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Abstract13

The biotechnology of spatial omics has advanced rapidly over the past few years, with14

enhancements in both throughput and resolution. However, existing annotation pipelines15

in spatial omics predominantly rely on clustering methods and lack the flexibility to16

integrate extensive annotated information from single-cell RNA sequencing (scRNA-seq)17

due to discrepancies in spatial resolutions, species, or modalities. Here we introduce18

the CAESAR suite, an open-source software package that provides image-based spatial19

co-embedding of locations and genomic features. It uniquely transfers labels from scRNA-20

seq reference data, enabling the annotation of spatial omics datasets across different21

technologies, resolutions, species, and modalities, based on the conserved relationship22

between signature genes and cells/locations at an appropriate level of granularity. Notably,23

CAESAR enriches for location-level pathways, allowing for the detection of gradual24

biological pathway activation within spatially defined domain types. We demonstrate the25

advantages of CAESAR through a comprehensive analysis of five spatial omics datasets26

encompassing diverse technologies, resolutions, and modalities. Across these applications,27

CAESAR achieved substantial improvements in annotation accuracy (45.45%-4333.33%)28

by transferring cell-type labels from either multiple reference data, or across different29

species and modalities. As a result, CAESAR effectively recovers intricate structures in30

mouse olfactory bulb and embryo, and unveils tumor microenvironment heterogeneity,31

with exceptional efficiency and flexibility.32
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Introduction33

Spatial omics is accomplished via a set of breakthrough technologies that enable the spatial34

profiling of molecular parameters, including gene and protein expression and chromatin structure.35

One of the techniques used, spatially resolved transcriptomics (SRT), requires a range of36

advanced technologies that enhance the throughput of expression profiling , from targeted to37

transcriptome-wide gene measurements, and improve the spatial resolution, from low resolution38

to subcellular resolution [1–3]. In parallel with the evolution of SRT technologies, other39

spatial omics technologies, such as spatial-ATAC-seq [4] and spatial-CITE-seq [5], have also40

seen rapid advancements. By mapping cell/domain types in a scalable manner, emerging41

spatial omics technologies offer unprecedented opportunities to characterize transcriptomic42

and cellular landscapes within a spatial context. Many spatial omics methods have been43

developed that incorporate routine analytical steps, such as the detection of spatially variable44

genes, dimensionality reduction, clustering, differential gene expression analysis, and gene set45

enrichment analysis [6–10]. However, most of these methods are “cluster-centric”, predominantly46

relying on accurately defined clustering to identify meaningful gene features. This reliance47

becomes problematic when samples contain cells that are undergoing active state transitions,48

a phenomenon commonly observed in tumor or developmental datasets [11–14]. Moreover,49

a large number of single-cell RNA sequencing (scRNA-seq) datasets have been thoroughly50

characterized, providing abundant transcriptomic information with annotations for both human51

and mouse samples.52

To annotate scRNA-seq datasets using these predefined references, the use of cluster-centric53

methods for cell annotation has been proposed. These methods typically either transfer cell-type54

labels from reference data to target data [15–17] or model marker-gene expression patterns55

in the target data [18–20]. The former strategy requires an additional batch-removal step,56

while the latter demands access to high-quality marker genes. Due to discrepancies between57

spatial omics and scRNA-seq data, annotating spatial omics data from diverse technologies,58

spatial resolutions, species, or modalities that leverage reference information from predefined59

scRNA-seq datasets is challenging. To fully harness the potential of these emerging technologies60

and drive breakthrough discoveries in molecular biology, co-embedding has emerged as a61

promising approach to overcome the limitations of clustering-centric pipelines [21–23]. Existing62

co-embedding methods based on multiple correspondence analysis (MCA) [21, 23] or multi-63

relation graph models [22] are employed for various tasks, including signature gene detection,64

pathway enrichment analysis, and multimodality co-embedding. However, as cluster-agnostic65

methods, they often fail to fully incorporate spatial information or histology images during66

co-embedding, leading them to potentially overlook valuable information. Moreover, these67

methods are limited in their ability to use labels from rich reference datasets to annotate spatial68

omics datasets across different technologies, resolutions, species, and modalities.69

To overcome these limitations, we have designed the CAESAR suite, a unified and versatile70

software package that offers a general spatial co-embedding framework based on a feature-71

weighted scheme that leverages both spatial information and histology images. By assuming a72

conserved relationship between genomic features and cells/locations within each cell/domain73

type at an appropriate level of granularity, the CAESAR suite flexibly annotates spatial74

omics datasets across technologies, resolutions, species, and modalities by transferring cell-type75
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labels from predefined scRNA-seq reference data in a cluster-agnostic manner, and detects76

cell/domain-type-specific signature genes. Moreover, the CAESAR suite includes functions for77

hypothesis testing to identify pathways enriched in each cell/location or cell/domain type. We78

illustrate the benefits of using the CAESAR suite through extensive simulations and analyses of79

a diverse range of example datasets collected using various spatial omics technologies, species,80

and resolutions: 10x Xenium datasets of four human breast cancer (BC) sections, 10x Visium81

datasets of four human hepatocellular carcinoma (HCC) sections, Pixel-seq and ST datasets of82

the mouse olfactory bulb (MOB), and a spatial ATAC-seq dataset of a mouse embryo.83

Results84

Overview of CAESAR85

The CAESAR suite is a novel open-source software package that co-embeds spatial locations86

and gene features into a unified low-dimensional space, utilizing both histology images and87

spatial coordinates. Within this space, the relative distance between locations and gene features88

can be used to characterize transcriptomic specificity, enabling a range of downstream analytical89

tasks (Fig. 1 and Methods). When cell types/domains are predefined, as in labeled reference90

datasets, the CAESAR suite detects cell- or domain-type-specific signature genes by evaluating91

the relative distances between the cells/locations and gene features. In scenarios where reference92

data originate from multiple batches or sections, heterogeneous batch effects can significantly93

distort expression patterns, complicating data integration. However, within a single batch or94

section, the relationships between cells/locations and genomic features remain conserved with95

respect to the cell or domain types, with batch effects merely introducing systematic noise.96

Leveraging these conserved relationships, the CAESAR suite exhibits remarkable flexibility97

in detecting signature genes, annotating cells or locations through knowledge transfer via98

labeled reference data and seamlessly integrating multiple reference and target datasets. As99

a proof of concept, we demonstrate that the CAESAR suite is capable of performing spatial100

annotations, with confidence level assessed via a permutation test, using knowledge transferred101

from scRNA-seq or SRT reference data to spatial omics data derived from diverse technologies,102

species, resolutions, and modalities. By analyzing the distances between spatial locations and103

sets of genes, such as pathway genes, the CAESAR suite detects gradual changes in pathway104

activation across different spatial domains. This is achieved through permutation and Wilcoxon105

tests, providing spot-level and cell- or domain-type-level enrichment significance, respectively.106

Validation using CosMx data107

We conducted comprehensive simulations using a CosMx dataset for lung cancer [24] and108

rigorously evaluated the performance of the CAESAR suite by comparing it with Cell-ID in109

terms of dimensionality reduction, signature gene detection, and annotation accuracy. The110

evaluation metrics included average silhouette width (ASW) [25], signature score (SigScore; see111

Methods) and classification accuracy (ACC) [26]. Ideally, when given a set of genes specific to112

a particular cell type, the optimal method should co-embed these genes in close proximity to113

the corresponding cells. To quantify this specificity, we introduced the SigScore, which attains114
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a value of 1 when all cell-type-specific genes are top-ranked by their average distance to cells of115

the corresponding type.116

In Scenario 1, we used all fields of view (FOVs) from section Lung5 rep1 as the reference117

dataset and FOVs from three other sections (Lung5 rep2, Lung13, and Lung12) as target118

datasets, representing varying levels of heterogeneity between reference and target datasets119

(Supplementary Fig. S1). In this scenario, Lung5 rep1 and Lung5 rep2, derived from two120

consecutive sections from the same donor, exhibited a high degree of similarity. In Scenario 2,121

we binned 5 cells per location in the target datasets while maintaining the same reference data,122

to evaluate the performance of the CAESAR suite when confronted with a low-resolution target123

dataset. Conversely, in Scenario 3, the target data remained consistent with Scenario 1, and we124

binned 5 cells per location in the reference datasets to assess the CAESAR suite’s performance125

using a low-resolution reference dataset. The details of these simulations are provided in the126

“Methods” section.127

We first evaluated the CAESAR suite’s ability to generate informative embeddings compared128

to the MCA employed by Cell-ID and GSDensity in co-embeddings, using ASW as the metric129

(Fig. 1 c, top panel). The CAESAR suite yielded higher ASW values in the estimated image-130

based spatial embedding of locations, indicating that its (co)-embeddings better preserved the131

biological differentiation. We then assessed the performance of both the CAESAR suite and132

Cell-ID in signature gene detection (Fig. 1 c, middle panel). The CAESAR suite exhibited133

a higher SigScore, indicating its superior capability in detecting signature genes. While the134

ACC of all the methods declined with increasing heterogeneity, the CAESAR suite consistently135

outperformed Cell-ID (Fig. 1 c, bottom panel, and Supplementary Fig. S2). Notably, iCAESAR,136

which integrates information from multiple reference datasets, demonstrated the most stable137

performance with minimal variation in its ACC, highlighting the advantage of utilizing multiple138

references. Furthermore, use of the CAESAR suite resulted in a substantially smaller proportion139

of unassigned cells than Cell-ID, with iCAESAR providing an even further reduced proportion140

(Supplementary Fig. S3), indicating the enhanced cell-type detection performance of iCAESAR.141

Subsequently, we evaluated the performance of the CAESAR suite for pathway detection142

in comparison to other methods. In our simulations, pathway gene sets were generated using143

differentially expressed genes specific to cell types, and the area under the curve (AUC) was144

used to evaluate the performance in pathway recovery across various pathway scores. As145

illustrated in Fig. 1d, the CAESAR suite demonstrated superior performance in pathway146

detection, consistently surpassing Cell-ID and GSDensity in terms of AUC values.147

CAESAR suite facilitates spatial annotations using multiple scRNA-148

seq reference datasets149

We applied the CAESAR suite and other methods to analyze five published spatial omics datasets150

from different sequencing platforms: 10x Xenium, 10x Visium, ST, Pixel-seq, and Spatial151

ATAC-seq. For spatial annotation, we leveraged scRNA-seq reference data and transferred152

the labels to spatial omics datasets derived from diverse technologies, species, resolutions, and153

modalities. Upon annotating the target spatial omics data, the CAESAR suite was used to154

detect cell- or domain-type-specific signature genes and perform hypothesis testing for the155

detection of pathways enriched within each cell or location and/or cell or domain type.156

4



To harness the reference scRNA-seq data from 26 human BC patients [27], we first analyzed157

human BC data generated using 10x Xenium [28] comprising four sections from two BC patients,158

with two serial replicates for each patient (Supplementary Fig. S4). We observed striking159

batch effects among the 26 scRNA-seq reference data in UMAP (Fig. 2a) with substantial160

heterogeneity exhibited in the annotated cell-type proportions, especially for cancer epithelial161

cells (Fig. 2b). Using the CAESAR suite that integrates all 26 reference datasets (named162

iCAESAR), we sequentially (a) detected cell-type-specific signature genes in each of the 26163

reference datasets, (b) aggregated a signature gene list from the 26 reference datasets by164

weighting their occurrence across the references, (c) estimated spatial co-embeddings with165

histology images for the target BC sections, and (d) performed spatial annotations based on166

the average distance between each location and signature genes identified in step (b), with167

the entire annotation process performed as shown in Fig. 2c. The resulting co-embedding of168

cells/locations and the top-ranked signature genes revealed conserved relationships across both169

the reference and target datasets (Fig. 2c and Supplementary Fig. S5). In the reference data,170

we detected CD3E (in 20 samples, including Samples 1 and 25) and CD3D (in 18 samples,171

including Sample 1) as signature genes for T cells, among others (Supplementary Data 1).172

CD3E functions as a subunit of the T-cell receptor complex, playing a crucial role in CAR-T173

cell therapy [29], while CD3D has been implicated to participate in lymphocyte infiltration174

and immune checkpoint regulation, and serves as a prognostic biomarker for BC [30]. These175

signature genes were aggregated into a gene list used for annotating the target BC dataset176

by iCAESAR (Supplementary Fig. S6). By removing unwanted variations, we visualized177

the expression patterns of the top five signature genes for each annotated cell type across178

all four sections and observed the distinct signature profiles for each cell type (Fig. 2d; see179

Methods). Notably, many of these genes were reported to be differentially expressed across180

various cell types, i.e., MS4A1 and BANK1 in B cells [31, 32]; CD3E, IL7R, CD3D, and181

CD247 in T cells [29, 33–35]; and LYPD3, FASN, and FOXA1 in cancer epithelial cells [36–38],182

while the roles of MLPH and SERHL2, specifically detected in cancer epithelial cells, remain183

underexplored in BC.184

To evaluate the performance of CAESAR in spatial annotation, we applied CAESAR and185

Cell-ID to each of the 26 references, and iCAESAR to all 26 references to annotate the BC186

dataset, and generated spatial heatmaps illustrating the cell-type assignments, as shown in187

Fig. 2e and Supplementary Fig. S7-S8. The majority of the CAESAR annotation results188

demonstrated high confidence levels (Supplementary Fig. S9). iCAESAR precisely detected189

cancer epithelial cells and other immune-relevant cell types, while Cell-ID labeled most cells as190

cancer epithelial in BC sections 1 and 2, with a higher proportion of normal epithelial cells in191

sections 3 and 4. Notably, the iCAESAR results exhibited a significantly lower proportion of192

unassigned cells than those of Cell-ID, with an average of 1.22% unassigned cells compared193

to Cell-ID’s 95.04% across the four sections, indicating its enhanced capability in cell type194

detection (Supplementary Fig. S10). Using all 26 reference datasets, iCAESAR demonstrated195

further improved stability compared to the use of each reference individually with CAESAR,196

although both showed substantial improvements in annotation accuracy over Cell-ID, with mean197

(standard deviation) ACC values of 0.819 (0.055), 0.665 (0.186), and 0.015 (0.066), respectively198

(Fig. 2f, upper panel). While CAESAR/iCAESAR demonstrated superior performance over199

Cell-ID in its ability to generate co-embeddings to distinguish among distinct cell types, with200
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mean ASW scores of 0.115 and 0.042, respectively.201

Next, we examined the pathways enriched within the BC dataset. First, we detected202

significantly enriched pathways within the categories of GO biological process (GOBP), KEGG,203

Reactome, chemical and genetic perturbations (CGP), and cancer modules (CM) using a graph-204

based test (see Methods), with 393, 19, 38, 327, and 69 pathways detected, respectively, under205

an adjusted p-value of less than 0.05. Subsequently, we applied CAESAR to detect differentially206

enriched pathways among annotated cell types, summarizing the top five most significantly207

enriched pathways for each cell type using a dot plot (Fig. 2g). Among these, cancer-related208

module 139 and Doane breast cancer classes up were enriched in cancer epithelial cells, while209

vasculature development was enriched in perivascular-like cells (PVLs), endothelial and cancer-210

associated fibroblasts (CAFs). To further examine the enrichment of pathways in each location,211

we applied CAESAR to perform spot-level enrichment analysis. CAESAR exhibited superior212

performance to Cell-ID in pathway activity scoring, with mean SigScore values of 0.898 and213

0.624, respectively (Fig. 2f, bottom panel). We summarized the cell-type-specific pathway214

activation data across each section using a spatial heatmap (Fig. 2h and Supplementary Fig.215

S11-14), which highlighted that vasculature development was highly enriched at the boundary216

of cancer epithelial cells, while Doane breast cancer classes up was predominantly enriched217

in cancer epithelial cells. Further enrichment analysis revealed that the cell types from each218

section were highly enriched in several common pathways, suggesting that the annotations219

provided by the CAESAR suite were well-aligned across sections (Supplementary Fig. S15-16).220

CAESAR suite enables spatial annotations of human HCC data221

transferred from scRNA-seq in mouse HCC222

Next, we applied the CAESAR suite and Cell-ID to analyze four sections of human HCC223

data obtained from 10X Visium [39]. The dataset comprised two tumor sections (HCC1 and224

HCC2) and two tumor-adjacent tissue sections (HCC3 and HCC4) from an HCC patient225

(Supplementary Fig. S17a). To demonstrate the robustness of the CAESAR suite using226

reference data across species, we performed annotations of the four target HCC sections using227

either human [40] or mouse [41] scRNA-seq data as references (Fig. 3a; see Methods). Taking228

manual annotations as the ground truth (Fig. 3b and Supplementary Fig. S17a), the spatial229

heatmaps generated by CAESAR, using either human (Fig. 3c and Supplementary Fig. S17b) or230

mouse reference data (Fig. 3d and Supplementary Fig. S17c), exhibited marked improvements231

over those generated by Cell-ID, which showed a substantial proportion of unassigned cells.232

Notably, the annotations CAESAR made using mouse reference data closely aligned with233

those obtained using the human reference data, achieving mean accuracies of 0.702 and 0.669,234

respectively (Fig. 3e). Compared to those made by Cell-ID, CAESAR achieved a substantial235

gain in accuracy, 495.5% and 677.7%, respectively. A detailed examination of the annotations236

based on the human and mouse references revealed that HPC-like cells, an annotation absent237

from the mouse data, were detected as HCC cells using the mouse reference (Supplementary238

Fig. S18). HPC-like cells are known to exhibit similarities to HCC cells and contribute to239

HCC formation through their activation [42, 43]. An analysis of annotation confidence further240

demonstrated consistent species-agnostic results (Supplementary Fig. S19).241

Using CAESAR with a single mouse HCC reference dataset, we first (a) detected cell-type-242
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specific signature genes within the reference data, (b) estimated spatial co-embedding in the243

target HCC sections, and (c) performed spatial annotations based on homologous genes of244

human and mouse. The resulting visualization of co-embeddings for the cells/locations and245

the top signature genes revealed conserved relationships across both the reference and target246

datasets (Fig. 3f). For example, the genes Rnf128 and Acox2, which are unique to HCC cells in247

mice, were detected as signature genes in human HCC sections. Similarly, Mmp23 and Tpm2,248

associated with fibroblasts, were also detected in the human HCC sections. After removing249

unwanted variations, we visualized the expression levels of the top six signature genes for each250

cell type across all four sections (Fig. 3g; see Methods). Several of these genes have been251

reported to be enriched in specific HCC cell types, such as IGLC2 in B/Plasma cells [44] and252

RNF128 and ABCB11 in HCC cells [45, 46]. Notably, RNF128 promotes HCC progression253

through the activation of the EGFR/MEK/ERK signaling pathway [45] while ABCB11 is254

associated with a patient’s susceptibility to HCC development [46].255

We further applied CAESAR to an enrichment analysis, identifying 1,303, 61, 253, 1,312, 194,256

and 2,213 significantly enriched pathways in categories in the GOBP, KEGG, Reactome, CGP,257

CM, and immune signatures database (ImmuneSigDB), respectively, all with an adjusted p-258

value of less than 0.05. Subsequent analysis revealed significant differences in these pathways at259

the cell/domain-type level (Fig. 3h). Pathways predominantly enriched in HCC cells contained260

liver cancer subtypes and survival and proliferation mechanisms, such as the Reactome pathway261

involving SREBF and SREBP. The high expression of SREBP-1 in tumors has been linked262

to improved 3-year overall and disease-free survival rates in HCC patients, and thus SREBP-263

1 potentially promotes tumor progression by enhancing cell growth and metastasis [47–49].264

Pathways enriched in stroma/immune cells are involved in the regulation of immune responses,265

cell signaling, protein interactions, and vasculature development. The spatial heatmaps of266

these differentially enriched pathways (Fig. 3i and Supplementary Fig. S20) indicated that the267

vasculature development pathway was prominently activated at the boundaries of HCC cells268

but not within HCC regions. This suggests that the role of vasculature development at the269

tumor periphery and within the tumor microenvironment may be consistent across various270

cancer types [50, 51].271

CAESAR suite accurately recovers MOB layers in SRT datasets with272

low or high resolution273

To demonstrate the ability to annotate cell/domain types in SRT data with varying resolutions,274

we applied the CAESAR suite to an analyses of MOB datasets from the ST or Pixel-seq275

platform. ST represents an earlier SRT technology with a 100-µm diameter resolution, while276

Pixel-seq is a more recent technology offering near-single-cell resolution.277

We first applied CAESAR and Cell-ID to annotate low-resolution ST MOB dataset using278

scRNA-seq reference data with coarse-grained labels for five layers: granule cell (GC), mitral279

and tufted cell (M/TC), Olfactory sensory neurons (OSNs), periglomerular cell (PGC), and280

external plexiform layer interneuron (EPL-IN) [52]. Compared to the manual annotations281

(Fig. 4a, left panel), CAESAR demonstrated superior performance in accurately reconstructing282

the MOB layer structure (Fig. 4a, middle panel), with a heatmap of confusion matrix indicates a283

strong alignment between the manual annotations and CAESAR predictions (Fig. 4b), whereas284
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Cell-ID struggled to capture the MOB architecture, resulting in a considerable number of285

unassigned cells (Fig. 4a, right panel). Further analysis led to a visualization of the conserved286

relationships between locations and genes across both datasets (Supplementary Fig. S21). For287

the low-resolution dataset from ST, we applied CAESAR to estimate the cell-mixing proportions288

for each location (Supplementary Fig. S22-S23), and distinct cell-type distributions across289

different domains were revealed. For example, Domain GC was predominantly composed of290

GC, immature neurons, and transitional neurons, while Domain OSNs was primarily occupied291

by OSNs.292

Next, we applied CAESAR and Cell-ID to annotate the high-resolution Pixel-seq MOB293

dataset using scRNA-seq reference data with fine-grained labels [53]. Compared to the original294

annotations of the target dataset, CAESAR achieved 45.45% higher annotation accuracy than295

Cell-ID (Fig. 4c), and the spatial heatmaps reflect the fine structural consistencies with the296

delineations in the spatial heatmap of the logarithm of unique molecular identifiers (UMIs)297

(Fig. 4c, left panel). An enhanced visualization of expression with heatmaps for each cell type298

(Supplementary Figure S24) revealed the distinct spatial patterns of the cell types, particularly299

OSNs, mesenchymal (Mes), and PGC, consistent with the cell-type probability heatmaps.300

In the annotation, we first visualized the co-embeddings of cells and the top two signature301

genes from the fine-grained MOB reference with the high-resolution Pixel-seq dataset in the302

UMAP plots (Fig. 4d). In the near-single-cell resolution target data, we observed a considerable303

overlap of signature genes for each cell type, such as Dcn and Asgr1 for Mes, Lrrtm1 and304

Otop2 for M/TC, and Penk and Icam5 for GC, indicating the preserved relationships between305

cells/locations and genes. Of note, Icam5-knockout mice have been shown to experience306

experimental autoimmune encephalomyelitis in the chronic phase, highlighting Icam5’s neuro-307

protective role in progressive neurodegeneration [54]. We visualized the expression patterns308

of the top five signature genes for each annotated cell type, and observed distinct cell-type309

expression patterns (Supplementary Fig. S25). The spatial distributions of the expression of310

the top signature genes (Fig. 4e, upper panel) closely aligned with the annotated cell types311

(Fig. 4e, middle panel).312

Finally, we applied CAESAR to detect differentially enriched pathways in the GO database313

between annotated cell types, with enrichment scores visualized in spatial heatmaps (Fig. 4e,314

bottom panel, and Supplementary Fig. S26). We found that the neuron neurotransmitter315

transport was enriched in neural M/TCs, indicating its crucial role in supporting M/TCs’316

neurotransmission and olfactory signal modulation. The top differentially enriched pathways317

for each cell type, which are presented in Fig. 4f, indicated Mes cells were significantly enriched318

in activated transmembrane transporter activity, particularly ion transporter activity, mirroring319

the mechanism in the nervous system by which neurons use ion transmembrane transport320

to generate action potentials for information transmission [55, 56]. CAESAR outperformed321

Cell-ID and GSDensity in scoring the cell-type-specific pathway activity, achieving a median322

AUC of 0.762, compared to 0.707 for Cell-ID and 0.504 for GSDensity, as illustrated in Fig. 4g.323
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Annotations of spatial ATAC-seq data using scRNA-seq reference324

with CAESAR suite325

Using the CAESAR suite, we conducted a more challenging cross-modality task invoving326

an analysis of spatial ATAC-seq data from a mouse embryo, characterized by high sparsity327

and high noise (Supplementary Fig. S27). The E11 mouse embryo data utilized contained a328

median of 36,303 unique fragments per 50-µm spot, with a total of 2,162 spots [4]. This spatial329

ATAC-seq dataset was annotated using scRNA-seq mouse embryo reference data from the330

Mouse Organogenesis Cell Atlas (MOCA) [57], with annotations derived via Louvain clustering.331

The two-dimensional UMAP projections of co-embeddings were made for the cells/spots332

to illustrate the overlap among the top signature genes across both reference and target333

datasets (Fig. 5a). We then visualized CAESAR’s annotations of the spatial coordinates and334

compared them with those from Cell-ID (Fig. 5b). CAESAR (ACC = 0.253) significantly335

outperformed Cell-ID (ACC = 0.090), accurately recovering excitatory neurons, stroma cells,336

and a primitive erythroid lineage, while using Cell-ID resulted in a substantial proportion of337

unassigned locations.338

Next, we performed spot-level pathway enrichment analysis using the CAESAR suite to339

detect differential pathways among cell types. The top five differentially enriched pathways were340

visualized in a dot plot (Fig. 5c). Notably, the chloride transmembrane transport pathway within341

the GOBP database was highly enriched in both excitatory neurons and postmitotic premature342

neurons. This pathway is essential for neuronal functionality and excitability, particularly343

within excitatory neurons [58]. The epithelial-to-mesenchymal transition (EMT) involved in344

endocardial cushion formation was prominently enriched in stroma cells. This finding aligns345

with the role of EMT in cardiac development, during which transformed cells function as346

stromal components critical for the formation of cardiac valves and septa [59]. Additionally,347

the gas transport pathway was significantly enriched in the primitive erythroid lineage. This348

lineage represents a pivotal stage in erythropoiesis during embryogenesis, when progenitor cells349

mature into erythroid precursors, eventually developing into mature red blood cells essential350

for gas transport during metabolic processes [60]. We further depicted the enrichment scores of351

the domain-specific pathways, including those associated with excitatory neurons, stromal cells,352

and the primitive erythroid lineage, in heatmaps (Fig. 5d and Supplementary Fig. S28). Our353

analysis revealed the progressive activation pattern of pathways within their respective domains.354

For instance, the enrichment score for EMT involved in endocardial cushion formation exhibited355

a continuous decline from stromal cells to adjacent domains, particularly those with excitatory356

neurons (Fig. 5d, middle panel). This observation highlights the exceptional capability of357

CAESAR to derive spot-level enrichments and offer profound insights into the intricate dynamics358

of biological pathways.359

Discussion360

We aimed, via this study, to introduce and demonstrate the CAESAR suite, a novel spatial361

co-embedding framework that offers a fully integrated and cluster-agnostic suite of tools. This362

framework is designed to detect cell- or domain-type-specific signature genes, perform spatial363

annotations of cell or domain types, and facilitate hypothesis testing to uncover pathways364
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enriched in each cell or location as well as within specific cell or domain type.365

In contrast to traditional co-embedding methods based on MCA, such as Cell-ID and366

GSDensity, the CAESAR suite provides more sophisticated, image- and spatial-aware co-367

embedding of genomic features and cells/locations by effectively considering both histology368

image information and spatial coordinates. Moreover, the co-embedding framework in the369

CAESAR suite is compatible with any dimensionality reduction technique that employs a370

feature-weighted scheme. When cell/domain-type labels are known, such as in labeled reference371

data, the CAESAR suite excels in detecting cell/domain-type signature genes by assessing the372

relative distance between cells/locations and gene features.373

Assuming a conserved relationship between genomic features and cells/locations at an374

appropriate level of granularity, the CAESAR suite, to the best of our knowledge, is the first to375

enable spatial annotations by transferring cell-type labels from predefined scRNA-seq references376

to target spatial omics datasets across a wide range of technologies, resolutions, species, and377

modalities. When multiple references are available, the CAESAR suite also accounts for the378

uncertainty in detecting cell/domain-type signature genes across multiple batches, thereby379

mitigating the impact of batch effects, which often problematic in cluster-centric analysis. Our380

examination of five spatial omics datasets, encompassing diverse technology, resolution, and381

modalities, i.e., 10x Xenium, 10x Visium, ST, Pixel-seq, and Spatial ATAC-seq, demonstrated382

CAESAR suite’s robust spatial annotation capabilities. Using reference data from 26 batches,383

we demonstrated the CAESAR suite’s capacity to effectively annotate a Xenium dataset of384

four human BC sections, in which it achieved substantial improvements in accuracy (4333.33%)385

and SigScore (42.9%) compared to Cell-ID. Similarly, when used to annotate a Visium dataset386

of four human HCC sections using scRNA-seq reference data from either human or mouse, the387

CAESAR suite achieved comparable annotation accuracies, with remarkable accuracy gains of388

495.5% and 677.7%, respectively, compared to Cell-ID.389

The CAESAR suite also offers functions for pathway enrichment analysis at both the390

location and cell/domain-type levels, enabling the delineation of pathway activation across391

different domain types. For example, in the Xenium dataset for BC, the CAESAR suite detected392

the activation of the vasculature development pathway, which was highly active at the boundary393

of cancer epithelial cells, minimally active in cancer cells, and dormant in non-cancer cells.This394

finding highlights the critical role of vascular networks in tumor growth and metastasis, where395

the newly formed vasculature surrounding cancer cells serves not only to sustain tumor survival396

and expansion but also as a conduit for metastatic tumor cells [61].397

As a proof-of-concept, the CAESAR suite provides opportunities for new exciting research398

routes. Firstly, when sections of spatial omics are from multiple conditions, functions that can399

be used to perform hypothesis testing between conditions at both gene and pathway levels400

are needed. Secondly, when datasets with multi-modality measurement on the same section401

(paired) are available, functions for co-embedding paired datasets are needed.402

As a proof-of-concept, the CAESAR suite provides opportunities for new exciting research403

routes. Firstly, when sections of spatial omics are from multiple conditions, functions that can404

be used to perform hypothesis testing between conditions at both gene and pathway levels405

are needed. Secondly, when datasets with multi-modality measurement on the same section406

(paired) are available, functions for co-embedding paired datasets are needed.407
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Methods408

CAESAR suite overview409

The CAESAR suite is an open-source software package comprising diverse functional modules410

that facilitate the co-embedding of locations and gene features, signature gene detection, spatial411

annotations through the integration of multiple reference datasets and for multiple SRT target412

datasets, and pathway enrichment analysis at both the spot-level and cell/domain type-level,413

as illustrated in Fig. 1a.414

Different from existing co-embedding methods, CAESAR model uses a combination of a415

latent factor model and a feature-weighted scheme to project locations and features onto the416

same Euclidean space. Specifically, we denote X = (xsg) ∈ R
S×G as the log-normalized gene417

expression matrix, L = (ls) ∈ R
S×2 as the spatial coordinate matrix, E = (es) ∈ R

S×d as418

the feature matrix from histology images extracted by Visual transformer (see Supplementary419

Notes) and H = (hs) ∈ R
S×d as low-dimensional embeddings of locations, where S is the420

number of spots, G is the number of genes and d is the dimension of image features. We relate421

gene expression (xsg) to low-dimensional embeddings (hs) using a linear factor model:422

xsg = µg + b
T

ghs + usg, (1)

and relate the low-dimensional embeddings (hs) to the spatial coordinates ls and histology423

image features es via an intrinsic conditional autoregressive model:424

hs =
∑

s′∈Nls

w(es, es′)hs′ + εs, (2)

where us = (us1, · · · , usG)
T

∼ N(0,Λ) with Λ = diag(λ1, · · · , λG), Nls is the neighboring425

spot set of spot s defined by coordinates, w(es, es′) =
w̃ss′

ws+
with w̃ss′ = exp{−d2(es, es′)/σ}426

and ws+ =
∑

s′∈Nls
w̃ss′ , and εs ∼ N(0, w−1

s+Φ). We designed a variational EM algorithm427

to infer hs using its posterior estimate (see Supplementary Notes). Next, we utilize a gene428

expression-weighted scheme to derive the embeddings of genes, as formulated below:429

vg =

∑S
s=1 wsgxsghs
∑S

s=1 wsgxsg

,

where wsg = (1 +
∑

s′∈Nls
I(xsg ≠ 0))/(1 + nls), nls = |Nls | is the number of neighboring spots430

of spot s, and I(xsg ̸= 0) is an indicator function that equals 1 if xsg ̸= 0 and 0 otherwise. By431

accounting for the gene expression ratio in the cell’s local microenvironment, the resulting gene432

embedding focuses more on gene expression-intensive areas. It is important to note that vg433

represents a weighted average of the embeddings of locations, hs, and thus resides in the same434

Euclidean space spanned by {hs, s = 1, · · · , S}. Consequently, computing the distance between435

vg and any hs is semantically meaningful. Let Sk denote the index set of spots corresponding436

to cell/domain type k. For clarity, suppose that gene g is exclusively expressed in cell/domain437

type k, implying xsg = 0 for s /∈ Sk. In this scenario, the embedding of gene g simplifies to:438

vg =

∑

s∈Sk
wsgxsghs

∑

s∈Sk
wsgxsg

.
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As a result, the embedding of gene g will closely align with the embeddings of spots belonging439

to cell/domain type k. Furthermore, for scRNA-seq data, we devise a non-centered linear440

factor model to jointly embed cells and genes into a shared space (see Supplementary Notes for441

details).442

Signature gene detection443

The Euclidean distance d(vg,hs) captures the degree of specificity between gene g and location444

s, as the embedding of gene g resides at the weighted centroid of the embeddings of cells that445

express this gene. Consequently, the specificity of gene g to a particular cell/domain type k is446

quantified by the mean distance between gene g and the cells belonging to cell/domain type k.447

This is formally expressed as 1
|Sk|

∑

s∈Sk
d(vg,hs), where Sk denotes the set of cells constituting448

the cell/domain type k. After excluding genes with an expression ratio below ηr (set at 0.1 by449

default) to mitigate the inclusion of infrequently expressed genes and diminish the influence of450

random noise, the signature genes for cell/domain type k, denoted as Γk(γ), are identified as451

the top γ genes that exhibit the highest level of specificity. This is accomplished by ranking452

genes based on their average distance from cells belonging to type k, as given by the formula:453

Γk(γ) =

{

g | rankg

(

1

|Sk|

∑

s∈Sk

d(vg,hs)

)

≤ γ

}

.

Here, rankg represents the ranking function that assigns a position to each gene g based on its454

calculated average distance, with lower distance indicating higher specificity.455

Spatial annotation456

We first extract the signature gene sets for each cell/domain type from each of R reference457

datasets, denoted as Lr = {Γrk(γ) : k = 1, · · · , K}, r = 1, · · · , R, where K is the total number458

of cell/domain types, R signifies the number of available reference datasets and Γrk is set to459

empty set when cell/domain type k is absent from the r-th reference dataset. The parameter460

γr represents the number of signature genes chosen for each set Γrk, which is determined as461

the maximum value that maintains the overlap of signature genes across {Γrk, k = 1, · · · , K}462

below a specified threshold t. This threshold is established to regulate the extent of shared463

signature genes among different cell/domain types. Formally, γr is given by:464

γr = max
γ

{γ | ∀1 ≤ k1 < k2 ≤ K, |Γrk1(γ) ∩ Γrk2(γ)| ≤ t} .

Here, the expression |Γrk1(γ) ∩ Γrk2(γ)| calculates the number of genes common to both Γrk1(γ)465

and Γrk2(γ), ensuring that the intersection does not exceed the threshold t for any pair of466

cell/domain types k1 and k2. The default setting for the threshold t is 1, but it can be adjusted467

upwards when fine-grained labels are available. By aggregating the signature gene sets derived468

from the various reference datasets, we can obtain a comprehensive signature gene set for469

each cell/domain type k, denoted as Γk =
⋃R

r=1 Γrk. Additionally, we assign weights to each470

gene g within Γk, denoted as wgk, which are calculated as the proportion of references in471

which the gene appears as a signature gene for that cell type. Specifically, wgk =
w̃gk∑

g∈Γk
w̃gk

,472
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where w̃gk =
∑R

r=1 I(g ∈ Γrk). This frequency-based weighting approach effectively emphasizes473

the robust associations between genes and cell/domain types, while mitigating the potential474

influence of low-quality signature genes that may arise due to data variability or random effects475

on subsequent annotations.476

Subsequently, we compute the Euclidean distances between each location s and gene g477

in the target data, represented as d(vg,hs). Here, vg and hs represent the co-embeddings478

of gene g and location s, respectively, which are obtained through the spatial co-embedding479

module within the CAESAR suite. To assess the specificity of a given location s to a particular480

cell/domain type k, we calculate the weighted average distance between location s and the481

genes in the signature gene set Γk from the reference data. This is expressed as:482

d(hs,Γk) =
∑

g∈Γk

wgkd(hs,vg).

The probability of assigning the label ys of location s to a specific cell/domain type k is then483

approximated using a standard normal cumulative distribution function Φ(·), adjusted for the484

mean µs and standard deviation σs:485

Prob(ys = k) = Φ

(

d(hs,Γk)− µs

σs

)

,

where µs and σs are the mean and the standard deviation of {d(hs,Γk), k = 1, · · · , K}. Then,486

CAESAR suite annotates location s as cell/domain type k with highest probability. For the487

low-resolution target dataset, the cell mixing proportion of cell/domain type k in location s is488

obtained by normalizing the above probability, denoted as πsk =
Prob(ys=k)

∑K
k=1

Prob(ys=k)
.489

The CAESAR suite is unique in its ability to offer confidence levels for annotation results, a490

vital feature for evaluating the trustworthiness and precision of cell annotations. This enables491

researchers to base their conclusions on a solid foundation, as they are informed of the quality492

of the data. Specifically, we commence by generating K control gene sets via random sampling,493

ensuring that each control set Γℓ
k mirrors the size and gene weights of its corresponding signature494

gene set Γk. Subsequently, we identify the minimal average distance of these control sets to a495

given spot s, denoted as minℓ∈{1,··· ,K} d(hs,Γ
ℓ
k). This procedure is repeated L times, and we496

calculate the confidence level for spot s being annotated as type k as follows:497

Confidence(ys = k) =
1

L

L
∑

ℓ=1

I

(

min
ℓ∈{1,··· ,K}

d(hs,Γk) < min
ℓ∈{1,··· ,K}

d(hs,Γ
ℓ
k)

)

.

Spots with a confidence level falling below a predefined threshold ηc are designated as “unas-498

signed”, with a default threshold of ηc = 0.95 employed in this study. Researchers have the499

flexibility to adjust this threshold based on their specific project requirements.500

Pathway enrichment analysis at different levels501

The CAESAR suite offers comprehensive pathway enrichment analysis at different levels without502

necessitating clustering. Given that the cell-gene distance serves as a proxy for their association,503

genes that are specific to a particular subpopulation of cells tend to cluster closely together504

in the co-embedding space. To assess the extent of enrichment of a pathway in the dataset,505
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we employ a robust graph-based test [62] to test the degree of clustering of the gene set506

(denoted as Γ) of this pathway, which is agnostic to the underlying graph structure and adept507

at handling high-dimensional data. Specifically, we first construct a 5-th minimum-spanning508

tree graph using all gene embeddings, in which each node i represents the gene gi with its509

embedding as node feature. We define the edge weight of (i, j) as w(i, j) = 1/max{di, dj},510

where di is the node degree of node i and w(i, j) = 0 if node i and node j are not connected.511

Let Rp =
∑

i,j∈Γ w(i, j) be the total weights of edges connecting genes within the pathway,512

Rpc =
∑

i,j /∈Γ w(i, j) be the total weights of edges connecting genes outside the pathway. We513

further define Rdiff = Rp − Rpc and Rw = (1− q)Rp + qRpc , where q = (np − 1)/(G− 2) and514

np = |Γ|. The robust edge-count test statistic is constructed as515

Tn = max

{

Rw − E(Rw)
√

Var(Rw)
,
∣

∣

∣

Rdiff − E(Rdiff)
√

Var(Rdiff)

∣

∣

∣

}

,

by comparing the observed values of Rw and Rdiff to their expected values and variances, under516

the null hypothesis of no enrichment. The asymptotic distribution of Tn is used to obtain517

p-values, which are then adjusted for multiple comparisons using the Cauchy combination [63]518

when testing multiple sections simultaneously, and the Benjamini-Hochberg procedure for FDR519

control when testing multiple pathways simultaneously. This approach enables us to identify520

whether a pathway is highly and specifically expressed within some specific cell subpopulations.521

However, the specific identity of these subpopulations remains elusive at this juncture.522

To uncover the subpopulation where the pathway is abundant, we undertake a spot-level523

enrichment analysis that not only reveals the enriched subpopulation but also tracks the gradual524

activation of the pathway across entire spots. Specifically, the CAESAR suite assesses the level525

of pathway activity at each location, quantifying the specificity of this pathway among various526

locations. It accomplishes this by generating L size-matched control gene sets through random527

sampling and subsequently calculating their average distance d(hs,Γ
ℓ) for a given spot s and528

each set Γℓ, where ℓ ranges from 1 to L. Throughout this study, a default value of L = 1000529

was employed. Ultimately, the pathway activity level is determined as the proportion of control530

gene sets whose average distance is greater than the distance between the co-embeddings of a531

given spot s and its true gene set Γ, given by 1
L

∑L
ℓ=1 I

(

d(hs,Γ) < d(hs,Γ
ℓ)
)

. A higher pathway532

activity score signifies a more pronounced enrichment of the pathway, and the variations in533

activity levels across different locations indicate the existence of a gradual activation pattern534

for the tested pathway.535

Furthermore, when detailed information about cell subpopulations is accessible (for instance,536

the cell/domain types annotated by CAESAR), the CAESAR suite can conduct enrichment537

analysis for a particular pathway at a cell/domain type-specific level. To achieve this, we employ538

a Wilcoxon test to ascertain whether the pathway activity level within a specific cell type539

surpasses that of other types. In scenarios where multiple sections are evaluated concurrently,540

the p-values are aggregated using the Cauchy combination method. This approach can also be541

extended to identify pathways that are unique to specific biological conditions by comparing542

their activity levels across varying conditions. As a result, the CAESAR suite is instrumental543

in identifying pivotal pathways potentially implicated in distinct cellular behaviors or disease544

states. This not only pinpoints potential therapeutic targets but also offers profound insights545

into cellular function and the underlying mechanisms of disease.546
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Unwanted-variation-removal for gene expression547

To effectively visualize the expression patterns of signature genes by integrating multiple548

target sections, such as 10x Xenium BC sections and 10x Visium HCC sections, it is necessary549

to eliminate unwanted variation (i.e., batch effects) within the combined expression matrix.550

When multiple target datasets have been annotated using the CAESAR suite, these batch551

effects can be mitigated by leveraging a set of housekeeping genes as negative controls. These552

genes remain unaffected by other biological influences, allowing for the precise removal of553

unwanted variation [64]. In this study, mouse/human housekeeping gene sets obtained from the554

Housekeeping and Reference Transcript Atlas were employed [65]. First, we performed PCA of555

the gene expression matrices of housekeeping genes present in each target dataset t, obtaining556

the top ten principal components (PCs), m̂t, which can be treated as the unwanted variation557

factors. The weighted average distance matrix ĥt ∈ R
S×K , whose (s, k)-th element is d(hs,Γk),558

reflects the specificity of location s to cell/domain types and is suitable for explaining biological559

variation between cell/domain types. Finally, we used a linear model to remove unwanted560

variation from the normalized gene expression matrix:561

Xt = ĥtα+ m̂tβ + ϵt, (3)

where α ∈ R
K×G is the coefficient matrix for biological effects between cell/domain types and562

β ∈ R
10×G is the coefficient matrix for unwanted variations. After estimating the coefficients563

in Eqn. (3), unwanted variations can be removed from the original normalized gene expression564

matrix via565

X̂t = Xt − m̂tβ̂.

A similar strategy can be used to remove unwanted biological conditions or other variations566

that the user wishes to eliminate by including such information in Equation (3).567

Comparison of methods568

We conducted extensive simulation studies and real data analyses to benchmark the CAESAR569

suite against Cell-ID, a tool implemented within the R package CelliD [21], focusing on annota-570

tion accuracy, dimension reduction capabilities, and co-embedding performance. Throughout571

these evaluations, both CAESAR and Cell-ID utilized an identical list of signature genes,572

derived via signature gene detection in reference data, as their input. Of note, Cell-ID was573

specifically designed for co-embedding scRNA-seq data while leveraging multiple correspondence574

analysis (MCA).575

To assess the performance of the CAESAR suite in detecting pathway activity, we compared576

it against two competitors: Cell-ID and GSDensity [23]. GSDensity, implemented in the577

R package gsdensity, is a gene set scoring approach that leverages the MCA co-embedding578

generated by Cell-ID. During the implementation, we adhered to the default parameter settings579

outlined in the respective packages for both methods.580

Evaluation metrics581

We evaluated the methods’ performances in annotation accuracy, dimension reduction, co-582

embedding performance, and pathway activity detection using the following metrics.583
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Classification accuracy. To assess annotation accuracy, we utilized classification accuracy584

(ACC) [26], the standard benchmark for evaluating classifier performance. We excluded spots585

with cell/domain types not present in the reference data from the ACC calculation. ACC is the586

ratio of correctly annotated spots to the total number of spots, with higher values indicating587

superior accuracy in predicting correct labels for the target data.588

Average silhouette width. To evaluate the ability of the embeddings to distinguish between589

cell/domain types, we employed the average silhouette width (ASW) [25]. ASW ranges from -1590

to 1, with higher scores indicating better preservation of biological signals.591

Signature score. To assess co-embedding performance, we measured the specificity of592

agreement between cell-type-specific genes and cell types. For each cell type k, we identified its593

top 3 differentially expressed genes with the largest log-fold change as cell-type-specific genes.594

We then calculated the sum of ranks of these genes based on their average distance from spots595

of cell type k in descending order. The SigScore for cell type k was obtained by normalizing596

this sum using min-max normalization. An optimal tool would demonstrate high specificity597

for all cell types, reflected in a SigScore close to 1 for each cell type. The final SigScore is the598

weighted average of SigScores across all cell types, weighted by the proportion of spots per cell599

type.600

Area under curve. We evaluated the effectiveness of spot-level pathway activity detection601

by assessing its capability to precisely identify correct cell types through the utilization of the602

pathway activity scores generated by the CAESAR suite and comparative methods. For each603

cell type k, we designated the gene set that included the top three differentially expressed genes604

with the greatest log-fold change as its fundamental enriched pathway. Using this pathway,605

we computed the pathway activity scores for all spots, employing both the CAESAR suite606

and comparative approaches. Next, we employed these activity scores to determine the area607

under the curve (AUC) for accurately distinguishing the correct cell type across various score608

thresholds. Specifically, we ordered the cells based on their pathway activity scores, resolving609

ties randomly, and calculated the recovery ratio at every feasible point. Consequently, for each610

cell-type-specific pathway, a superior method will achieve a higher AUC value. The final AUC611

was determined as the weighted average of the AUCs corresponding to all cell types in the612

dataset, where the weight is proportional to the ratio of spots belonging to each cell type.613

Simulations614

To evaluate the performance of the CAESAR suite under scenarios with different resolutions615

for spatial locations, we designed simulation studies based on a subcellular-resolution CosMx616

dataset for lung cancer [24].617

Scenario 1. Same-resolution reference and target data. For this scenario, we used all618

fields of view (FOVs) from section Lung5 rep1 as reference datasets. The original annotation619

was treated as underlying truth, which included 14 cell types and assigned based on gene620

expression profiles similarity. The FOVs from three other sections (Lung5 rep2, Lung13, and621

Lung12) were adopted as the target datasets. Therefore, the heterogeneity between the reference622

and target datasets was naturally considered in our scenario, with Lung5 rep1 and Lung5 rep2623

from two consecutive sections of the same donor exhibiting strong similarity.624
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Scenario 2. High-resolution reference data and low-resolution target data. For this625

scenario, the reference datasets were same as Scenario 1, and we binned 5 cells as a location in626

the target datasets to generate low resolution target data. Specifically, we divided each target627

dataset into grids of equal length and width according to the spatial coordinates, so that each628

grid contained 5 spots on average. Then, we added the gene expression of the spots located in629

a grid as the gene expression of the new location, spatial coordinates of which are defined as630

the grid center and the domain type is defined as the domain cell type in the grid with ties631

resolved with random select.632

Scenario 3. Low-resolution reference data and high-resolution target data. For633

this scenario, the target datasets were same as in Scenario 1, and the low-resolution reference634

datasets were generated via the same binned method as in scenario 2.635

Real data analyses636

All real datasets utilized in this study are comprehensively detailed in the Supplementary Notes.637

Through rigorous quality control measures, we excluded genes displaying zero expression across638

multiple spots, those exclusively present in either the reference or target dataset, and spots639

where numerous genes exhibited no expression. In our analyses, we performed log normalization640

and identified the top 2000 variable genes using Seurat4 [66]. We treated all genes as variable641

genes for Xenium and CosMx data analyses, since the number of available genes was less than642

2000. For Pixel-seq data analysis, the top 3000 variable genes were calculated due to the high643

sparsity of Pixel-seq data. The final variable genes used for co-embedding were the intersection644

of variable genes in the reference and target data. However, we used the variable genes from645

the reference data to co-embed the spatial ATAC-seq data, as its data consists of gene scores.646

Data availability647

All datasets used in this study are publicly available. These include the four human non-648

small-cell lung cancer CosMx data (https://nanostring.com/products/cosmx-spati649

al-molecular-imager/ffpe-dataset/nsclc-ffpe-dataset/); the four human breast650

cancer Xenium datasets (https://www.dropbox.com/s/t05w7ccufh1v0h8/xenium_prere651

lease_jul12_hBreast_replicates.tar?dl=0 and https://www.10xgenomics.com/pr652

oducts/xenium-in-situ/preview-dataset-human-breast) as well as its reference data653

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078); four human654

hepatocellular carcinoma Visium datasets (Raw FASTQ data are available at https://ww655

w.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=858545, and H&E656

images, which are available at https://doi.org/10.6084/m9.figshare.21280569.v1 and657

https://doi.org/10.6084/m9.figshare.21061990.v1), as well as its scRNA-seq human658

reference data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125449) and659

its scRNA-seq mouse reference data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a660

cc=GSE181515); mouse olfactory bulb ST dataset (https://www.spatialresearch.org/) and661

Pixel-seq dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186097),662

as well as their reference datasets (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a663

cc=GSE111672; and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121891),664
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and the mouse spatial ATAC-seq dataset (https://www.ncbi.nlm.nih.gov/geo/query/a665

cc.cgi?acc=GSM5238385) as well as its accompanying scRNA-seq reference data (https:666

//oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads). All667

other relevant data supporting the key findings of this study are available within the article and668

its Supplementary Information files or from the corresponding author upon reasonable request.669

Code availability670

The CAESAR suite was implemented in an open-source, publicly available R package [67]671
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Figure 1: Schematic overview of CAESAR suite and simulation results. (a) Left panel:
CAESAR suite takes labelled scRNA-seq or spatial transcriptomics sections as reference data
and unlabelled spatial transcriptomics sections as target data. Middle panel: For each section,
the model projects the cells and genes into a common embedding space, where the gene-cell
distance reflects their specificity. Spatial co-embedding integrate morphological or histology
images and spatial location information into low-dimensional space to better characterize
the gene-cell relationship. The signature genes for a cell/domain type are the top-ranked
genes based on their average distance to cells of that cell/domain type. These signature gene
sets can be independently extracted from a collection of reference datasets for downstream
annotation procedure. Right panel: CAESAR suite performs cell/domain type annotation by
evaluating cell signatures against (multiple) cell/domain-type markers from reference datasets.
Once the target data is annotated, its signature genes can be detected. When a pathway is
provided, CAESAR suite can detect gradual activation of the pathway among locations. (b)
The CAESAR suite is capable of flexibly performing annotations for spatial omics datasets
with heterogeneous reference datasets, across species, resolutions, technologies, and modalities.
(c) Model validation using CosMx data. We used all fields of view (FOVs) from sample
Lung5 rep1 as the reference dataset (30 FOVs, 3,109 spots on median), and all FOVs from
samples Lung5 rep2, Lung13, and Lung12 as target data (29, 28, and 20 FOVs; 3,530, 2,524,
and 4,099 spots on median, respectively) to evaluate performance under different conditions
(scenario 1). We binned 5 cells per location in the target datasets to create low-resolution target
datasets (706, 495, and 810 spots on median, respectively), which used to evaluate performance
with a low-resolution target dataset (Scenario 2). We evaluated performance in terms of cell
embedding, co-embedding, and annotation, using average silhouette width (ASW), signature
score (SigScore) and classification accuracy (ACC). (d) We used differentially expressed gene
sets for each cell type as pathways to evaluate performance on pathway enrichment, which was
assessed by the area under the curve (AUC).
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Figure 2: Analysis of human breast cancer Xenium data. (a) UMAP plot for 26 reference
datasets, colored by the reference identities. (b) Stacked barplot for the cell type proportions
from manual annotations in each reference dataset, where CAFs represents cancer-associated
fibroblasts and PVL represents perivascular-like cells. (c) Schematic representation of the
CAESAR suite’s spatial annotations process utilizing multiple single-cell RNA sequencing
(scRNA-seq) reference datasets. (d) Dot plot of top five signature genes identified by CAESAR
suite for the transferred annotations on four BC sections, where “% expressed” means the
percentage of cells that expressed this gene. (e) Spatial heatmaps for annotations obtained by
CAESAR suite and Cell-ID. (f) Visual representations of the ASW for assessing the performance
of location embeddings, the SigScore for evaluating the efficacy of signature gene detection,
and the ACC metric for spatial annotation performance, are presented through boxplots by
comparing CAESAR suite and Cell-ID. (g) Dot plot of the top five cell type specific pathways
for each transferred cell types by CAESAR suite of four BC sections, where “% enriched” means
the percentage of cells in which this pathway was enriched. (h) Spatial heatmaps of enrichment
scores for cell-type-specific pathways: for PVL cells, the pathway “vasculature development”
from the GOBP database, and for Cancer Epithelial cells, the pathway “Doane Breast Cancer
Classes Up” from the CGP database.
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Figure 3: Analysis of human HCC Visium data. (a) Schematic representation of the CAESAR
suite’s spatial annotations process transferred from human and mouse reference. For each
reference, CAESAR co-embeds the locations and genes in a common space, and detect signature
genes for each cell type based on their distance. Then, those signature genes are used as cell type
markers. The signature genes from mouse were transferred to their homologous human genes.
CAESAR’s annotation results using references from different species show species-agnostic
consistency. (b) H&E image and manual annotations by a pathologist for HCC1 and HCC3.
(c) Spatial heatmaps of spatial annotations for HCC1 and HCC3 transferred by CAESAR suite
and Cell-ID based on a human HCC scRNA-seq reference. (d) Spatial heatmaps of spatial
annotations for HCC1 and HCC3 transferred by CAESAR suite and Cell-ID based on a mouse
HCC scRNA-seq reference. (e) Boxplots of annotation accuracy of CAESAR suite and Cell-ID
based on human reference (upper panel) and mouse reference (bottom panel). (f) UMAP
plots of cells/spots and partial overlapped signature genes between mouse HCC reference data
and four target SRT sections. (g) Dot plot of top six signature genes for each transferred cell
types by CAESAR suite based on mouse HCC reference. (h) Dot plot of average enrichment
scores for cell-type specific pathways. (i) Spatial heatmap of enrichment scores of vasculature
development in GOBP database.
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Figure 4: Analysis of MOB ST and Pixel-seq data. (a) Spatial heatmaps of manual annotations
(left panel), annotations obtained by CAESAR suite and Cell-ID for MOB ST data, where GCL,
the granule cell layer; MCL, the mitral cell layer; ONL, the nerve layer; GL, the glomerular
layer; GC, granule cell; M/TC, mitral and tufted cell; OSNs, Olfactory sensory neurons; PGC,
periglomerular cell; EPL-IN, external plexiform layer interneuron. (b) Heatmap of confusion
matrix between manual annotations and the predicted cell types obtained by CAESAR suite.
(c) Spatial heatmaps of logarithm of UMIs, and annotations obtained by CAESAR suite and
Cell-ID for MOB Pixel-seq data, the cell types include: Astro, astrocyte; EC, endothelial cell;
ImmunoCells, monocyte and macrophage; Mes, mesenchymal cell; Microglia, microglia; Mural,
mural cell; MyOligo, myelinating oligodendrocyte; OEC, olfactory ensheathing cell; OPC,
oligodendrocyte precursor; RBCs, red blood cells; Neuron.Astro-Like, astrocyte like neuron;
EPL-IN; GC; Neuron.Immature, immature neuron; M/TC; OSNs; PGC; Neuron.Transition,
transitional neuron. (d) UMAP plots of embeddings for cells/spots and two overlapped signature
genes between MOB scRNA-seq reference and the MOB Pixel-seq data. (e) Spatial heatmaps
of expression levels of the cell type specific genes, cell types and enrichment scores of cell
type differentially enriched pathways. (f) Dot plot of average enrichment scores for cell-type
differentially enriched pathways in MOB Pixel-seq data. (g) Boxplot of AUC obtained by
CAESAR suite, Cell-ID and GSDensity for assessing the pathway enrichment performance.
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Figure 5: Analysis of mouse Embryo 11 spATAC-seq data. (a) UMAP plots of co-embeddings
for cells/spots and overlapped signature genes between mouse embryo scRNA-seq reference
and the mouse Embryo 11 spATAC-seq data. (b) Spatial heatmaps for cell-type assignment of
CAESAR and Cell-ID. (c) Dot plot of the top five differentially enriched pathways for each
of top six domain cell types. (d) Spatial heatmaps for top three domain cell types and the
corresponding enriched pathway.
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