
and tufted cell (M/TC), Olfactory sensory neurons (OSNs), periglomerular cell (PGC), and
external plexiform layer interneuron (EPL-IN) [52]. Compared to the manual annotations
(Fig. , left panel), CAESAR demonstrated superior performance in accurately reconstructing
the MOB layer structure (Fig. [4h, middle panel), with a heatmap of confusion matrix indicates a
strong alignment between the manual annotations and CAESAR predictions (Fig. ), whereas
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Cell-ID struggled to capture the MOB architecture, resulting in a considerable number of
unassigned cells (Fig. , right panel). Further analysis led to a visualization of the conserved
relationships between locations and genes across both datasets (Supplementary Fig. S21). For
the low-resolution dataset from ST, we applied CAESAR to estimate the cell-mixing proportions
for each location (Supplementary Fig. S22-S23), and distinct cell-type distributions across
different domains were revealed. For example, Domain GC was predominantly composed of
GC, immature neurons, and transitional neurons, while Domain OSNs was primarily occupied
by OSNs.

Next, we applied CAESAR and Cell-ID to annotate the high-resolution Pixel-seq MOB
dataset using scRNA-seq reference data with fine-grained labels [53]. Compared to the original
annotations of the target dataset, CAESAR achieved 45.45% higher annotation accuracy than
Cell-ID (Fig. ), and the spatial heatmaps reflect the fine structural consistencies with the
delineations in the spatial heatmap of the logarithm of unique molecular identifiers (UMIs)
(Fig. , left panel). An enhanced visualization of expression with heatmaps for each cell type
(Supplementary Figure S24) revealed the distinct spatial patterns of the cell types, particularly
OSNs, mesenchymal (Mes), and PGC, consistent with the cell-type probability heatmaps.

In the annotation, we first visualized the co-embeddings of cells and the top two signature
genes from the fine-grained MOB reference with the high-resolution Pixel-seq dataset in the
UMAP plots (Fig. ) In the near-single-cell resolution target data, we observed a considerable
overlap of signature genes for each cell type, such as Den and Asgri for Mes, Lrrtm1 and
Otop2 for M/TC, and Penk and Icam5 for GC, indicating the preserved relationships between
cells/locations and genes. Of note, Icams-knockout mice have been shown to experience
experimental autoimmune encephalomyelitis in the chronic phase, highlighting Icamd’s neuro-
protective role in progressive neurodegeneration [54]. We visualized the expression patterns
of the top five signature genes for each annotated cell type, and observed distinct cell-type
expression patterns (Supplementary Fig. S25). The spatial distributions of the expression of
the top signature genes (Fig. , upper panel) closely aligned with the annotated cell types
(Fig. 4, middle panel).

Finally, we applied CAESAR to detect differentially enriched pathways in the GO database
between annotated cell types, with enrichment scores visualized in spatial heatmaps (Fig. [4g,
bottom panel, and Supplementary Fig. S26). We found that the neuron neurotransmitter
transport was enriched in neural M/TCs, indicating its crucial role in supporting M/TCs’
neurotransmission and olfactory signal modulation. The top differentially enriched pathways
for each cell type, which are presented in Fig. [4f, indicated Mes cells were significantly enriched
in activated transmembrane transporter activity, particularly ion transporter activity, mirroring
the mechanism in the nervous system by which neurons use ion transmembrane transport
to generate action potentials for information transmission [55, 56]. CAESAR outperformed
Cell-ID and GSDensity in scoring the cell-type-specific pathway activity, achieving a median
AUC of 0.762, compared to 0.707 for Cell-ID and 0.504 for GSDensity, as illustrated in Fig. [dg.
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Annotations of spatial ATAC-seq data using scRNA-seq reference
with CAESAR suite

Using the CAESAR suite, we conducted a more challenging cross-modality task invoving
an analysis of spatial ATAC-seq data from a mouse embryo, characterized by high sparsity
and high noise (Supplementary Fig. S27). The E11 mouse embryo data utilized contained a
median of 36,303 unique fragments per 50-pm spot, with a total of 2,162 spots [4]. This spatial
ATAC-seq dataset was annotated using scRNA-seq mouse embryo reference data from the
Mouse Organogenesis Cell Atlas (MOCA) [57], with annotations derived via Louvain clustering.

The two-dimensional UMAP projections of co-embeddings were made for the cells/spots
to illustrate the overlap among the top signature genes across both reference and target
datasets (Fig. [ph). We then visualized CAESAR’s annotations of the spatial coordinates and
compared them with those from Cell-ID (Fig. pp). CAESAR (ACC = 0.253) significantly
outperformed Cell-ID (ACC = 0.090), accurately recovering excitatory neurons, stroma cells,
and a primitive erythroid lineage, while using Cell-ID resulted in a substantial proportion of
unassigned locations.

Next, we performed spot-level pathway enrichment analysis using the CAESAR suite to
detect differential pathways among cell types. The top five differentially enriched pathways were
visualized in a dot plot (Fig. ) Notably, the chloride transmembrane transport pathway within
the GOBP database was highly enriched in both excitatory neurons and postmitotic premature
neurons. This pathway is essential for neuronal functionality and excitability, particularly
within excitatory neurons [58]. The epithelial-to-mesenchymal transition (EMT) involved in
endocardial cushion formation was prominently enriched in stroma cells. This finding aligns
with the role of EMT in cardiac development, during which transformed cells function as
stromal components critical for the formation of cardiac valves and septa [59]. Additionally,
the gas transport pathway was significantly enriched in the primitive erythroid lineage. This
lineage represents a pivotal stage in erythropoiesis during embryogenesis, when progenitor cells
mature into erythroid precursors, eventually developing into mature red blood cells essential
for gas transport during metabolic processes [60]. We further depicted the enrichment scores of
the domain-specific pathways, including those associated with excitatory neurons, stromal cells,
and the primitive erythroid lineage, in heatmaps (Fig. and Supplementary Fig. S28). Our
analysis revealed the progressive activation pattern of pathways within their respective domains.
For instance, the enrichment score for EMT involved in endocardial cushion formation exhibited
a continuous decline from stromal cells to adjacent domains, particularly those with excitatory
neurons (Fig. [fd, middle panel). This observation highlights the exceptional capability of
CAESAR to derive spot-level enrichments and offer profound insights into the intricate dynamics
of biological pathways.

Discussion

We aimed, via this study, to introduce and demonstrate the CAESAR suite, a novel spatial
co-embedding framework that offers a fully integrated and cluster-agnostic suite of tools. This
framework is designed to detect cell- or domain-type-specific signature genes, perform spatial
annotations of cell or domain types, and facilitate hypothesis testing to uncover pathways
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enriched in each cell or location as well as within specific cell or domain type.

In contrast to traditional co-embedding methods based on MCA, such as Cell-ID and
GSDensity, the CAESAR suite provides more sophisticated, image- and spatial-aware co-
embedding of genomic features and cells/locations by effectively considering both histology
image information and spatial coordinates. Moreover, the co-embedding framework in the
CAESAR suite is compatible with any dimensionality reduction technique that employs a
feature-weighted scheme. When cell/domain-type labels are known, such as in labeled reference
data, the CAESAR suite excels in detecting cell/domain-type signature genes by assessing the
relative distance between cells/locations and gene features.

Assuming a conserved relationship between genomic features and cells/locations at an
appropriate level of granularity, the CAESAR suite, to the best of our knowledge, is the first to
enable spatial annotations by transferring cell-type labels from predefined scRNA-seq references
to target spatial omics datasets across a wide range of technologies, resolutions, species, and
modalities. When multiple references are available, the CAESAR suite also accounts for the
uncertainty in detecting cell/domain-type signature genes across multiple batches, thereby
mitigating the impact of batch effects, which often problematic in cluster-centric analysis. Our
examination of five spatial omics datasets, encompassing diverse technology, resolution, and
modalities, i.e., 10x Xenium, 10x Visium, ST, Pixel-seq, and Spatial ATAC-seq, demonstrated
CAESAR suite’s robust spatial annotation capabilities. Using reference data from 26 batches,
we demonstrated the CAESAR suite’s capacity to effectively annotate a Xenium dataset of
four human BC sections, in which it achieved substantial improvements in accuracy (4333.33%)
and SigScore (42.9%) compared to Cell-ID. Similarly, when used to annotate a Visium dataset
of four human HCC sections using scRNA-seq reference data from either human or mouse, the
CAESAR suite achieved comparable annotation accuracies, with remarkable accuracy gains of
495.5% and 677.7%, respectively, compared to Cell-ID.

The CAESAR suite also offers functions for pathway enrichment analysis at both the
location and cell/domain-type levels, enabling the delineation of pathway activation across
different domain types. For example, in the Xenium dataset for BC, the CAESAR suite detected
the activation of the vasculature development pathway, which was highly active at the boundary
of cancer epithelial cells, minimally active in cancer cells, and dormant in non-cancer cells. This
finding highlights the critical role of vascular networks in tumor growth and metastasis, where
the newly formed vasculature surrounding cancer cells serves not only to sustain tumor survival
and expansion but also as a conduit for metastatic tumor cells [61].

As a proof-of-concept, the CAESAR suite provides opportunities for new exciting research
routes. Firstly, when sections of spatial omics are from multiple conditions, functions that can
be used to perform hypothesis testing between conditions at both gene and pathway levels
are needed. Secondly, when datasets with multi-modality measurement on the same section
(paired) are available, functions for co-embedding paired datasets are needed.

As a proof-of-concept, the CAESAR suite provides opportunities for new exciting research
routes. Firstly, when sections of spatial omics are from multiple conditions, functions that can
be used to perform hypothesis testing between conditions at both gene and pathway levels
are needed. Secondly, when datasets with multi-modality measurement on the same section
(paired) are available, functions for co-embedding paired datasets are needed.
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Methods

CAESAR suite overview

The CAESAR suite is an open-source software package comprising diverse functional modules
that facilitate the co-embedding of locations and gene features, signature gene detection, spatial
annotations through the integration of multiple reference datasets and for multiple SRT target
datasets, and pathway enrichment analysis at both the spot-level and cell/domain type-level,
as illustrated in Fig. [Th.

Different from existing co-embedding methods, CAESAR model uses a combination of a
latent factor model and a feature-weighted scheme to project locations and features onto the
same Euclidean space. Specifically, we denote X = (z4,) € RS*¢ as the log-normalized gene
expression matrix, £ = (I,) € R%*? as the spatial coordinate matrix, E = (e,) € R%*? as
the feature matrix from histology images extracted by Visual transformer (see Supplementary
Notes) and H = (h,) € R5*¢ as low-dimensional embeddings of locations, where S is the
number of spots, GG is the number of genes and d is the dimension of image features. We relate
gene expression (z,,) to low-dimensional embeddings (hy) using a linear factor model:

Tog = g + by hy + ugy, (1)

and relate the low-dimensional embeddings (h,) to the spatial coordinates [; and histology
image features e, via an intrinsic conditional autoregressive model:

hs = Z w(esa es’)hs’ + €, (2)

SIENZS

where uy; = (ug1,--- ,usg) ~ N(0,A) with A = diag(\i,--- ,A\g), Ny, is the neighboring
spot set of spot s defined by coordinates, w(es, ey) = %i’ with W,y = exp{—d*(es, ey)/0}
and wyy = Y .. N, Wser, and €, ~ N (O,ws_ﬁ@). We designed a variational EM algorithm
to infer hy using its posterior estimate (see Supplementary Notes). Next, we utilize a gene

expression-weighted scheme to derive the embeddings of genes, as formulated below:
S
Do WsgTsghs
S )
Dot WsgTsg

where wyg = (14X e, (259 7 0))/ (1 +1m1,), ma, = |N,,
of spot s, and I(z,, # 0) is an indicator function that equals 1 if x4, # 0 and 0 otherwise. By

Vg =

is the number of neighboring spots

accounting for the gene expression ratio in the cell’s local microenvironment, the resulting gene
embedding focuses more on gene expression-intensive areas. It is important to note that v,
represents a weighted average of the embeddings of locations, hy, and thus resides in the same
Euclidean space spanned by {h,, s =1,--- ,S}. Consequently, computing the distance between
v, and any h; is semantically meaningful. Let S, denote the index set of spots corresponding
to cell/domain type k. For clarity, suppose that gene g is exclusively expressed in cell /domain
type k, implying z,, = 0 for s ¢ Sy. In this scenario, the embedding of gene g simplifies to:

ZSGSk WsgTsgh

ZsESk Wsglsg

Vg:
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As a result, the embedding of gene g will closely align with the embeddings of spots belonging
to cell/domain type k. Furthermore, for scRNA-seq data, we devise a non-centered linear
factor model to jointly embed cells and genes into a shared space (see Supplementary Notes for
details).

Signature gene detection

The Euclidean distance d(vg, h,) captures the degree of specificity between gene ¢ and location
s, as the embedding of gene g resides at the weighted centroid of the embeddings of cells that
express this gene. Consequently, the specificity of gene g to a particular cell/domain type k is
quantified by the mean distance between gene g and the cells belonging to cell/domain type k.
This is formally expressed as ‘S—lﬂ > ses, A(Vg, hs), where Sy denotes the set of cells constituting
the cell/domain type k. After excluding genes with an expression ratio below 7, (set at 0.1 by
default) to mitigate the inclusion of infrequently expressed genes and diminish the influence of
random noise, the signature genes for cell/domain type k, denoted as T'y(7y), are identified as
the top v genes that exhibit the highest level of specificity. This is accomplished by ranking
genes based on their average distance from cells belonging to type k, as given by the formula:

Fe(y) = {g | rank, (@ Z d(vg,hs)) < 'y} .

SESK

Here, rank, represents the ranking function that assigns a position to each gene g based on its
calculated average distance, with lower distance indicating higher specificity.

Spatial annotation

We first extract the signature gene sets for each cell/domain type from each of R reference
datasets, denoted as L, = {T,x(y): k=1,--- ,K},r=1,--- | R, where K is the total number
of cell/domain types, R signifies the number of available reference datasets and I', is set to
empty set when cell/domain type k is absent from the r-th reference dataset. The parameter
v represents the number of signature genes chosen for each set I',j, which is determined as
the maximum value that maintains the overlap of signature genes across {I';x,k=1,--- , K}
below a specified threshold ¢. This threshold is established to regulate the extent of shared
signature genes among different cell/domain types. Formally, , is given by:

Ve =max{y [V1 <k <k < K, Doy (v) VDot (1) < 2

Here, the expression |y, (7) N Ty, (7)] calculates the number of genes common to both Ty, ()
and 'y, (7), ensuring that the intersection does not exceed the threshold ¢ for any pair of
cell/domain types ki and ky. The default setting for the threshold ¢ is 1, but it can be adjusted
upwards when fine-grained labels are available. By aggregating the signature gene sets derived
from the various reference datasets, we can obtain a comprehensive signature gene set for
each cell/domain type k, denoted as I'y, = Ule I',;. Additionally, we assign weights to each
gene g within I'y, denoted as wg, which are calculated as the proportion of references in
g

which the gene appears as a signature gene for that cell type. Specifically, wg, = S
gel'y, ™9
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where W), = Zle I(g € T',x). This frequency-based weighting approach effectively emphasizes
the robust associations between genes and cell/domain types, while mitigating the potential
influence of low-quality signature genes that may arise due to data variability or random effects
on subsequent annotations.

Subsequently, we compute the Euclidean distances between each location s and gene g
in the target data, represented as d(v,, h,). Here, v, and h, represent the co-embeddings
of gene g and location s, respectively, which are obtained through the spatial co-embedding
module within the CAESAR suite. To assess the specificity of a given location s to a particular
cell/domain type k, we calculate the weighted average distance between location s and the
genes in the signature gene set ['y from the reference data. This is expressed as:

d(h,,Ty) = Y wed(hy, v,).

gely

The probability of assigning the label y; of location s to a specific cell/domain type k& is then
approximated using a standard normal cumulative distribution function ®(-), adjusted for the
mean u, and standard deviation oy:

Prob(y, = k) = ® (M) 7

Os

where g and o, are the mean and the standard deviation of {d(hy,T'x),k =1,--- , K}. Then,
CAESAR suite annotates location s as cell/domain type k with highest probability. For the

low-resolution target dataset, the cell mixing proportion of cell/domain type k in location s is
Prob(ys=k)

Yhy Prob(ys=k)

The CAESAR suite is unique in its ability to offer confidence levels for annotation results, a

obtained by normalizing the above probability, denoted as 7y, =

vital feature for evaluating the trustworthiness and precision of cell annotations. This enables
researchers to base their conclusions on a solid foundation, as they are informed of the quality
of the data. Specifically, we commence by generating K control gene sets via random sampling,
ensuring that each control set ', mirrors the size and gene weights of its corresponding signature
gene set ['x. Subsequently, we identify the minimal average distance of these control sets to a
given spot s, denoted as mingey.... ky d(hs, I'Y). This procedure is repeated L times, and we
calculate the confidence level for spot s being annotated as type k as follows:

Mh

Confidence(y ( mln (hs,Fk)< min d(hS,F£)>.

Le{1,- te{1,- K}

Spots with a confidence level falling below a predefined threshold 7. are designated as “unas-
signed”, with a default threshold of 7. = 0.95 employed in this study. Researchers have the
flexibility to adjust this threshold based on their specific project requirements.

Pathway enrichment analysis at different levels

The CAESAR suite offers comprehensive pathway enrichment analysis at different levels without
necessitating clustering. Given that the cell-gene distance serves as a proxy for their association,
genes that are specific to a particular subpopulation of cells tend to cluster closely together
in the co-embedding space. To assess the extent of enrichment of a pathway in the dataset,
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we employ a robust graph-based test [62] to test the degree of clustering of the gene set
(denoted as T') of this pathway, which is agnostic to the underlying graph structure and adept
at handling high-dimensional data. Specifically, we first construct a 5-th minimum-spanning
tree graph using all gene embeddings, in which each node ¢ represents the gene g; with its
embedding as node feature. We define the edge weight of (i, j) as w(i,j) = 1/ max{d;, d,},
where d; is the node degree of node i and w(i, j) = 0 if node ¢ and node j are not connected.
Let R, = >, icrw(i, j) be the total weights of edges connecting genes within the pathway,
Rpe = ZM%F w(i, j) be the total weights of edges connecting genes outside the pathway. We
further define Rgig = R, — Rye and R, = (1 — ¢)R,, + qR,, where ¢ = (n, — 1)/(G — 2) and
n, = |['|. The robust edge-count test statistic is constructed as

T, = max R, — E(Rw)’ ‘Rdiff — E(Rais) ‘ 7
Var (Rw ) Var (Rdiff)

by comparing the observed values of R,, and Ry to their expected values and variances, under
the null hypothesis of no enrichment. The asymptotic distribution of 7}, is used to obtain
p-values, which are then adjusted for multiple comparisons using the Cauchy combination [63]
when testing multiple sections simultaneously, and the Benjamini-Hochberg procedure for FDR
control when testing multiple pathways simultaneously. This approach enables us to identify
whether a pathway is highly and specifically expressed within some specific cell subpopulations.
However, the specific identity of these subpopulations remains elusive at this juncture.

To uncover the subpopulation where the pathway is abundant, we undertake a spot-level
enrichment analysis that not only reveals the enriched subpopulation but also tracks the gradual
activation of the pathway across entire spots. Specifically, the CAESAR suite assesses the level
of pathway activity at each location, quantifying the specificity of this pathway among various
locations. It accomplishes this by generating L size-matched control gene sets through random
sampling and subsequently calculating their average distance d(hy, ') for a given spot s and
each set I'Y, where ¢ ranges from 1 to L. Throughout this study, a default value of L = 1000
was employed. Ultimately, the pathway activity level is determined as the proportion of control
gene sets whose average distance is greater than the distance between the co-embeddings of a
given spot s and its true gene set I', given by 1 Zle I (d(h,,T) < d(hy,T*)). A higher pathway
activity score signifies a more pronounced enrichment of the pathway, and the variations in
activity levels across different locations indicate the existence of a gradual activation pattern
for the tested pathway.

Furthermore, when detailed information about cell subpopulations is accessible (for instance,
the cell/domain types annotated by CAESAR), the CAESAR suite can conduct enrichment
analysis for a particular pathway at a cell/domain type-specific level. To achieve this, we employ
a Wilcoxon test to ascertain whether the pathway activity level within a specific cell type
surpasses that of other types. In scenarios where multiple sections are evaluated concurrently,
the p-values are aggregated using the Cauchy combination method. This approach can also be
extended to identify pathways that are unique to specific biological conditions by comparing
their activity levels across varying conditions. As a result, the CAESAR suite is instrumental
in identifying pivotal pathways potentially implicated in distinct cellular behaviors or disease
states. This not only pinpoints potential therapeutic targets but also offers profound insights
into cellular function and the underlying mechanisms of disease.
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Unwanted-variation-removal for gene expression

To effectively visualize the expression patterns of signature genes by integrating multiple
target sections, such as 10x Xenium BC sections and 10x Visium HCC sections, it is necessary
to eliminate unwanted variation (i.e., batch effects) within the combined expression matrix.
When multiple target datasets have been annotated using the CAESAR suite, these batch
effects can be mitigated by leveraging a set of housekeeping genes as negative controls. These
genes remain unaffected by other biological influences, allowing for the precise removal of
unwanted variation [64]. In this study, mouse/human housekeeping gene sets obtained from the
Housekeeping and Reference Transcript Atlas were employed [65]. First, we performed PCA of
the gene expression matrices of housekeeping genes present in each target dataset ¢, obtaining
the top ten principal components (PCs), m;, which can be treated as the unwanted variation
factors. The weighted average distance matrix h, € RS*X | whose (s, k)-th element is d(h,, T'y),
reflects the specificity of location s to cell/domain types and is suitable for explaining biological
variation between cell/domain types. Finally, we used a linear model to remove unwanted
variation from the normalized gene expression matrix:

X = ﬁta +1m,3 + €, (3)

where o € RE*¢ is the coefficient matrix for biological effects between cell/domain types and
B € R'9%C is the coefficient matrix for unwanted variations. After estimating the coefficients
in Eqn. (3]), unwanted variations can be removed from the original normalized gene expression
matrix via
X, = X, — m,B.
A similar strategy can be used to remove unwanted biological conditions or other variations
that the user wishes to eliminate by including such information in Equation ({3]).

Comparison of methods

We conducted extensive simulation studies and real data analyses to benchmark the CAESAR
suite against Cell-ID, a tool implemented within the R package CelliD [21], focusing on annota-
tion accuracy, dimension reduction capabilities, and co-embedding performance. Throughout
these evaluations, both CAESAR and Cell-ID utilized an identical list of signature genes,
derived via signature gene detection in reference data, as their input. Of note, Cell-ID was
specifically designed for co-embedding scRNA-seq data while leveraging multiple correspondence
analysis (MCA).

To assess the performance of the CAESAR suite in detecting pathway activity, we compared
it against two competitors: Cell-ID and GSDensity [23]. GSDensity, implemented in the
R package gsdensity, is a gene set scoring approach that leverages the MCA co-embedding
generated by Cell-ID. During the implementation, we adhered to the default parameter settings
outlined in the respective packages for both methods.

Evaluation metrics

We evaluated the methods’ performances in annotation accuracy, dimension reduction, co-
embedding performance, and pathway activity detection using the following metrics.
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Classification accuracy. To assess annotation accuracy, we utilized classification accuracy
(ACC) [26], the standard benchmark for evaluating classifier performance. We excluded spots
with cell/domain types not present in the reference data from the ACC calculation. ACC is the
ratio of correctly annotated spots to the total number of spots, with higher values indicating
superior accuracy in predicting correct labels for the target data.

Average silhouette width. To evaluate the ability of the embeddings to distinguish between
cell/domain types, we employed the average silhouette width (ASW) [25]. ASW ranges from -1
to 1, with higher scores indicating better preservation of biological signals.

Signature score. To assess co-embedding performance, we measured the specificity of
agreement between cell-type-specific genes and cell types. For each cell type k, we identified its
top 3 differentially expressed genes with the largest log-fold change as cell-type-specific genes.
We then calculated the sum of ranks of these genes based on their average distance from spots
of cell type k in descending order. The SigScore for cell type k was obtained by normalizing
this sum using min-max normalization. An optimal tool would demonstrate high specificity
for all cell types, reflected in a SigScore close to 1 for each cell type. The final SigScore is the
weighted average of SigScores across all cell types, weighted by the proportion of spots per cell
type.

Area under curve. We evaluated the effectiveness of spot-level pathway activity detection
by assessing its capability to precisely identify correct cell types through the utilization of the
pathway activity scores generated by the CAESAR suite and comparative methods. For each
cell type k, we designated the gene set that included the top three differentially expressed genes
with the greatest log-fold change as its fundamental enriched pathway. Using this pathway,
we computed the pathway activity scores for all spots, employing both the CAESAR suite
and comparative approaches. Next, we employed these activity scores to determine the area
under the curve (AUC) for accurately distinguishing the correct cell type across various score
thresholds. Specifically, we ordered the cells based on their pathway activity scores, resolving
ties randomly, and calculated the recovery ratio at every feasible point. Consequently, for each
cell-type-specific pathway, a superior method will achieve a higher AUC value. The final AUC
was determined as the weighted average of the AUCs corresponding to all cell types in the
dataset, where the weight is proportional to the ratio of spots belonging to each cell type.

Simulations

To evaluate the performance of the CAESAR suite under scenarios with different resolutions
for spatial locations, we designed simulation studies based on a subcellular-resolution CosMx
dataset for lung cancer [24].

Scenario 1. Same-resolution reference and target data. For this scenario, we used all
fields of view (FOVs) from section Lung) repl as reference datasets. The original annotation
was treated as underlying truth, which included 14 cell types and assigned based on gene
expression profiles similarity. The FOVs from three other sections (Lungb rep2, Lungl3, and
Lung12) were adopted as the target datasets. Therefore, the heterogeneity between the reference
and target datasets was naturally considered in our scenario, with Lungd repl and Lungb rep2
from two consecutive sections of the same donor exhibiting strong similarity.
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Scenario 2. High-resolution reference data and low-resolution target data. For this
scenario, the reference datasets were same as Scenario 1, and we binned 5 cells as a location in
the target datasets to generate low resolution target data. Specifically, we divided each target
dataset into grids of equal length and width according to the spatial coordinates, so that each
grid contained 5 spots on average. Then, we added the gene expression of the spots located in
a grid as the gene expression of the new location, spatial coordinates of which are defined as
the grid center and the domain type is defined as the domain cell type in the grid with ties
resolved with random select.

Scenario 3. Low-resolution reference data and high-resolution target data. For
this scenario, the target datasets were same as in Scenario 1, and the low-resolution reference
datasets were generated via the same binned method as in scenario 2.

Real data analyses

All real datasets utilized in this study are comprehensively detailed in the Supplementary Notes.
Through rigorous quality control measures, we excluded genes displaying zero expression across
multiple spots, those exclusively present in either the reference or target dataset, and spots
where numerous genes exhibited no expression. In our analyses, we performed log normalization
and identified the top 2000 variable genes using Seurat4 [66]. We treated all genes as variable
genes for Xenium and CosMx data analyses, since the number of available genes was less than
2000. For Pixel-seq data analysis, the top 3000 variable genes were calculated due to the high
sparsity of Pixel-seq data. The final variable genes used for co-embedding were the intersection
of variable genes in the reference and target data. However, we used the variable genes from
the reference data to co-embed the spatial ATAC-seq data, as its data consists of gene scores.

Data availability

All datasets used in this study are publicly available. These include the four human non-
small-cell lung cancer CosMx data (https://nanostring.com/products/cosmx-spati
al-molecular-imager/ffpe-dataset/nsclc-ffpe-dataset/); the four human breast
cancer Xenium datasets (https://www.dropbox.com/s/t05w7ccufhlvOh8/xenium_prere
lease_jull2_hBreast_replicates.tar?dl1=0 and https://www.1l0xgenomics.com/pr
oducts/xenium-in-situ/preview-dataset-human-breast) as well as its reference data
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078); four human
hepatocellular carcinoma Visium datasets (Raw FASTQ data are available at https://ww
w.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=858545, and H&E
images, which are available at https://doi.org/10.6084/m9.figshare.21280569.v1 and
https://doi.org/10.6084/m9.figshare.21061990.v1), as well as its scRNA-seq human
reference data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125449) and
its scRNA-seq mouse reference data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a
cc=GSE181515)); mouse olfactory bulb ST dataset (https://www.spatialresearch.org/) and
Pixel-seq dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186097),
as well as their reference datasets (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a
cc=GSE111672; and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121891),
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and the mouse spatial ATAC-seq dataset (https://www.ncbi.nlm.nih.gov/geo/query/a
cc.cgi?acc=GSM5238385) as well as its accompanying scRNA-seq reference data (https:
//oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads). All
other relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon reasonable request.

Code availability

The CAESAR suite was implemented in an open-source, publicly available R package [67]
that is available at https://cran.r-project.org/package=CAESAR.Suite and https:
//github.com/XiaoZhangryy/CAESAR.Suite. Code for reproducing the analysis can be found
at https://github.com/XiaoZhangryy/CAESAR.Suite_Analysis.
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Figure 1: Schematic overview of CAESAR suite and simulation results. (a) Left panel:
CAESAR suite takes labelled scRNA-seq or spatial transcriptomics sections as reference data
and unlabelled spatial transcriptomics sections as target data. Middle panel: For each section,
the model projects the cells and genes into a common embedding space, where the gene-cell
distance reflects their specificity. Spatial co-embedding integrate morphological or histology
images and spatial location information into low-dimensional space to better characterize
the gene-cell relationship. The signature genes for a cell/domain type are the top-ranked
genes based on their average distance to cells of that cell/domain type. These signature gene
sets can be independently extracted from a collection of reference datasets for downstream
annotation procedure. Right panel: CAESAR suite performs cell/domain type annotation by
evaluating cell signatures against (multiple) cell/domain-type markers from reference datasets.
Once the target data is annotated, its signature genes can be detected. When a pathway is
provided, CAESAR suite can detect gradual activation of the pathway among locations. (b)
The CAESAR suite is capable of flexibly performing annotations for spatial omics datasets
with heterogeneous reference datasets, across species, resolutions, technologies, and modalities.
(¢) Model validation using CosMx data. We used all fields of view (FOVs) from sample
Lungb repl as the reference dataset (30 FOVs, 3,109 spots on median), and all FOVs from
samples Lungb rep2, Lungl3, and Lungl2 as target data (29, 28, and 20 FOVs; 3,530, 2,524,
and 4,099 spots on median, respectively) to evaluate performance under different conditions
(scenario 1). We binned 5 cells per location in the target datasets to create low-resolution target
datasets (706, 495, and 810 spots on median, respectively), which used to evaluate performance
with a low-resolution target dataset (Scenario 2). We evaluated performance in terms of cell
embedding, co-embedding, and annotation, using average silhouette width (ASW), signature
score (SigScore) and classification accuracy (ACC). (d) We used differentially expressed gene
sets for each cell type as pathways to evaluate performance on pathway enrichment, which was
assessed by the area under the curve (AUC).
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Figure 2: Analysis of human breast cancer Xenium data. (a) UMAP plot for 26 reference
datasets, colored by the reference identities. (b) Stacked barplot for the cell type proportions
from manual annotations in each reference dataset, where CAFs represents cancer-associated
fibroblasts and PVL represents perivascular-like cells. (c¢) Schematic representation of the
CAESAR suite’s spatial annotations process utilizing multiple single-cell RNA sequencing
(scRNA-seq) reference datasets. (d) Dot plot of top five signature genes identified by CAESAR
suite for the transferred annotations on four BC sections, where “% expressed” means the
percentage of cells that expressed this gene. (e) Spatial heatmaps for annotations obtained by
CAESAR suite and Cell-ID. (f) Visual representations of the ASW for assessing the performance
of location embeddings, the SigScore for evaluating the efficacy of signature gene detection,
and the ACC metric for spatial annotation performance, are presented through boxplots by
comparing CAESAR suite and Cell-ID. (g) Dot plot of the top five cell type specific pathways
for each transferred cell types by CAESAR suite of four BC sections, where “% enriched” means
the percentage of cells in which this pathway was enriched. (h) Spatial heatmaps of enrichment
scores for cell-type-specific pathways: for PVL cells, the pathway “vasculature development”
from the GOBP database, and for Cancer Epithelial cells, the pathway “Doane Breast Cancer
Classes Up” from the CGP database.
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Figure 3: Analysis of human HCC Visium data. (a) Schematic representation of the CAESAR
suite’s spatial annotations process transferred from human and mouse reference. For each
reference, CAESAR co-embeds the locations and genes in a common space, and detect signature
genes for each cell type based on their distance. Then, those signature genes are used as cell type
markers. The signature genes from mouse were transferred to their homologous human genes.
CAESAR’s annotation results using references from different species show species-agnostic
consistency. (b) H&E image and manual annotations by a pathologist for HCC1 and HCC3.
(c) Spatial heatmaps of spatial annotations for HCC1 and HCC3 transferred by CAESAR suite
and Cell-ID based on a human HCC scRNA-seq reference. (d) Spatial heatmaps of spatial
annotations for HCC1 and HCC3 transferred by CAESAR suite and Cell-ID based on a mouse
HCC scRNA-seq reference. (e) Boxplots of annotation accuracy of CAESAR suite and Cell-ID
based on human reference (upper panel) and mouse reference (bottom panel). (f) UMAP
plots of cells/spots and partial overlapped signature genes between mouse HCC reference data
and four target SRT sections. (g) Dot plot of top six signature genes for each transferred cell
types by CAESAR suite based on mouse HCC reference. (h) Dot plot of average enrichment
scores for cell-type specific pathways. (i) Spatial heatmap of enrichment scores of vasculature
development in GOBP database.
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Figure 4: Analysis of MOB ST and Pixel-seq data. (a) Spatial heatmaps of manual annotations
(left panel), annotations obtained by CAESAR suite and Cell-ID for MOB ST data, where GCL,
the granule cell layer; MCL, the mitral cell layer; ONL, the nerve layer; GL, the glomerular
layer; GC, granule cell; M/TC, mitral and tufted cell; OSNs, Olfactory sensory neurons; PGC,
periglomerular cell; EPL-IN| external plexiform layer interneuron. (b) Heatmap of confusion
matrix between manual annotations and the predicted cell types obtained by CAESAR suite.
(c) Spatial heatmaps of logarithm of UMIs, and annotations obtained by CAESAR suite and
Cell-ID for MOB Pixel-seq data, the cell types include: Astro, astrocyte; EC, endothelial cell;
ImmunoCells, monocyte and macrophage; Mes, mesenchymal cell; Microglia, microglia; Mural,
mural cell; MyOligo, myelinating oligodendrocyte; OEC, olfactory ensheathing cell; OPC,
oligodendrocyte precursor; RBCs, red blood cells; Neuron.Astro-Like, astrocyte like neuron;
EPL-IN; GC; Neuron.Immature, immature neuron; M/TC; OSNs; PGC; Neuron.Transition,
transitional neuron. (d) UMAP plots of embeddings for cells/spots and two overlapped signature
genes between MOB scRNA-seq reference and the MOB Pixel-seq data. (e) Spatial heatmaps
of expression levels of the cell type specific genes, cell types and enrichment scores of cell
type differentially enriched pathways. (f) Dot plot of average enrichment scores for cell-type
differentially enriched pathways in MOB Pixel-seq data. (g) Boxplot of AUC obtained by
CAESAR suite, Cell-ID and GSDensity for assessing the pathway enrichment performance.
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Figure 5: Analysis of mouse Embryo 11 spATAC-seq data. (a) UMAP plots of co-embeddings
for cells/spots and overlapped signature genes between mouse embryo scRNA-seq reference
and the mouse Embryo 11 spATAC-seq data. (b) Spatial heatmaps for cell-type assignment of
CAESAR and Cell-ID. (c¢) Dot plot of the top five differentially enriched pathways for each
of top six domain cell types. (d) Spatial heatmaps for top three domain cell types and the
corresponding enriched pathway.
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