

CAESAR: a cross-technology and cross-resolution framework for spatial omics annotation

Jin Liu

liujinlab@cuhk.edu.cn

The Chinese University of Hong Kong, Shenzhen <https://orcid.org/0000-0002-5707-2078>

Wei Liu

Sichuan University

Xiaoran Chai

Duke-NUS Medical School

Xiao Zhang

The Chinese University of Hong Kong, Shenzhen

Zhixiang Lin

The Chinese University of Hong Kong

Article

Keywords:

Posted Date: October 22nd, 2024

DOI: <https://doi.org/10.21203/rs.3.rs-5086440/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

1 CAESAR: a cross-technology and cross-resolution
2 framework for spatial omics annotation

3 Xiao Zhang^{1†}, Wei Liu^{2†}, Xiaoran Chai³, Zhixiang Lin⁴ and Jin Liu^{1*}

4 ¹School of Data Science, The Chinese University of Hong Kong-Shenzhen,
5 Shenzhen, China

6 ² School of Mathematics, Sichuan University, Chengdu, China.

7 ³Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School,
8 Singapore

9 ⁴Department of Statistics, The Chinese University of Hong Kong, Hong Kong,
10 China

11 [†] Equal contributions

12 *Corresponding author. Email: liujinlab@cuhk.edu.cn

13 **Abstract**

14 The biotechnology of spatial omics has advanced rapidly over the past few years, with
15 enhancements in both throughput and resolution. However, existing annotation pipelines
16 in spatial omics predominantly rely on clustering methods and lack the flexibility to
17 integrate extensive annotated information from single-cell RNA sequencing (scRNA-seq)
18 due to discrepancies in spatial resolutions, species, or modalities. Here we introduce
19 the CAESAR suite, an open-source software package that provides image-based spatial
20 co-embedding of locations and genomic features. It uniquely transfers labels from scRNA-
21 seq reference data, enabling the annotation of spatial omics datasets across different
22 technologies, resolutions, species, and modalities, based on the conserved relationship
23 between signature genes and cells/locations at an appropriate level of granularity. Notably,
24 CAESAR enriches for location-level pathways, allowing for the detection of gradual
25 biological pathway activation within spatially defined domain types. We demonstrate the
26 advantages of CAESAR through a comprehensive analysis of five spatial omics datasets
27 encompassing diverse technologies, resolutions, and modalities. Across these applications,
28 CAESAR achieved substantial improvements in annotation accuracy (45.45%-4333.33%)
29 by transferring cell-type labels from either multiple reference data, or across different
30 species and modalities. As a result, CAESAR effectively recovers intricate structures in
31 mouse olfactory bulb and embryo, and unveils tumor microenvironment heterogeneity,
32 with exceptional efficiency and flexibility.

33 **Introduction**

34 Spatial omics is accomplished via a set of breakthrough technologies that enable the spatial
35 profiling of molecular parameters, including gene and protein expression and chromatin structure.
36 One of the techniques used, spatially resolved transcriptomics (SRT), requires a range of
37 advanced technologies that enhance the throughput of expression profiling, from targeted to
38 transcriptome-wide gene measurements, and improve the spatial resolution, from low resolution
39 to subcellular resolution [1–3]. In parallel with the evolution of SRT technologies, other
40 spatial omics technologies, such as spatial-ATAC-seq [4] and spatial-CITE-seq [5], have also
41 seen rapid advancements. By mapping cell/domain types in a scalable manner, emerging
42 spatial omics technologies offer unprecedented opportunities to characterize transcriptomic
43 and cellular landscapes within a spatial context. Many spatial omics methods have been
44 developed that incorporate routine analytical steps, such as the detection of spatially variable
45 genes, dimensionality reduction, clustering, differential gene expression analysis, and gene set
46 enrichment analysis [6–10]. However, most of these methods are “cluster-centric”, predominantly
47 relying on accurately defined clustering to identify meaningful gene features. This reliance
48 becomes problematic when samples contain cells that are undergoing active state transitions,
49 a phenomenon commonly observed in tumor or developmental datasets [11–14]. Moreover,
50 a large number of single-cell RNA sequencing (scRNA-seq) datasets have been thoroughly
51 characterized, providing abundant transcriptomic information with annotations for both human
52 and mouse samples.

53 To annotate scRNA-seq datasets using these predefined references, the use of cluster-centric
54 methods for cell annotation has been proposed. These methods typically either transfer cell-type
55 labels from reference data to target data [15–17] or model marker-gene expression patterns
56 in the target data [18–20]. The former strategy requires an additional batch-removal step,
57 while the latter demands access to high-quality marker genes. Due to discrepancies between
58 spatial omics and scRNA-seq data, annotating spatial omics data from diverse technologies,
59 spatial resolutions, species, or modalities that leverage reference information from predefined
60 scRNA-seq datasets is challenging. To fully harness the potential of these emerging technologies
61 and drive breakthrough discoveries in molecular biology, co-embedding has emerged as a
62 promising approach to overcome the limitations of clustering-centric pipelines [21–23]. Existing
63 co-embedding methods based on multiple correspondence analysis (MCA) [21, 23] or multi-
64 relation graph models [22] are employed for various tasks, including signature gene detection,
65 pathway enrichment analysis, and multimodality co-embedding. However, as cluster-agnostic
66 methods, they often fail to fully incorporate spatial information or histology images during
67 co-embedding, leading them to potentially overlook valuable information. Moreover, these
68 methods are limited in their ability to use labels from rich reference datasets to annotate spatial
69 omics datasets across different technologies, resolutions, species, and modalities.

70 To overcome these limitations, we have designed the CAESAR suite, a unified and versatile
71 software package that offers a general spatial co-embedding framework based on a feature-
72 weighted scheme that leverages both spatial information and histology images. By assuming a
73 conserved relationship between genomic features and cells/locations within each cell/domain
74 type at an appropriate level of granularity, the CAESAR suite flexibly annotates spatial
75 omics datasets across technologies, resolutions, species, and modalities by transferring cell-type

76 labels from predefined scRNA-seq reference data in a cluster-agnostic manner, and detects
77 cell/domain-type-specific signature genes. Moreover, the CAESAR suite includes functions for
78 hypothesis testing to identify pathways enriched in each cell/location or cell/domain type. We
79 illustrate the benefits of using the CAESAR suite through extensive simulations and analyses of
80 a diverse range of example datasets collected using various spatial omics technologies, species,
81 and resolutions: 10x Xenium datasets of four human breast cancer (BC) sections, 10x Visium
82 datasets of four human hepatocellular carcinoma (HCC) sections, Pixel-seq and ST datasets of
83 the mouse olfactory bulb (MOB), and a spatial ATAC-seq dataset of a mouse embryo.

84 **Results**

85 **Overview of CAESAR**

86 The CAESAR suite is a novel open-source software package that co-embeds spatial locations
87 and gene features into a unified low-dimensional space, utilizing both histology images and
88 spatial coordinates. Within this space, the relative distance between locations and gene features
89 can be used to characterize transcriptomic specificity, enabling a range of downstream analytical
90 tasks (Fig. 1 and Methods). When cell types/domains are predefined, as in labeled reference
91 datasets, the CAESAR suite detects cell- or domain-type-specific signature genes by evaluating
92 the relative distances between the cells/locations and gene features. In scenarios where reference
93 data originate from multiple batches or sections, heterogeneous batch effects can significantly
94 distort expression patterns, complicating data integration. However, within a single batch or
95 section, the relationships between cells/locations and genomic features remain conserved with
96 respect to the cell or domain types, with batch effects merely introducing systematic noise.
97 Leveraging these conserved relationships, the CAESAR suite exhibits remarkable flexibility
98 in detecting signature genes, annotating cells or locations through knowledge transfer via
99 labeled reference data and seamlessly integrating multiple reference and target datasets. As
100 a proof of concept, we demonstrate that the CAESAR suite is capable of performing spatial
101 annotations, with confidence level assessed via a permutation test, using knowledge transferred
102 from scRNA-seq or SRT reference data to spatial omics data derived from diverse technologies,
103 species, resolutions, and modalities. By analyzing the distances between spatial locations and
104 sets of genes, such as pathway genes, the CAESAR suite detects gradual changes in pathway
105 activation across different spatial domains. This is achieved through permutation and Wilcoxon
106 tests, providing spot-level and cell- or domain-type-level enrichment significance, respectively.

107 **Validation using CosMx data**

108 We conducted comprehensive simulations using a CosMx dataset for lung cancer [24] and
109 rigorously evaluated the performance of the CAESAR suite by comparing it with Cell-ID in
110 terms of dimensionality reduction, signature gene detection, and annotation accuracy. The
111 evaluation metrics included average silhouette width (ASW) [25], signature score (SigScore; see
112 Methods) and classification accuracy (ACC) [26]. Ideally, when given a set of genes specific to
113 a particular cell type, the optimal method should co-embed these genes in close proximity to
114 the corresponding cells. To quantify this specificity, we introduced the SigScore, which attains

115 a value of 1 when all cell-type-specific genes are top-ranked by their average distance to cells of
116 the corresponding type.

117 In Scenario 1, we used all fields of view (FOVs) from section Lung5 rep1 as the reference
118 dataset and FOVs from three other sections (Lung5 rep2, Lung13, and Lung12) as target
119 datasets, representing varying levels of heterogeneity between reference and target datasets
120 (Supplementary Fig. S1). In this scenario, Lung5 rep1 and Lung5 rep2, derived from two
121 consecutive sections from the same donor, exhibited a high degree of similarity. In Scenario 2,
122 we binned 5 cells per location in the target datasets while maintaining the same reference data,
123 to evaluate the performance of the CAESAR suite when confronted with a low-resolution target
124 dataset. Conversely, in Scenario 3, the target data remained consistent with Scenario 1, and we
125 binned 5 cells per location in the reference datasets to assess the CAESAR suite's performance
126 using a low-resolution reference dataset. The details of these simulations are provided in the
127 "Methods" section.

128 We first evaluated the CAESAR suite's ability to generate informative embeddings compared
129 to the MCA employed by Cell-ID and GSDensity in co-embeddings, using ASW as the metric
130 (Fig. 1 c, top panel). The CAESAR suite yielded higher ASW values in the estimated image-
131 based spatial embedding of locations, indicating that its (co)-embeddings better preserved the
132 biological differentiation. We then assessed the performance of both the CAESAR suite and
133 Cell-ID in signature gene detection (Fig. 1 c, middle panel). The CAESAR suite exhibited
134 a higher SigScore, indicating its superior capability in detecting signature genes. While the
135 ACC of all the methods declined with increasing heterogeneity, the CAESAR suite consistently
136 outperformed Cell-ID (Fig. 1 c, bottom panel, and Supplementary Fig. S2). Notably, iCAESAR,
137 which integrates information from multiple reference datasets, demonstrated the most stable
138 performance with minimal variation in its ACC, highlighting the advantage of utilizing multiple
139 references. Furthermore, use of the CAESAR suite resulted in a substantially smaller proportion
140 of unassigned cells than Cell-ID, with iCAESAR providing an even further reduced proportion
141 (Supplementary Fig. S3), indicating the enhanced cell-type detection performance of iCAESAR.

142 Subsequently, we evaluated the performance of the CAESAR suite for pathway detection
143 in comparison to other methods. In our simulations, pathway gene sets were generated using
144 differentially expressed genes specific to cell types, and the area under the curve (AUC) was
145 used to evaluate the performance in pathway recovery across various pathway scores. As
146 illustrated in Fig. 1d, the CAESAR suite demonstrated superior performance in pathway
147 detection, consistently surpassing Cell-ID and GSDensity in terms of AUC values.

148 **CAESAR suite facilitates spatial annotations using multiple scRNA- 149 seq reference datasets**

150 We applied the CAESAR suite and other methods to analyze five published spatial omics datasets
151 from different sequencing platforms: 10x Xenium, 10x Visium, ST, Pixel-seq, and Spatial
152 ATAC-seq. For spatial annotation, we leveraged scRNA-seq reference data and transferred
153 the labels to spatial omics datasets derived from diverse technologies, species, resolutions, and
154 modalities. Upon annotating the target spatial omics data, the CAESAR suite was used to
155 detect cell- or domain-type-specific signature genes and perform hypothesis testing for the
156 detection of pathways enriched within each cell or location and/or cell or domain type.

157 To harness the reference scRNA-seq data from 26 human BC patients [27], we first analyzed
158 human BC data generated using 10x Xenium [28] comprising four sections from two BC patients,
159 with two serial replicates for each patient (Supplementary Fig. S4). We observed striking
160 batch effects among the 26 scRNA-seq reference data in UMAP (Fig. 2a) with substantial
161 heterogeneity exhibited in the annotated cell-type proportions, especially for cancer epithelial
162 cells (Fig. 2b). Using the CAESAR suite that integrates all 26 reference datasets (named
163 iCAESAR), we sequentially (a) detected cell-type-specific signature genes in each of the 26
164 reference datasets, (b) aggregated a signature gene list from the 26 reference datasets by
165 weighting their occurrence across the references, (c) estimated spatial co-embeddings with
166 histology images for the target BC sections, and (d) performed spatial annotations based on
167 the average distance between each location and signature genes identified in step (b), with
168 the entire annotation process performed as shown in Fig. 2c. The resulting co-embedding of
169 cells/locations and the top-ranked signature genes revealed conserved relationships across both
170 the reference and target datasets (Fig. 2c and Supplementary Fig. S5). In the reference data,
171 we detected *CD3E* (in 20 samples, including Samples 1 and 25) and *CD3D* (in 18 samples,
172 including Sample 1) as signature genes for T cells, among others (Supplementary Data 1).
173 *CD3E* functions as a subunit of the T-cell receptor complex, playing a crucial role in CAR-T
174 cell therapy [29], while *CD3D* has been implicated to participate in lymphocyte infiltration
175 and immune checkpoint regulation, and serves as a prognostic biomarker for BC [30]. These
176 signature genes were aggregated into a gene list used for annotating the target BC dataset
177 by iCAESAR (Supplementary Fig. S6). By removing unwanted variations, we visualized
178 the expression patterns of the top five signature genes for each annotated cell type across
179 all four sections and observed the distinct signature profiles for each cell type (Fig. 2d; see
180 Methods). Notably, many of these genes were reported to be differentially expressed across
181 various cell types, i.e., *MS4A1* and *BANK1* in B cells [31, 32]; *CD3E*, *IL7R*, *CD3D*, and
182 *CD247* in T cells [29, 33–35]; and *LYPD3*, *FASN*, and *FOXA1* in cancer epithelial cells [36–38],
183 while the roles of *MLPH* and *SERHL2*, specifically detected in cancer epithelial cells, remain
184 underexplored in BC.

185 To evaluate the performance of CAESAR in spatial annotation, we applied CAESAR and
186 Cell-ID to each of the 26 references, and iCAESAR to all 26 references to annotate the BC
187 dataset, and generated spatial heatmaps illustrating the cell-type assignments, as shown in
188 Fig. 2e and Supplementary Fig. S7–S8. The majority of the CAESAR annotation results
189 demonstrated high confidence levels (Supplementary Fig. S9). iCAESAR precisely detected
190 cancer epithelial cells and other immune-relevant cell types, while Cell-ID labeled most cells as
191 cancer epithelial in BC sections 1 and 2, with a higher proportion of normal epithelial cells in
192 sections 3 and 4. Notably, the iCAESAR results exhibited a significantly lower proportion of
193 unassigned cells than those of Cell-ID, with an average of 1.22% unassigned cells compared
194 to Cell-ID's 95.04% across the four sections, indicating its enhanced capability in cell type
195 detection (Supplementary Fig. S10). Using all 26 reference datasets, iCAESAR demonstrated
196 further improved stability compared to the use of each reference individually with CAESAR,
197 although both showed substantial improvements in annotation accuracy over Cell-ID, with mean
198 (standard deviation) ACC values of 0.819 (0.055), 0.665 (0.186), and 0.015 (0.066), respectively
199 (Fig. 2f, upper panel). While CAESAR/iCAESAR demonstrated superior performance over
200 Cell-ID in its ability to generate co-embeddings to distinguish among distinct cell types, with

201 mean ASW scores of 0.115 and 0.042, respectively.

202 Next, we examined the pathways enriched within the BC dataset. First, we detected
203 significantly enriched pathways within the categories of GO biological process (GOBP), KEGG,
204 Reactome, chemical and genetic perturbations (CGP), and cancer modules (CM) using a graph-
205 based test (see Methods), with 393, 19, 38, 327, and 69 pathways detected, respectively, under
206 an adjusted *p*-value of less than 0.05. Subsequently, we applied CAESAR to detect differentially
207 enriched pathways among annotated cell types, summarizing the top five most significantly
208 enriched pathways for each cell type using a dot plot (Fig. 2g). Among these, cancer-related
209 module 139 and Doane breast cancer classes up were enriched in cancer epithelial cells, while
210 vasculature development was enriched in perivascular-like cells (PVLs), endothelial and cancer-
211 associated fibroblasts (CAFs). To further examine the enrichment of pathways in each location,
212 we applied CAESAR to perform spot-level enrichment analysis. CAESAR exhibited superior
213 performance to Cell-ID in pathway activity scoring, with mean SigScore values of 0.898 and
214 0.624, respectively (Fig. 2f, bottom panel). We summarized the cell-type-specific pathway
215 activation data across each section using a spatial heatmap (Fig. 2h and Supplementary Fig.
216 S11-14), which highlighted that vasculature development was highly enriched at the boundary
217 of cancer epithelial cells, while Doane breast cancer classes up was predominantly enriched
218 in cancer epithelial cells. Further enrichment analysis revealed that the cell types from each
219 section were highly enriched in several common pathways, suggesting that the annotations
220 provided by the CAESAR suite were well-aligned across sections (Supplementary Fig. S15-16).

221 **CAESAR suite enables spatial annotations of human HCC data 222 transferred from scRNA-seq in mouse HCC**

223 Next, we applied the CAESAR suite and Cell-ID to analyze four sections of human HCC
224 data obtained from 10X Visium [39]. The dataset comprised two tumor sections (HCC1 and
225 HCC2) and two tumor-adjacent tissue sections (HCC3 and HCC4) from an HCC patient
226 (Supplementary Fig. S17a). To demonstrate the robustness of the CAESAR suite using
227 reference data across species, we performed annotations of the four target HCC sections using
228 either human [40] or mouse [41] scRNA-seq data as references (Fig. 3a; see Methods). Taking
229 manual annotations as the ground truth (Fig. 3b and Supplementary Fig. S17a), the spatial
230 heatmaps generated by CAESAR, using either human (Fig. 3c and Supplementary Fig. S17b) or
231 mouse reference data (Fig. 3d and Supplementary Fig. S17c), exhibited marked improvements
232 over those generated by Cell-ID, which showed a substantial proportion of unassigned cells.
233 Notably, the annotations CAESAR made using mouse reference data closely aligned with
234 those obtained using the human reference data, achieving mean accuracies of 0.702 and 0.669,
235 respectively (Fig. 3e). Compared to those made by Cell-ID, CAESAR achieved a substantial
236 gain in accuracy, 495.5% and 677.7%, respectively. A detailed examination of the annotations
237 based on the human and mouse references revealed that HPC-like cells, an annotation absent
238 from the mouse data, were detected as HCC cells using the mouse reference (Supplementary
239 Fig. S18). HPC-like cells are known to exhibit similarities to HCC cells and contribute to
240 HCC formation through their activation [42, 43]. An analysis of annotation confidence further
241 demonstrated consistent species-agnostic results (Supplementary Fig. S19).

242 Using CAESAR with a single mouse HCC reference dataset, we first (a) detected cell-type-

243 specific signature genes within the reference data, (b) estimated spatial co-embedding in the
244 target HCC sections, and (c) performed spatial annotations based on homologous genes of
245 human and mouse. The resulting visualization of co-embeddings for the cells/locations and
246 the top signature genes revealed conserved relationships across both the reference and target
247 datasets (Fig. 3f). For example, the genes *Rnf128* and *Acox2*, which are unique to HCC cells in
248 mice, were detected as signature genes in human HCC sections. Similarly, *Mmp23* and *Tpm2*,
249 associated with fibroblasts, were also detected in the human HCC sections. After removing
250 unwanted variations, we visualized the expression levels of the top six signature genes for each
251 cell type across all four sections (Fig. 3g; see Methods). Several of these genes have been
252 reported to be enriched in specific HCC cell types, such as *IGLC2* in B/Plasma cells [44] and
253 *RNF128* and *ABCB11* in HCC cells [45, 46]. Notably, *RNF128* promotes HCC progression
254 through the activation of the EGFR/MEK/ERK signaling pathway [45] while *ABCB11* is
255 associated with a patient's susceptibility to HCC development [46].

256 We further applied CAESAR to an enrichment analysis, identifying 1,303, 61, 253, 1,312, 194,
257 and 2,213 significantly enriched pathways in categories in the GOBP, KEGG, Reactome, CGP,
258 CM, and immune signatures database (ImmuneSigDB), respectively, all with an adjusted *p*-
259 value of less than 0.05. Subsequent analysis revealed significant differences in these pathways at
260 the cell/domain-type level (Fig. 3h). Pathways predominantly enriched in HCC cells contained
261 liver cancer subtypes and survival and proliferation mechanisms, such as the Reactome pathway
262 involving *SREBF* and *SREBP*. The high expression of *SREBP-1* in tumors has been linked
263 to improved 3-year overall and disease-free survival rates in HCC patients, and thus *SREBP-1*
264 potentially promotes tumor progression by enhancing cell growth and metastasis [47–49].
265 Pathways enriched in stroma/immune cells are involved in the regulation of immune responses,
266 cell signaling, protein interactions, and vasculature development. The spatial heatmaps of
267 these differentially enriched pathways (Fig. 3i and Supplementary Fig. S20) indicated that the
268 vasculature development pathway was prominently activated at the boundaries of HCC cells
269 but not within HCC regions. This suggests that the role of vasculature development at the
270 tumor periphery and within the tumor microenvironment may be consistent across various
271 cancer types [50, 51].

272 CAESAR suite accurately recovers MOB layers in SRT datasets with 273 low or high resolution

274 To demonstrate the ability to annotate cell/domain types in SRT data with varying resolutions,
275 we applied the CAESAR suite to an analyses of MOB datasets from the ST or Pixel-seq
276 platform. ST represents an earlier SRT technology with a 100- μ m diameter resolution, while
277 Pixel-seq is a more recent technology offering near-single-cell resolution.

278 We first applied CAESAR and Cell-ID to annotate low-resolution ST MOB dataset using
279 scRNA-seq reference data with coarse-grained labels for five layers: granule cell (GC), mitral
280 and tufted cell (M/TC), Olfactory sensory neurons (OSNs), periglomerular cell (PGC), and
281 external plexiform layer interneuron (EPL-IN) [52]. Compared to the manual annotations
282 (Fig. 4a, left panel), CAESAR demonstrated superior performance in accurately reconstructing
283 the MOB layer structure (Fig. 4a, middle panel), with a heatmap of confusion matrix indicates a
284 strong alignment between the manual annotations and CAESAR predictions (Fig. 4b), whereas

285 Cell-ID struggled to capture the MOB architecture, resulting in a considerable number of
286 unassigned cells (Fig. 4a, right panel). Further analysis led to a visualization of the conserved
287 relationships between locations and genes across both datasets (Supplementary Fig. S21). For
288 the low-resolution dataset from ST, we applied CAESAR to estimate the cell-mixing proportions
289 for each location (Supplementary Fig. S22-S23), and distinct cell-type distributions across
290 different domains were revealed. For example, Domain GC was predominantly composed of
291 GC, immature neurons, and transitional neurons, while Domain OSNs was primarily occupied
292 by OSNs.

293 Next, we applied CAESAR and Cell-ID to annotate the high-resolution Pixel-seq MOB
294 dataset using scRNA-seq reference data with fine-grained labels [53]. Compared to the original
295 annotations of the target dataset, CAESAR achieved 45.45% higher annotation accuracy than
296 Cell-ID (Fig. 4c), and the spatial heatmaps reflect the fine structural consistencies with the
297 delineations in the spatial heatmap of the logarithm of unique molecular identifiers (UMIs)
298 (Fig. 4c, left panel). An enhanced visualization of expression with heatmaps for each cell type
299 (Supplementary Figure S24) revealed the distinct spatial patterns of the cell types, particularly
300 OSNs, mesenchymal (Mes), and PGC, consistent with the cell-type probability heatmaps.

301 In the annotation, we first visualized the co-embeddings of cells and the top two signature
302 genes from the fine-grained MOB reference with the high-resolution Pixel-seq dataset in the
303 UMAP plots (Fig. 4d). In the near-single-cell resolution target data, we observed a considerable
304 overlap of signature genes for each cell type, such as *Dcn* and *Asgr1* for Mes, *Lrrtm1* and
305 *Otop2* for M/TC, and *Penk* and *Icam5* for GC, indicating the preserved relationships between
306 cells/locations and genes. Of note, *Icam5*-knockout mice have been shown to experience
307 experimental autoimmune encephalomyelitis in the chronic phase, highlighting *Icam5*'s neuro-
308 protective role in progressive neurodegeneration [54]. We visualized the expression patterns
309 of the top five signature genes for each annotated cell type, and observed distinct cell-type
310 expression patterns (Supplementary Fig. S25). The spatial distributions of the expression of
311 the top signature genes (Fig. 4e, upper panel) closely aligned with the annotated cell types
312 (Fig. 4e, middle panel).

313 Finally, we applied CAESAR to detect differentially enriched pathways in the GO database
314 between annotated cell types, with enrichment scores visualized in spatial heatmaps (Fig. 4e,
315 bottom panel, and Supplementary Fig. S26). We found that the neuron neurotransmitter
316 transport was enriched in neural M/TCs, indicating its crucial role in supporting M/TCs'
317 neurotransmission and olfactory signal modulation. The top differentially enriched pathways
318 for each cell type, which are presented in Fig. 4f, indicated Mes cells were significantly enriched
319 in activated transmembrane transporter activity, particularly ion transporter activity, mirroring
320 the mechanism in the nervous system by which neurons use ion transmembrane transport
321 to generate action potentials for information transmission [55, 56]. CAESAR outperformed
322 Cell-ID and GSDensity in scoring the cell-type-specific pathway activity, achieving a median
323 AUC of 0.762, compared to 0.707 for Cell-ID and 0.504 for GSDensity, as illustrated in Fig. 4g.

324 **Annotations of spatial ATAC-seq data using scRNA-seq reference**
325 **with CAESAR suite**

326 Using the CAESAR suite, we conducted a more challenging cross-modality task involving
327 an analysis of spatial ATAC-seq data from a mouse embryo, characterized by high sparsity
328 and high noise (Supplementary Fig. S27). The E11 mouse embryo data utilized contained a
329 median of 36,303 unique fragments per 50- μ m spot, with a total of 2,162 spots [4]. This spatial
330 ATAC-seq dataset was annotated using scRNA-seq mouse embryo reference data from the
331 Mouse Organogenesis Cell Atlas (MOCA) [57], with annotations derived via Louvain clustering.

332 The two-dimensional UMAP projections of co-embeddings were made for the cells/spots
333 to illustrate the overlap among the top signature genes across both reference and target
334 datasets (Fig. 5a). We then visualized CAESAR’s annotations of the spatial coordinates and
335 compared them with those from Cell-ID (Fig. 5b). CAESAR (ACC = 0.253) significantly
336 outperformed Cell-ID (ACC = 0.090), accurately recovering excitatory neurons, stroma cells,
337 and a primitive erythroid lineage, while using Cell-ID resulted in a substantial proportion of
338 unassigned locations.

339 Next, we performed spot-level pathway enrichment analysis using the CAESAR suite to
340 detect differential pathways among cell types. The top five differentially enriched pathways were
341 visualized in a dot plot (Fig. 5c). Notably, the chloride transmembrane transport pathway within
342 the GOBP database was highly enriched in both excitatory neurons and postmitotic premature
343 neurons. This pathway is essential for neuronal functionality and excitability, particularly
344 within excitatory neurons [58]. The epithelial-to-mesenchymal transition (EMT) involved in
345 endocardial cushion formation was prominently enriched in stroma cells. This finding aligns
346 with the role of EMT in cardiac development, during which transformed cells function as
347 stromal components critical for the formation of cardiac valves and septa [59]. Additionally,
348 the gas transport pathway was significantly enriched in the primitive erythroid lineage. This
349 lineage represents a pivotal stage in erythropoiesis during embryogenesis, when progenitor cells
350 mature into erythroid precursors, eventually developing into mature red blood cells essential
351 for gas transport during metabolic processes [60]. We further depicted the enrichment scores of
352 the domain-specific pathways, including those associated with excitatory neurons, stromal cells,
353 and the primitive erythroid lineage, in heatmaps (Fig. 5d and Supplementary Fig. S28). Our
354 analysis revealed the progressive activation pattern of pathways within their respective domains.
355 For instance, the enrichment score for EMT involved in endocardial cushion formation exhibited
356 a continuous decline from stromal cells to adjacent domains, particularly those with excitatory
357 neurons (Fig. 5d, middle panel). This observation highlights the exceptional capability of
358 CAESAR to derive spot-level enrichments and offer profound insights into the intricate dynamics
359 of biological pathways.

360 **Discussion**

361 We aimed, via this study, to introduce and demonstrate the CAESAR suite, a novel spatial
362 co-embedding framework that offers a fully integrated and cluster-agnostic suite of tools. This
363 framework is designed to detect cell- or domain-type-specific signature genes, perform spatial
364 annotations of cell or domain types, and facilitate hypothesis testing to uncover pathways

365 enriched in each cell or location as well as within specific cell or domain type.

366 In contrast to traditional co-embedding methods based on MCA, such as Cell-ID and
367 GSDensity, the CAESAR suite provides more sophisticated, image- and spatial-aware co-
368 embedding of genomic features and cells/locations by effectively considering both histology
369 image information and spatial coordinates. Moreover, the co-embedding framework in the
370 CAESAR suite is compatible with any dimensionality reduction technique that employs a
371 feature-weighted scheme. When cell/domain-type labels are known, such as in labeled reference
372 data, the CAESAR suite excels in detecting cell/domain-type signature genes by assessing the
373 relative distance between cells/locations and gene features.

374 Assuming a conserved relationship between genomic features and cells/locations at an
375 appropriate level of granularity, the CAESAR suite, to the best of our knowledge, is the first to
376 enable spatial annotations by transferring cell-type labels from predefined scRNA-seq references
377 to target spatial omics datasets across a wide range of technologies, resolutions, species, and
378 modalities. When multiple references are available, the CAESAR suite also accounts for the
379 uncertainty in detecting cell/domain-type signature genes across multiple batches, thereby
380 mitigating the impact of batch effects, which often problematic in cluster-centric analysis. Our
381 examination of five spatial omics datasets, encompassing diverse technology, resolution, and
382 modalities, i.e., 10x Xenium, 10x Visium, ST, Pixel-seq, and Spatial ATAC-seq, demonstrated
383 CAESAR suite's robust spatial annotation capabilities. Using reference data from 26 batches,
384 we demonstrated the CAESAR suite's capacity to effectively annotate a Xenium dataset of
385 four human BC sections, in which it achieved substantial improvements in accuracy (4333.33%)
386 and SigScore (42.9%) compared to Cell-ID. Similarly, when used to annotate a Visium dataset
387 of four human HCC sections using scRNA-seq reference data from either human or mouse, the
388 CAESAR suite achieved comparable annotation accuracies, with remarkable accuracy gains of
389 495.5% and 677.7%, respectively, compared to Cell-ID.

390 The CAESAR suite also offers functions for pathway enrichment analysis at both the
391 location and cell/domain-type levels, enabling the delineation of pathway activation across
392 different domain types. For example, in the Xenium dataset for BC, the CAESAR suite detected
393 the activation of the vasculature development pathway, which was highly active at the boundary
394 of cancer epithelial cells, minimally active in cancer cells, and dormant in non-cancer cells. This
395 finding highlights the critical role of vascular networks in tumor growth and metastasis, where
396 the newly formed vasculature surrounding cancer cells serves not only to sustain tumor survival
397 and expansion but also as a conduit for metastatic tumor cells [61].

398 As a proof-of-concept, the CAESAR suite provides opportunities for new exciting research
399 routes. Firstly, when sections of spatial omics are from multiple conditions, functions that can
400 be used to perform hypothesis testing between conditions at both gene and pathway levels
401 are needed. Secondly, when datasets with multi-modality measurement on the same section
402 (paired) are available, functions for co-embedding paired datasets are needed.

403 As a proof-of-concept, the CAESAR suite provides opportunities for new exciting research
404 routes. Firstly, when sections of spatial omics are from multiple conditions, functions that can
405 be used to perform hypothesis testing between conditions at both gene and pathway levels
406 are needed. Secondly, when datasets with multi-modality measurement on the same section
407 (paired) are available, functions for co-embedding paired datasets are needed.

408 **Methods**

409 **CAESAR suite overview**

410 The CAESAR suite is an open-source software package comprising diverse functional modules
 411 that facilitate the co-embedding of locations and gene features, signature gene detection, spatial
 412 annotations through the integration of multiple reference datasets and for multiple SRT target
 413 datasets, and pathway enrichment analysis at both the spot-level and cell/domain type-level,
 414 as illustrated in Fig. 1a.

415 Different from existing co-embedding methods, CAESAR model uses a combination of a
 416 latent factor model and a feature-weighted scheme to project locations and features onto the
 417 same Euclidean space. Specifically, we denote $\mathbf{X} = (x_{sg}) \in \mathbb{R}^{S \times G}$ as the log-normalized gene
 418 expression matrix, $\mathcal{L} = (l_s) \in \mathbb{R}^{S \times 2}$ as the spatial coordinate matrix, $\mathbf{E} = (\mathbf{e}_s) \in \mathbb{R}^{S \times d}$ as
 419 the feature matrix from histology images extracted by Visual transformer (see Supplementary
 420 Notes) and $\mathbf{H} = (\mathbf{h}_s) \in \mathbb{R}^{S \times d}$ as low-dimensional embeddings of locations, where S is the
 421 number of spots, G is the number of genes and d is the dimension of image features. We relate
 422 gene expression (x_{sg}) to low-dimensional embeddings (\mathbf{h}_s) using a linear factor model:

$$x_{sg} = \mu_g + \mathbf{b}_g^T \mathbf{h}_s + u_{sg}, \quad (1)$$

423 and relate the low-dimensional embeddings (\mathbf{h}_s) to the spatial coordinates l_s and histology
 424 image features \mathbf{e}_s via an intrinsic conditional autoregressive model:

$$\mathbf{h}_s = \sum_{s' \in N_{l_s}} w(\mathbf{e}_s, \mathbf{e}_{s'}) \mathbf{h}_{s'} + \boldsymbol{\varepsilon}_s, \quad (2)$$

425 where $\mathbf{u}_s = (u_{s1}, \dots, u_{sG})^T \sim N(\mathbf{0}, \Lambda)$ with $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_G)$, N_{l_s} is the neighboring
 426 spot set of spot s defined by coordinates, $w(\mathbf{e}_s, \mathbf{e}_{s'}) = \frac{\tilde{w}_{ss'}}{w_{s+}}$ with $\tilde{w}_{ss'} = \exp\{-d^2(\mathbf{e}_s, \mathbf{e}_{s'})/\sigma\}$
 427 and $w_{s+} = \sum_{s' \in N_{l_s}} \tilde{w}_{ss'}$, and $\boldsymbol{\varepsilon}_s \sim N(\mathbf{0}, w_{s+}^{-1} \Phi)$. We designed a variational EM algorithm
 428 to infer \mathbf{h}_s using its posterior estimate (see Supplementary Notes). Next, we utilize a gene
 429 expression-weighted scheme to derive the embeddings of genes, as formulated below:

$$\mathbf{v}_g = \frac{\sum_{s=1}^S w_{sg} x_{sg} \mathbf{h}_s}{\sum_{s=1}^S w_{sg} x_{sg}},$$

430 where $w_{sg} = (1 + \sum_{s' \in N_{l_s}} I(x_{sg} \neq 0))/(1 + n_{l_s})$, $n_{l_s} = |N_{l_s}|$ is the number of neighboring spots
 431 of spot s , and $I(x_{sg} \neq 0)$ is an indicator function that equals 1 if $x_{sg} \neq 0$ and 0 otherwise. By
 432 accounting for the gene expression ratio in the cell's local microenvironment, the resulting gene
 433 embedding focuses more on gene expression-intensive areas. It is important to note that \mathbf{v}_g
 434 represents a weighted average of the embeddings of locations, \mathbf{h}_s , and thus resides in the same
 435 Euclidean space spanned by $\{\mathbf{h}_s, s = 1, \dots, S\}$. Consequently, computing the distance between
 436 \mathbf{v}_g and any \mathbf{h}_s is semantically meaningful. Let \mathbb{S}_k denote the index set of spots corresponding
 437 to cell/domain type k . For clarity, suppose that gene g is exclusively expressed in cell/domain
 438 type k , implying $x_{sg} = 0$ for $s \notin \mathbb{S}_k$. In this scenario, the embedding of gene g simplifies to:

$$\mathbf{v}_g = \frac{\sum_{s \in \mathbb{S}_k} w_{sg} x_{sg} \mathbf{h}_s}{\sum_{s \in \mathbb{S}_k} w_{sg} x_{sg}}.$$

439 As a result, the embedding of gene g will closely align with the embeddings of spots belonging
 440 to cell/domain type k . Furthermore, for scRNA-seq data, we devise a non-centered linear
 441 factor model to jointly embed cells and genes into a shared space (see Supplementary Notes for
 442 details).

443 Signature gene detection

444 The Euclidean distance $d(\mathbf{v}_g, \mathbf{h}_s)$ captures the degree of specificity between gene g and location
 445 s , as the embedding of gene g resides at the weighted centroid of the embeddings of cells that
 446 express this gene. Consequently, the specificity of gene g to a particular cell/domain type k is
 447 quantified by the mean distance between gene g and the cells belonging to cell/domain type k .
 448 This is formally expressed as $\frac{1}{|\mathbb{S}_k|} \sum_{s \in \mathbb{S}_k} d(\mathbf{v}_g, \mathbf{h}_s)$, where \mathbb{S}_k denotes the set of cells constituting
 449 the cell/domain type k . After excluding genes with an expression ratio below η_r (set at 0.1 by
 450 default) to mitigate the inclusion of infrequently expressed genes and diminish the influence of
 451 random noise, the signature genes for cell/domain type k , denoted as $\Gamma_k(\gamma)$, are identified as
 452 the top γ genes that exhibit the highest level of specificity. This is accomplished by ranking
 453 genes based on their average distance from cells belonging to type k , as given by the formula:

$$\Gamma_k(\gamma) = \left\{ g \mid \text{rank}_g \left(\frac{1}{|\mathbb{S}_k|} \sum_{s \in \mathbb{S}_k} d(\mathbf{v}_g, \mathbf{h}_s) \right) \leq \gamma \right\}.$$

454 Here, rank_g represents the ranking function that assigns a position to each gene g based on its
 455 calculated average distance, with lower distance indicating higher specificity.

456 Spatial annotation

457 We first extract the signature gene sets for each cell/domain type from each of R reference
 458 datasets, denoted as $\mathbb{L}_r = \{\Gamma_{rk}(\gamma) : k = 1, \dots, K\}$, $r = 1, \dots, R$, where K is the total number
 459 of cell/domain types, R signifies the number of available reference datasets and Γ_{rk} is set to
 460 empty set when cell/domain type k is absent from the r -th reference dataset. The parameter
 461 γ_r represents the number of signature genes chosen for each set Γ_{rk} , which is determined as
 462 the maximum value that maintains the overlap of signature genes across $\{\Gamma_{rk}, k = 1, \dots, K\}$
 463 below a specified threshold t . This threshold is established to regulate the extent of shared
 464 signature genes among different cell/domain types. Formally, γ_r is given by:

$$\gamma_r = \max_{\gamma} \{ \gamma \mid \forall 1 \leq k_1 < k_2 \leq K, |\Gamma_{rk_1}(\gamma) \cap \Gamma_{rk_2}(\gamma)| \leq t \}.$$

465 Here, the expression $|\Gamma_{rk_1}(\gamma) \cap \Gamma_{rk_2}(\gamma)|$ calculates the number of genes common to both $\Gamma_{rk_1}(\gamma)$
 466 and $\Gamma_{rk_2}(\gamma)$, ensuring that the intersection does not exceed the threshold t for any pair of
 467 cell/domain types k_1 and k_2 . The default setting for the threshold t is 1, but it can be adjusted
 468 upwards when fine-grained labels are available. By aggregating the signature gene sets derived
 469 from the various reference datasets, we can obtain a comprehensive signature gene set for
 470 each cell/domain type k , denoted as $\Gamma_k = \bigcup_{r=1}^R \Gamma_{rk}$. Additionally, we assign weights to each
 471 gene g within Γ_k , denoted as w_{gk} , which are calculated as the proportion of references in
 472 which the gene appears as a signature gene for that cell type. Specifically, $w_{gk} = \frac{\tilde{w}_{gk}}{\sum_{g \in \Gamma_k} \tilde{w}_{gk}}$,

473 where $\tilde{w}_{gk} = \sum_{r=1}^R I(g \in \Gamma_{rk})$. This frequency-based weighting approach effectively emphasizes
 474 the robust associations between genes and cell/domain types, while mitigating the potential
 475 influence of low-quality signature genes that may arise due to data variability or random effects
 476 on subsequent annotations.

477 Subsequently, we compute the Euclidean distances between each location s and gene g
 478 in the target data, represented as $d(\mathbf{v}_g, \mathbf{h}_s)$. Here, \mathbf{v}_g and \mathbf{h}_s represent the co-embeddings
 479 of gene g and location s , respectively, which are obtained through the spatial co-embedding
 480 module within the CAESAR suite. To assess the specificity of a given location s to a particular
 481 cell/domain type k , we calculate the weighted average distance between location s and the
 482 genes in the signature gene set Γ_k from the reference data. This is expressed as:

$$d(\mathbf{h}_s, \Gamma_k) = \sum_{g \in \Gamma_k} w_{gk} d(\mathbf{h}_s, \mathbf{v}_g).$$

483 The probability of assigning the label y_s of location s to a specific cell/domain type k is then
 484 approximated using a standard normal cumulative distribution function $\Phi(\cdot)$, adjusted for the
 485 mean μ_s and standard deviation σ_s :

$$\text{Prob}(y_s = k) = \Phi\left(\frac{d(\mathbf{h}_s, \Gamma_k) - \mu_s}{\sigma_s}\right),$$

486 where μ_s and σ_s are the mean and the standard deviation of $\{d(\mathbf{h}_s, \Gamma_k), k = 1, \dots, K\}$. Then,
 487 CAESAR suite annotates location s as cell/domain type k with highest probability. For the
 488 low-resolution target dataset, the cell mixing proportion of cell/domain type k in location s is
 489 obtained by normalizing the above probability, denoted as $\pi_{sk} = \frac{\text{Prob}(y_s=k)}{\sum_{k=1}^K \text{Prob}(y_s=k)}$.

490 The CAESAR suite is unique in its ability to offer confidence levels for annotation results, a
 491 vital feature for evaluating the trustworthiness and precision of cell annotations. This enables
 492 researchers to base their conclusions on a solid foundation, as they are informed of the quality
 493 of the data. Specifically, we commence by generating K control gene sets via random sampling,
 494 ensuring that each control set Γ_k^ℓ mirrors the size and gene weights of its corresponding signature
 495 gene set Γ_k . Subsequently, we identify the minimal average distance of these control sets to a
 496 given spot s , denoted as $\min_{\ell \in \{1, \dots, K\}} d(\mathbf{h}_s, \Gamma_k^\ell)$. This procedure is repeated L times, and we
 497 calculate the confidence level for spot s being annotated as type k as follows:

$$\text{Confidence}(y_s = k) = \frac{1}{L} \sum_{\ell=1}^L I\left(\min_{\ell \in \{1, \dots, K\}} d(\mathbf{h}_s, \Gamma_k) < \min_{\ell \in \{1, \dots, K\}} d(\mathbf{h}_s, \Gamma_k^\ell)\right).$$

498 Spots with a confidence level falling below a predefined threshold η_c are designated as “unas-
 499 signed”, with a default threshold of $\eta_c = 0.95$ employed in this study. Researchers have the
 500 flexibility to adjust this threshold based on their specific project requirements.

501 Pathway enrichment analysis at different levels

502 The CAESAR suite offers comprehensive pathway enrichment analysis at different levels without
 503 necessitating clustering. Given that the cell-gene distance serves as a proxy for their association,
 504 genes that are specific to a particular subpopulation of cells tend to cluster closely together
 505 in the co-embedding space. To assess the extent of enrichment of a pathway in the dataset,

506 we employ a robust graph-based test [62] to test the degree of clustering of the gene set
 507 (denoted as Γ) of this pathway, which is agnostic to the underlying graph structure and adept
 508 at handling high-dimensional data. Specifically, we first construct a 5-th minimum-spanning
 509 tree graph using all gene embeddings, in which each node i represents the gene g_i with its
 510 embedding as node feature. We define the edge weight of (i, j) as $w(i, j) = 1 / \max\{d_i, d_j\}$,
 511 where d_i is the node degree of node i and $w(i, j) = 0$ if node i and node j are not connected.
 512 Let $R_p = \sum_{i,j \in \Gamma} w(i, j)$ be the total weights of edges connecting genes within the pathway,
 513 $R_{p^c} = \sum_{i,j \notin \Gamma} w(i, j)$ be the total weights of edges connecting genes outside the pathway. We
 514 further define $R_{\text{diff}} = R_p - R_{p^c}$ and $R_w = (1 - q)R_p + qR_{p^c}$, where $q = (n_p - 1)/(G - 2)$ and
 515 $n_p = |\Gamma|$. The robust edge-count test statistic is constructed as

$$T_n = \max \left\{ \frac{R_w - \mathbb{E}(R_w)}{\sqrt{\text{Var}(R_w)}}, \left| \frac{R_{\text{diff}} - \mathbb{E}(R_{\text{diff}})}{\sqrt{\text{Var}(R_{\text{diff}})}} \right| \right\},$$

516 by comparing the observed values of R_w and R_{diff} to their expected values and variances, under
 517 the null hypothesis of no enrichment. The asymptotic distribution of T_n is used to obtain
 518 p-values, which are then adjusted for multiple comparisons using the Cauchy combination [63]
 519 when testing multiple sections simultaneously, and the Benjamini-Hochberg procedure for FDR
 520 control when testing multiple pathways simultaneously. This approach enables us to identify
 521 whether a pathway is highly and specifically expressed within some specific cell subpopulations.
 522 However, the specific identity of these subpopulations remains elusive at this juncture.

523 To uncover the subpopulation where the pathway is abundant, we undertake a spot-level
 524 enrichment analysis that not only reveals the enriched subpopulation but also tracks the gradual
 525 activation of the pathway across entire spots. Specifically, the CAESAR suite assesses the level
 526 of pathway activity at each location, quantifying the specificity of this pathway among various
 527 locations. It accomplishes this by generating L size-matched control gene sets through random
 528 sampling and subsequently calculating their average distance $d(\mathbf{h}_s, \Gamma^\ell)$ for a given spot s and
 529 each set Γ^ℓ , where ℓ ranges from 1 to L . Throughout this study, a default value of $L = 1000$
 530 was employed. Ultimately, the pathway activity level is determined as the proportion of control
 531 gene sets whose average distance is greater than the distance between the co-embeddings of a
 532 given spot s and its true gene set Γ , given by $\frac{1}{L} \sum_{\ell=1}^L I(d(\mathbf{h}_s, \Gamma) < d(\mathbf{h}_s, \Gamma^\ell))$. A higher pathway
 533 activity score signifies a more pronounced enrichment of the pathway, and the variations in
 534 activity levels across different locations indicate the existence of a gradual activation pattern
 535 for the tested pathway.

536 Furthermore, when detailed information about cell subpopulations is accessible (for instance,
 537 the cell/domain types annotated by CAESAR), the CAESAR suite can conduct enrichment
 538 analysis for a particular pathway at a cell/domain type-specific level. To achieve this, we employ
 539 a Wilcoxon test to ascertain whether the pathway activity level within a specific cell type
 540 surpasses that of other types. In scenarios where multiple sections are evaluated concurrently,
 541 the p-values are aggregated using the Cauchy combination method. This approach can also be
 542 extended to identify pathways that are unique to specific biological conditions by comparing
 543 their activity levels across varying conditions. As a result, the CAESAR suite is instrumental
 544 in identifying pivotal pathways potentially implicated in distinct cellular behaviors or disease
 545 states. This not only pinpoints potential therapeutic targets but also offers profound insights
 546 into cellular function and the underlying mechanisms of disease.

547 **Unwanted-variation-removal for gene expression**

548 To effectively visualize the expression patterns of signature genes by integrating multiple
549 target sections, such as 10x Xenium BC sections and 10x Visium HCC sections, it is necessary
550 to eliminate unwanted variation (i.e., batch effects) within the combined expression matrix.
551 When multiple target datasets have been annotated using the CAESAR suite, these batch
552 effects can be mitigated by leveraging a set of housekeeping genes as negative controls. These
553 genes remain unaffected by other biological influences, allowing for the precise removal of
554 unwanted variation [64]. In this study, mouse/human housekeeping gene sets obtained from the
555 Housekeeping and Reference Transcript Atlas were employed [65]. First, we performed PCA of
556 the gene expression matrices of housekeeping genes present in each target dataset t , obtaining
557 the top ten principal components (PCs), $\hat{\mathbf{m}}_t$, which can be treated as the unwanted variation
558 factors. The weighted average distance matrix $\hat{\mathbf{h}}_t \in \mathbb{R}^{S \times K}$, whose (s, k) -th element is $d(\mathbf{h}_s, \Gamma_k)$,
559 reflects the specificity of location s to cell/domain types and is suitable for explaining biological
560 variation between cell/domain types. Finally, we used a linear model to remove unwanted
561 variation from the normalized gene expression matrix:

$$\mathbf{X}_t = \hat{\mathbf{h}}_t \boldsymbol{\alpha} + \hat{\mathbf{m}}_t \boldsymbol{\beta} + \boldsymbol{\epsilon}_t, \quad (3)$$

562 where $\boldsymbol{\alpha} \in \mathbb{R}^{K \times G}$ is the coefficient matrix for biological effects between cell/domain types and
563 $\boldsymbol{\beta} \in \mathbb{R}^{10 \times G}$ is the coefficient matrix for unwanted variations. After estimating the coefficients
564 in Eqn. (3), unwanted variations can be removed from the original normalized gene expression
565 matrix via

$$\hat{\mathbf{X}}_t = \mathbf{X}_t - \hat{\mathbf{m}}_t \hat{\boldsymbol{\beta}}.$$

566 A similar strategy can be used to remove unwanted biological conditions or other variations
567 that the user wishes to eliminate by including such information in Equation (3).

568 **Comparison of methods**

569 We conducted extensive simulation studies and real data analyses to benchmark the CAESAR
570 suite against Cell-ID, a tool implemented within the R package *CellID* [21], focusing on annotation
571 accuracy, dimension reduction capabilities, and co-embedding performance. Throughout
572 these evaluations, both CAESAR and Cell-ID utilized an identical list of signature genes,
573 derived via signature gene detection in reference data, as their input. Of note, Cell-ID was
574 specifically designed for co-embedding scRNA-seq data while leveraging multiple correspondence
575 analysis (MCA).

576 To assess the performance of the CAESAR suite in detecting pathway activity, we compared
577 it against two competitors: Cell-ID and GSDensity [23]. GSDensity, implemented in the
578 R package *gsdensity*, is a gene set scoring approach that leverages the MCA co-embedding
579 generated by Cell-ID. During the implementation, we adhered to the default parameter settings
580 outlined in the respective packages for both methods.

581 **Evaluation metrics**

582 We evaluated the methods' performances in annotation accuracy, dimension reduction, co-
583 embedding performance, and pathway activity detection using the following metrics.

584 **Classification accuracy.** To assess annotation accuracy, we utilized classification accuracy
585 (ACC) [26], the standard benchmark for evaluating classifier performance. We excluded spots
586 with cell/domain types not present in the reference data from the ACC calculation. ACC is the
587 ratio of correctly annotated spots to the total number of spots, with higher values indicating
588 superior accuracy in predicting correct labels for the target data.

589 **Average silhouette width.** To evaluate the ability of the embeddings to distinguish between
590 cell/domain types, we employed the average silhouette width (ASW) [25]. ASW ranges from -1
591 to 1, with higher scores indicating better preservation of biological signals.

592 **Signature score.** To assess co-embedding performance, we measured the specificity of
593 agreement between cell-type-specific genes and cell types. For each cell type k , we identified its
594 top 3 differentially expressed genes with the largest log-fold change as cell-type-specific genes.
595 We then calculated the sum of ranks of these genes based on their average distance from spots
596 of cell type k in descending order. The SigScore for cell type k was obtained by normalizing
597 this sum using min-max normalization. An optimal tool would demonstrate high specificity
598 for all cell types, reflected in a SigScore close to 1 for each cell type. The final SigScore is the
599 weighted average of SigScores across all cell types, weighted by the proportion of spots per cell
600 type.

601 **Area under curve.** We evaluated the effectiveness of spot-level pathway activity detection
602 by assessing its capability to precisely identify correct cell types through the utilization of the
603 pathway activity scores generated by the CAESAR suite and comparative methods. For each
604 cell type k , we designated the gene set that included the top three differentially expressed genes
605 with the greatest log-fold change as its fundamental enriched pathway. Using this pathway,
606 we computed the pathway activity scores for all spots, employing both the CAESAR suite
607 and comparative approaches. Next, we employed these activity scores to determine the area
608 under the curve (AUC) for accurately distinguishing the correct cell type across various score
609 thresholds. Specifically, we ordered the cells based on their pathway activity scores, resolving
610 ties randomly, and calculated the recovery ratio at every feasible point. Consequently, for each
611 cell-type-specific pathway, a superior method will achieve a higher AUC value. The final AUC
612 was determined as the weighted average of the AUCs corresponding to all cell types in the
613 dataset, where the weight is proportional to the ratio of spots belonging to each cell type.

614 **Simulations**

615 To evaluate the performance of the CAESAR suite under scenarios with different resolutions
616 for spatial locations, we designed simulation studies based on a subcellular-resolution CosMx
617 dataset for lung cancer [24].

618 **Scenario 1. Same-resolution reference and target data.** For this scenario, we used all
619 fields of view (FOVs) from section Lung5 rep1 as reference datasets. The original annotation
620 was treated as underlying truth, which included 14 cell types and assigned based on gene
621 expression profiles similarity. The FOVs from three other sections (Lung5 rep2, Lung13, and
622 Lung12) were adopted as the target datasets. Therefore, the heterogeneity between the reference
623 and target datasets was naturally considered in our scenario, with Lung5 rep1 and Lung5 rep2
624 from two consecutive sections of the same donor exhibiting strong similarity.

625 **Scenario 2. High-resolution reference data and low-resolution target data.** For this
626 scenario, the reference datasets were same as Scenario 1, and we binned 5 cells as a location in
627 the target datasets to generate low resolution target data. Specifically, we divided each target
628 dataset into grids of equal length and width according to the spatial coordinates, so that each
629 grid contained 5 spots on average. Then, we added the gene expression of the spots located in
630 a grid as the gene expression of the new location, spatial coordinates of which are defined as
631 the grid center and the domain type is defined as the domain cell type in the grid with ties
632 resolved with random select.

633 **Scenario 3. Low-resolution reference data and high-resolution target data.** For
634 this scenario, the target datasets were same as in Scenario 1, and the low-resolution reference
635 datasets were generated via the same binned method as in scenario 2.

636 Real data analyses

637 All real datasets utilized in this study are comprehensively detailed in the Supplementary Notes.
638 Through rigorous quality control measures, we excluded genes displaying zero expression across
639 multiple spots, those exclusively present in either the reference or target dataset, and spots
640 where numerous genes exhibited no expression. In our analyses, we performed log normalization
641 and identified the top 2000 variable genes using Seurat4 [66]. We treated all genes as variable
642 genes for Xenium and CosMx data analyses, since the number of available genes was less than
643 2000. For Pixel-seq data analysis, the top 3000 variable genes were calculated due to the high
644 sparsity of Pixel-seq data. The final variable genes used for co-embedding were the intersection
645 of variable genes in the reference and target data. However, we used the variable genes from
646 the reference data to co-embed the spatial ATAC-seq data, as its data consists of gene scores.

647 Data availability

648 All datasets used in this study are publicly available. These include the four human non-
649 small-cell lung cancer CosMx data (<https://nanostring.com/products/cosmx-spati>
650 al-molecular-imager/ffpe-dataset/nsclc-ffpe-dataset/); the four human breast
651 cancer Xenium datasets (https://www.dropbox.com/s/t05w7ccufh1v0h8/xenium_prere
652 lease_jul12_hBreast_replicates.tar?dl=0 and <https://www.10xgenomics.com/pr>
653 oducts/xenium-in-situ/preview-dataset-human-breast) as well as its reference data
654 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078>); four human
655 hepatocellular carcinoma Visium datasets (Raw FASTQ data are available at <https://ww>
656 www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=858545, and H&E
657 images, which are available at <https://doi.org/10.6084/m9.figshare.21280569.v1> and
658 <https://doi.org/10.6084/m9.figshare.21061990.v1>), as well as its scRNA-seq human
659 reference data (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125449>) and
660 its scRNA-seq mouse reference data (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181515>); mouse olfactory bulb ST dataset (<https://www.spatialresearch.org/>) and
661 Pixel-seq dataset (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186097>),
662 as well as their reference datasets (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672>; and <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121891>),

665 and the mouse spatial ATAC-seq dataset (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5238385>) as well as its accompanying scRNA-seq reference data (<https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads>). All
666
667 other relevant data supporting the key findings of this study are available within the article and
668 its Supplementary Information files or from the corresponding author upon reasonable request.
669

670 **Code availability**

671 The CAESAR suite was implemented in an open-source, publicly available R package [67]
672 that is available at <https://cran.r-project.org/package=CAESAR.Suite> and <https://github.com/XiaoZhangryy/CAESAR.Suite>. Code for reproducing the analysis can be found
673 at https://github.com/XiaoZhangryy/CAESAR.Suite_Analysis.
674

675 **Acknowledgment**

676 This work was partially supported by the National Natural Science Foundation of China
677 (grant #12371283), the University Development Fund from the Chinese University of Hong
678 Kong, Shenzhen (grant # UDF01003033), the Guangdong Provincial Key Laboratory of
679 Mathematical Foundations for Artificial Intelligence (grant # 2023B1212010001), and Shenzhen
680 Key Laboratory of Cross-Modal Cognitive Computing (grant # ZDSYS20230626091302006).
681 Fig. 3a was by Figdraw. Fig. 1b was modified from scidraw (<https://scidraw.io/>), licensed
682 under a Creative Common Attribution 3.0 Generic License. (<https://creativecommons.org/licenses/by/3.0/>).
683

684 **Author contributions**

685 J.L. initiated and designed the study, X.Z. and W.L. implemented the model and developed the
686 software tool, and X.Z. performed the simulation studies and the benchmark evaluation; J.L.
687 wrote the manuscript, and X.Z., W.L., X.C., Z.L. and J.L. edited and revised the manuscript.
688

688 **Competing Interests**

689 The authors declare no competing interests.
690

690 **References**

691 [1] Rao, A., Barkley, D., Francca, G. S. & Yanai, I. Exploring tissue architecture using spatial
692 transcriptomics. *Nature* **596**, 211–220 (2021).

693 [2] Moses, L. & Pachter, L. Museum of spatial transcriptomics. *Nature methods* **19**, 534–546
694 (2022).

695 [3] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics.
696 *Nature Biotechnology* **41**, 773–782 (2023).

697 [4] Deng, Y. *et al.* Spatial profiling of chromatin accessibility in mouse and human tissues.
698 *Nature* **609**, 375–383 (2022).

699 [5] Liu, Y. *et al.* High-plex protein and whole transcriptome co-mapping at cellular resolution
700 with spatial cite-seq. *Nature Biotechnology* **41**, 1405–1409 (2023).

701 [6] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable
702 genes. *Nature methods* **15**, 343–346 (2018).

703 [7] Zhao, E. *et al.* Spatial transcriptomics at subspot resolution with bayesspace. *Nature
704 biotechnology* **39**, 1375–1384 (2021).

705 [8] Hu, J. *et al.* Spagcn: Integrating gene expression, spatial location and histology to identify
706 spatial domains and spatially variable genes by graph convolutional network. *Nature
707 methods* **18**, 1342–1351 (2021).

708 [9] Liu, W. *et al.* Joint dimension reduction and clustering analysis of single-cell rna-seq and
709 spatial transcriptomics data. *Nucleic acids research* **50**, e72–e72 (2022).

710 [10] Yang, Y. *et al.* Sc-meb: spatial clustering with hidden markov random field using empirical
711 bayes. *Briefings in bioinformatics* **23**, bbab466 (2022).

712 [11] Farrell, J. A. *et al.* Single-cell reconstruction of developmental trajectories during zebrafish
713 embryogenesis. *Science* **360**, eaar3131 (2018).

714 [12] Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of
715 single-cell rna-seq data. *Nature Reviews Genetics* **20**, 273–282 (2019).

716 [13] Barkley, D., Rao, A., Pour, M., Francca, G. S. & Yanai, I. Cancer cell states and emergent
717 properties of the dynamic tumor system. *Genome research* **31**, 1719–1727 (2021).

718 [14] Barkley, D. *et al.* Cancer cell states recur across tumor types and form specific interactions
719 with the tumor microenvironment. *Nature genetics* **54**, 1192–1201 (2022).

720 [15] Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell rna-seq data across
721 data sets. *Nature methods* **15**, 359–362 (2018).

722 [16] Aran, D. *et al.* Reference-based analysis of lung single-cell sequencing reveals a transitional
723 profibrotic macrophage. *Nature immunology* **20**, 163–172 (2019).

724 [17] Tan, Y. & Cahan, P. Singlecellnet: a computational tool to classify single cell rna-seq
725 data across platforms and across species. *Cell systems* **9**, 207–213 (2019).

726 [18] Zhang, A. W. *et al.* Probabilistic cell-type assignment of single-cell rna-seq for tumor
727 microenvironment profiling. *Nature methods* **16**, 1007–1015 (2019).

728 [19] Guo, H. & Li, J. scsorter: assigning cells to known cell types according to marker genes.
729 *Genome biology* **22**, 69 (2021).

730 [20] Shi, X. *et al.* Probabilistic cell/domain-type assignment of spatial transcriptomics data
731 with spatialanno. *Nucleic Acids Research* **51**, e115–e115 (2023).

732 [21] Cortal, A., Martignetti, L., Six, E. & Rausell, A. Gene signature extraction and cell
733 identity recognition at the single-cell level with cell-id. *Nature biotechnology* **39**, 1095–1102
734 (2021).

735 [22] Chen, H., Ryu, J., Vinyard, M. E., Lerer, A. & Pinello, L. Simba: single-cell embedding
736 along with features. *Nature Methods* **21**, 1003–1013 (2024).

737 [23] Liang, Q., Huang, Y., He, S. & Chen, K. Pathway centric analysis for single-cell rna-seq
738 and spatial transcriptomics data with gsdensity. *Nature communications* **14**, 8416 (2023).

739 [24] He, S. *et al.* High-plex imaging of rna and proteins at subcellular resolution in fixed tissue
740 by spatial molecular imaging. *Nature Biotechnology* **40**, 1794–1806 (2022).

741 [25] Zhang, K., Zemke, N. R., Armand, E. J. & Ren, B. A fast, scalable and versatile tool for
742 analysis of single-cell omics data. *Nature methods* **21**, 217–227 (2024).

743 [26] Tharwat, A. Classification assessment methods. *Applied computing and informatics* **17**,
744 168–192 (2021).

745 [27] Wu, S. Z. *et al.* A single-cell and spatially resolved atlas of human breast cancers. *Nature
746 genetics* **53**, 1334–1347 (2021).

747 [28] Janesick, A. *et al.* High resolution mapping of the tumor microenvironment using integrated
748 single-cell, spatial and in situ analysis. *Nature Communications* **14**, 8353 (2023).

749 [29] Wu, W. *et al.* Multiple signaling roles of cd3 ε and its application in car-t cell therapy.
750 *Cell* **182**, 855–871 (2020).

751 [30] Zhu, Z. *et al.* Comprehensive analysis reveals a prognostic and therapeutic biomarker cd3d
752 in the breast carcinoma microenvironment. *Bioscience reports* **41**, BSR20202898 (2021).

753 [31] Tedder, T., Boyd, A., Freedman, A., Nadler, L. & Schlossman, S. The b cell surface
754 molecule b1 is functionally linked with b cell activation and differentiation. *Journal of
755 immunology (Baltimore, Md.: 1950)* **135**, 973–979 (1985).

756 [32] Yokoyama, K. *et al.* Bank regulates bcr-induced calcium mobilization by promoting
757 tyrosine phosphorylation of ip3 receptor. *The EMBO journal* (2002).

758 [33] Roifman, C. M., Zhang, J., Chitayat, D. & Sharfe, N. A partial deficiency of interleukin-7 α
759 is sufficient to abrogate t-cell development and cause severe combined immunodeficiency.
760 *Blood, The Journal of the American Society of Hematology* **96**, 2803–2807 (2000).

761 [34] Gaud, G., Lesourne, R. & Love, P. E. Regulatory mechanisms in t cell receptor signalling.
762 *Nature Reviews Immunology* **18**, 485–497 (2018).

763 [35] Muro, R., Takayanagi, H. & Nitta, T. T cell receptor signaling for $\gamma\delta$ t cell development.
764 *Inflammation and Regeneration* **39**, 1–11 (2019).

765 [36] Fletcher, G. *et al.* hag-2 and hag-3, human homologues of genes involved in differentiation,
766 are associated with oestrogen receptor-positive breast tumours and interact with metastasis
767 gene c4. 4a and dystroglycan. *British journal of cancer* **88**, 579–585 (2003).

768 [37] Campa, D. *et al.* Genetic variation in genes of the fatty acid synthesis pathway and breast
769 cancer risk. *Breast cancer research and treatment* **118**, 565–574 (2009).

770 [38] Nakshatri, H. & Badve, S. Foxa1 in breast cancer. *Expert reviews in molecular medicine*
771 **11**, e8 (2009).

772 [39] Liu, W. *et al.* Probabilistic embedding, clustering, and alignment for integrating spatial
773 transcriptomics data with precast. *Nature communications* **14**, 296 (2023).

774 [40] Ma, L. *et al.* Tumor cell biodiversity drives microenvironmental reprogramming in liver
775 cancer. *Cancer cell* **36**, 418–430 (2019).

776 [41] Zhou, L. *et al.* Lineage tracing and single-cell analysis reveal proliferative prom1+ tumour-
777 propagating cells and their dynamic cellular transition during liver cancer progression.
778 *Gut* **71**, 1656–1668 (2022).

779 [42] Wu, K. *et al.* Hepatic transforming growth factor beta gives rise to tumor-initiating cells
780 and promotes liver cancer development. *Hepatology* **56**, 2255–2267 (2012).

781 [43] Tummala, K. S. *et al.* Hepatocellular carcinomas originate predominantly from hepatocytes
782 and benign lesions from hepatic progenitor cells. *Cell reports* **19**, 584–600 (2017).

783 [44] Lee, R. D. *et al.* Single-cell analysis identifies dynamic gene expression networks that
784 govern b cell development and transformation. *Nature communications* **12**, 6843 (2021).

785 [45] Bai, X.-S. *et al.* Rnf128 promotes malignant behaviors via egfr/mek/erk pathway in
786 hepatocellular carcinoma. *OncoTargets and therapy* 10129–10141 (2020).

787 [46] Fukuda, M. *et al.* Genetic polymorphisms of hepatic abc-transporter in patients with
788 hepatocellular carcinoma. *J Cancer Ther* **1**, 114–123 (2010).

789 [47] Li, C. *et al.* Srebp-1 has a prognostic role and contributes to invasion and metastasis in
790 human hepatocellular carcinoma. *International journal of molecular sciences* **15**, 7124–7138
791 (2014).

792 [48] Zhao, Q., Lin, X. & Wang, G. Targeting srebp-1-mediated lipogenesis as potential strategies
793 for cancer. *Frontiers in oncology* **12**, 952371 (2022).

794 [49] Su, F. & Koeberle, A. Regulation and targeting of srebp-1 in hepatocellular carcinoma.
795 *Cancer and Metastasis Reviews* **43**, 673–708 (2024).

796 [50] Goel, S. *et al.* Normalization of the vasculature for treatment of cancer and other diseases.
797 *Physiological reviews* **91**, 1071–1121 (2011).

798 [51] Forster, J. C., Harriss-Phillips, W. M., Douglass, M. J. & Bezak, E. A review of the
799 development of tumor vasculature and its effects on the tumor microenvironment. *Hypoxia*
800 21–32 (2017).

801 [52] Moncada, R. *et al.* Integrating microarray-based spatial transcriptomics and single-cell rna-
802 seq reveals tissue architecture in pancreatic ductal adenocarcinomas. *Nature biotechnology*
803 **38**, 333–342 (2020).

804 [53] Tepe, B. *et al.* Single-cell rna-seq of mouse olfactory bulb reveals cellular heterogeneity and
805 activity-dependent molecular census of adult-born neurons. *Cell reports* **25**, 2689–2703
806 (2018).

807 [54] Birkner, K. *et al.* Neuronal icam-5 plays a neuroprotective role in progressive neurodegen-
808 eration. *Frontiers in neurology* **10**, 205 (2019).

809 [55] Kostyuk, P. G. Calcium channels in the neuronal membrane. *Biochimica et Biophysica
810 Acta (BBA)-Reviews on Biomembranes* **650**, 128–150 (1981).

811 [56] Urrutia, D. N. *et al.* Comparative study of the neural differentiation capacity of mes-
812 enchymal stromal cells from different tissue sources: An approach for their use in neural
813 regeneration therapies. *PloS one* **14**, e0213032 (2019).

814 [57] Cao, J. *et al.* The single-cell transcriptional landscape of mammalian organogenesis. *Nature*
815 **566**, 496–502 (2019).

816 [58] Pressey, J. C., de Saint-Rome, M., Raveendran, V. A. & Woodin, M. A. Chloride
817 transporters controlling neuronal excitability. *Physiological Reviews* **103**, 1095–1135
818 (2023).

819 [59] Wang, J., Peng, J., Chen, Y., Nasser, M. & Qin, H. The role of stromal cells in epithelial–
820 mesenchymal plasticity and its therapeutic potential. *Discover Oncology* **15**, 13 (2024).

821 [60] Baumann, R. & Meuer, H.-J. Blood oxygen transport in the early avian embryo. *Physio-
822 logical reviews* **72**, 941–965 (1992).

823 [61] Farnsworth, R. H., Lackmann, M., Achen, M. G. & Stacker, S. A. Vascular remodeling in
824 cancer. *Oncogene* **33**, 3496–3505 (2014).

825 [62] Bai, Y. & Chu, L. A robust framework for graph-based two-sample tests using weights.
826 *arXiv preprint arXiv:2307.12325* (2023).

827 [63] Liu, Y. & Xie, J. Cauchy combination test: a powerful test with analytic p-value calculation
828 under arbitrary dependency structures. *Journal of the American Statistical Association*
829 **115**, 393–402 (2020).

830 [64] Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of rna-seq data using factor
831 analysis of control genes or samples. *Nature biotechnology* **32**, 896–902 (2014).

832 [65] Hounkpe, B. W., Chenou, F., de Lima, F. & De Paula, E. V. Hrt atlas v1. 0 database:
833 redefining human and mouse housekeeping genes and candidate reference transcripts by
834 mining massive rna-seq datasets. *Nucleic acids research* **49**, D947–D955 (2021).

835 [66] Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* (2021). URL
836 <https://doi.org/10.1016/j.cell.2021.04.048>.

837 [67] Zhang, X., Liu, W. & Liu, J. *CAESAR.Suite: CAESAR: a Cross-Technology and Cross-*
838 *Resolution Framework for Spatial Omics Annotation* (2024). URL <https://github.com>
839 [/XiaoZhangryy/CAESAR.Suite](https://github.com/XiaoZhangryy/CAESAR.Suite). R package version 0.1.0.

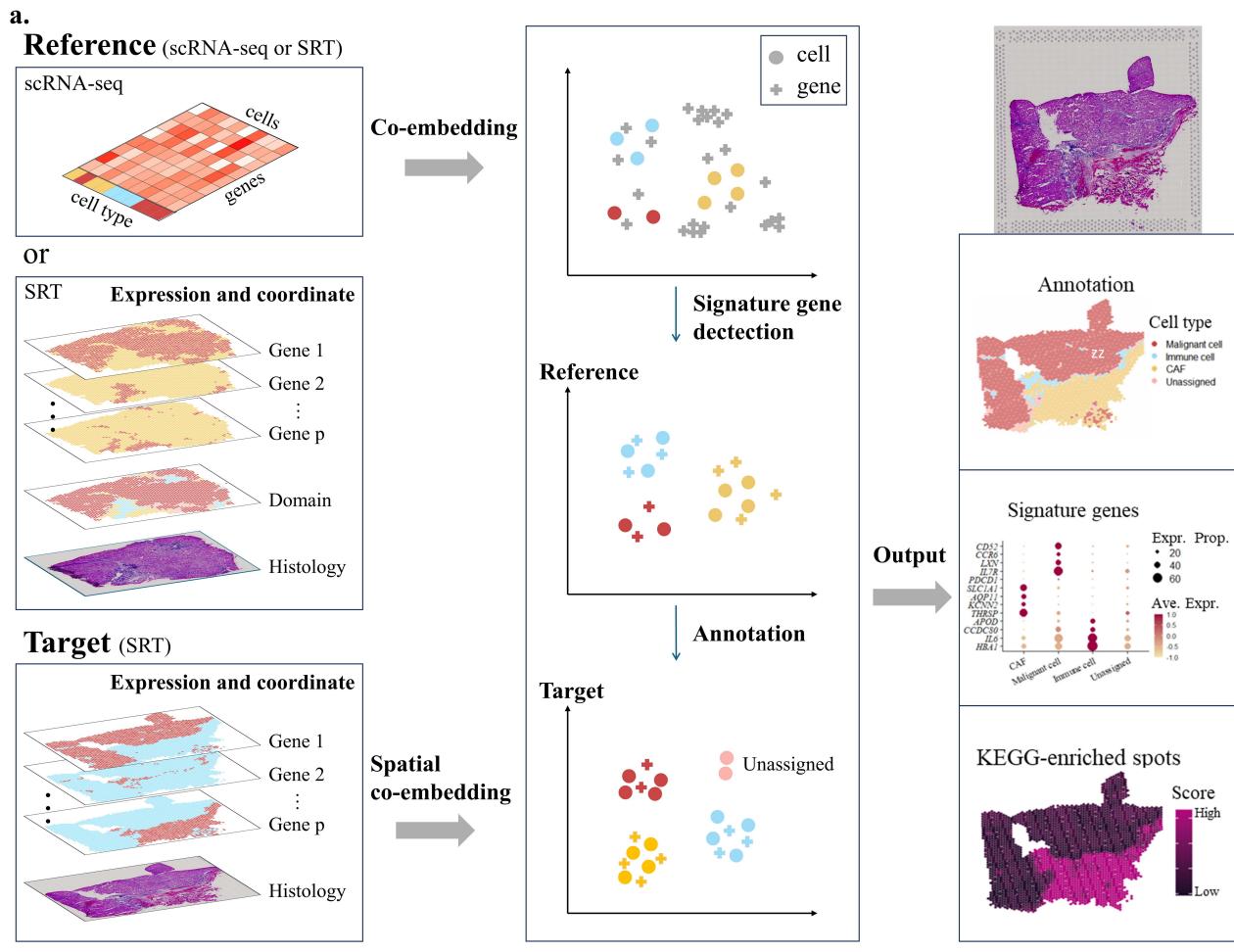
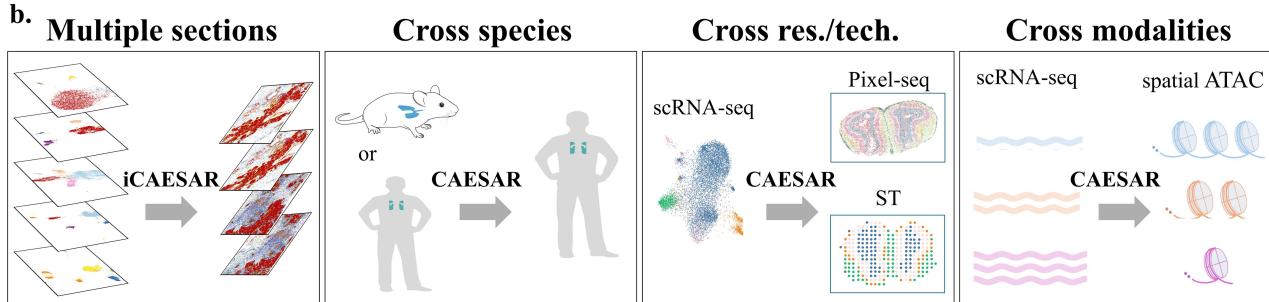
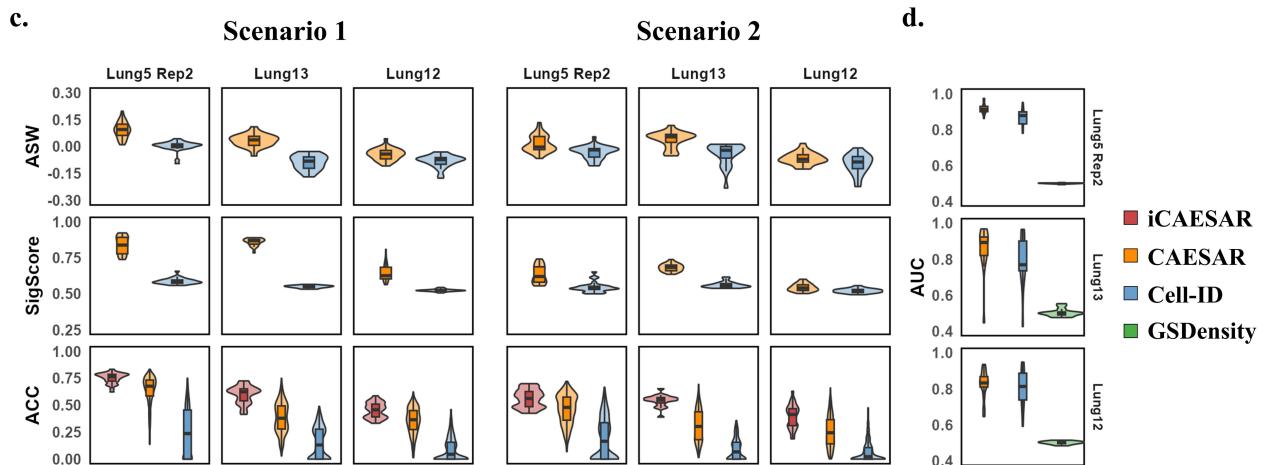


Figure 1: Schematic overview of CAESAR suite and simulation results. (a) Left panel: CAESAR suite takes labelled scRNA-seq or spatial transcriptomics sections as reference data and unlabelled spatial transcriptomics sections as target data. Middle panel: For each section, the model projects the cells and genes into a common embedding space, where the gene-cell distance reflects their specificity. Spatial co-embedding integrate morphological or histology images and spatial location information into low-dimensional space to better characterize the gene-cell relationship. The signature genes for a cell/domain type are the top-ranked genes based on their average distance to cells of that cell/domain type. These signature gene sets can be independently extracted from a collection of reference datasets for downstream annotation procedure. Right panel: CAESAR suite performs cell/domain type annotation by evaluating cell signatures against (multiple) cell/domain-type markers from reference datasets. Once the target data is annotated, its signature genes can be detected. When a pathway is provided, CAESAR suite can detect gradual activation of the pathway among locations. (b) The CAESAR suite is capable of flexibly performing annotations for spatial omics datasets with heterogeneous reference datasets, across species, resolutions, technologies, and modalities. (c) Model validation using CosMx data. We used all fields of view (FOVs) from sample Lung5 rep1 as the reference dataset (30 FOVs, 3,109 spots on median), and all FOVs from samples Lung5 rep2, Lung13, and Lung12 as target data (29, 28, and 20 FOVs; 3,530, 2,524, and 4,099 spots on median, respectively) to evaluate performance under different conditions (scenario 1). We binned 5 cells per location in the target datasets to create low-resolution target datasets (706, 495, and 810 spots on median, respectively), which used to evaluate performance with a low-resolution target dataset (Scenario 2). We evaluated performance in terms of cell embedding, co-embedding, and annotation, using average silhouette width (ASW), signature score (SigScore) and classification accuracy (ACC). (d) We used differentially expressed gene sets for each cell type as pathways to evaluate performance on pathway enrichment, which was assessed by the area under the curve (AUC).

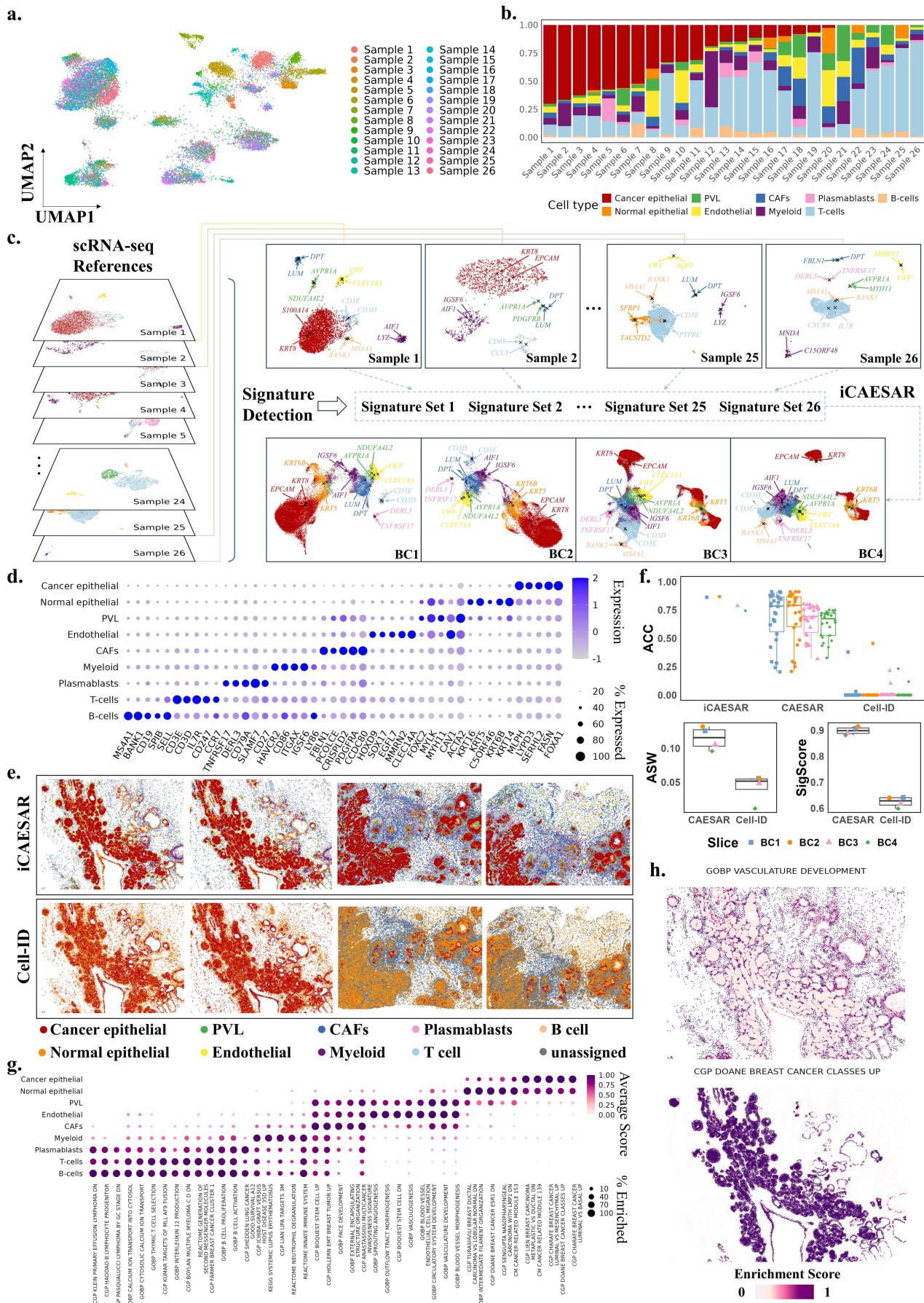


Figure 2: Analysis of human breast cancer Xenium data. (a) UMAP plot for 26 reference datasets, colored by the reference identities. (b) Stacked barplot for the cell type proportions from manual annotations in each reference dataset, where CAFs represents cancer-associated fibroblasts and PVL represents perivascular-like cells. (c) Schematic representation of the CAESAR suite’s spatial annotations process utilizing multiple single-cell RNA sequencing (scRNA-seq) reference datasets. (d) Dot plot of top five signature genes identified by CAESAR suite for the transferred annotations on four BC sections, where “% expressed” means the percentage of cells that expressed this gene. (e) Spatial heatmaps for annotations obtained by CAESAR suite and Cell-ID. (f) Visual representations of the ASW for assessing the performance of location embeddings, the SigScore for evaluating the efficacy of signature gene detection, and the ACC metric for spatial annotation performance, are presented through boxplots by comparing CAESAR suite and Cell-ID. (g) Dot plot of the top five cell type specific pathways for each transferred cell types by CAESAR suite of four BC sections, where “% enriched” means the percentage of cells in which this pathway was enriched. (h) Spatial heatmaps of enrichment scores for cell-type-specific pathways: for PVL cells, the pathway “vasculature development” from the GOBP database, and for Cancer Epithelial cells, the pathway “Doane Breast Cancer Classes Up” from the CGP database.

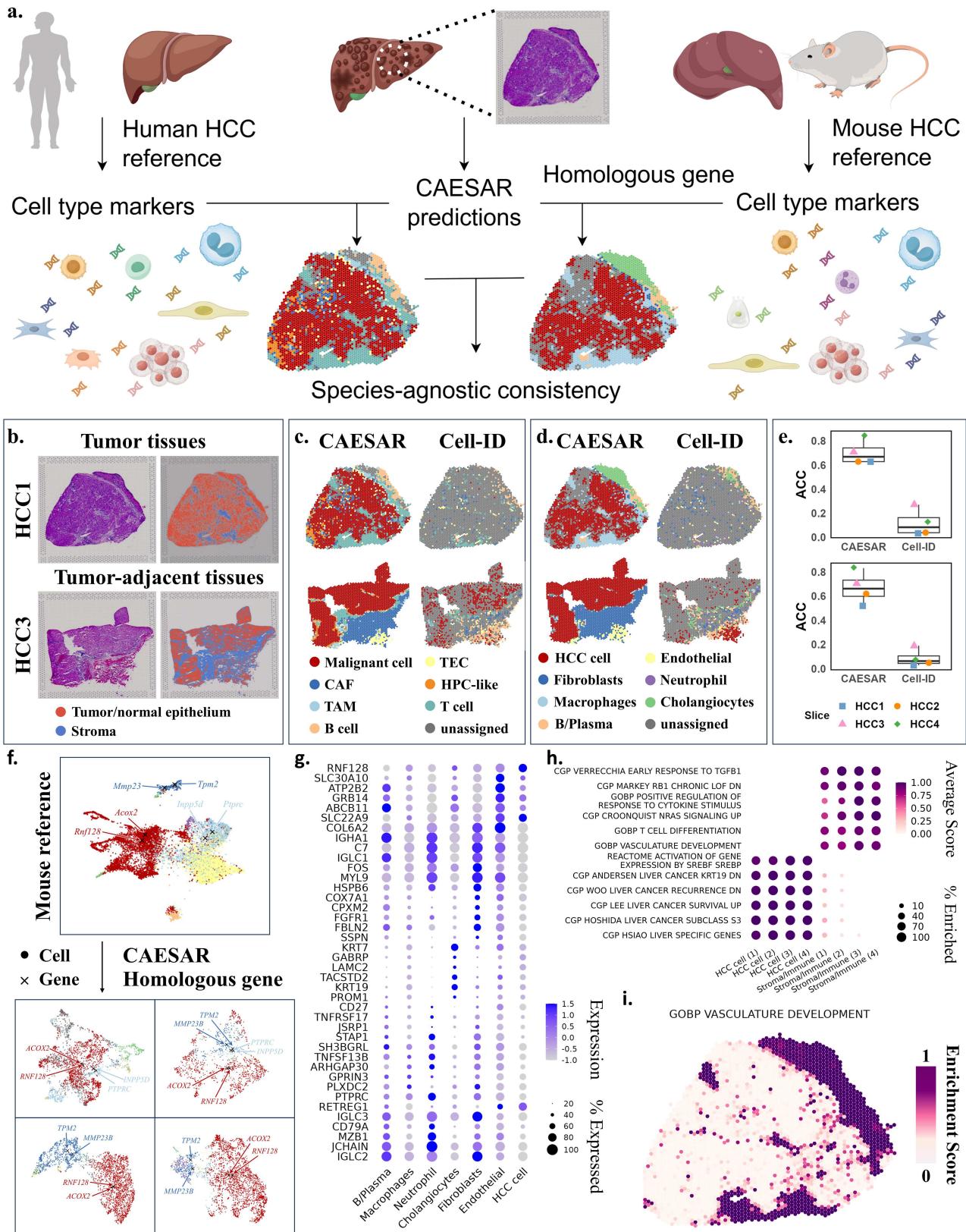


Figure 3: Analysis of human HCC Visium data. (a) Schematic representation of the CAESAR suite’s spatial annotations process transferred from human and mouse reference. For each reference, CAESAR co-embeds the locations and genes in a common space, and detect signature genes for each cell type based on their distance. Then, those signature genes are used as cell type markers. The signature genes from mouse were transferred to their homologous human genes. CAESAR’s annotation results using references from different species show species-agnostic consistency. (b) H&E image and manual annotations by a pathologist for HCC1 and HCC3. (c) Spatial heatmaps of spatial annotations for HCC1 and HCC3 transferred by CAESAR suite and Cell-ID based on a human HCC scRNA-seq reference. (d) Spatial heatmaps of spatial annotations for HCC1 and HCC3 transferred by CAESAR suite and Cell-ID based on a mouse HCC scRNA-seq reference. (e) Boxplots of annotation accuracy of CAESAR suite and Cell-ID based on human reference (upper panel) and mouse reference (bottom panel). (f) UMAP plots of cells/spots and partial overlapped signature genes between mouse HCC reference data and four target SRT sections. (g) Dot plot of top six signature genes for each transferred cell types by CAESAR suite based on mouse HCC reference. (h) Dot plot of average enrichment scores for cell-type specific pathways. (i) Spatial heatmap of enrichment scores of vasculature development in GOBP database.

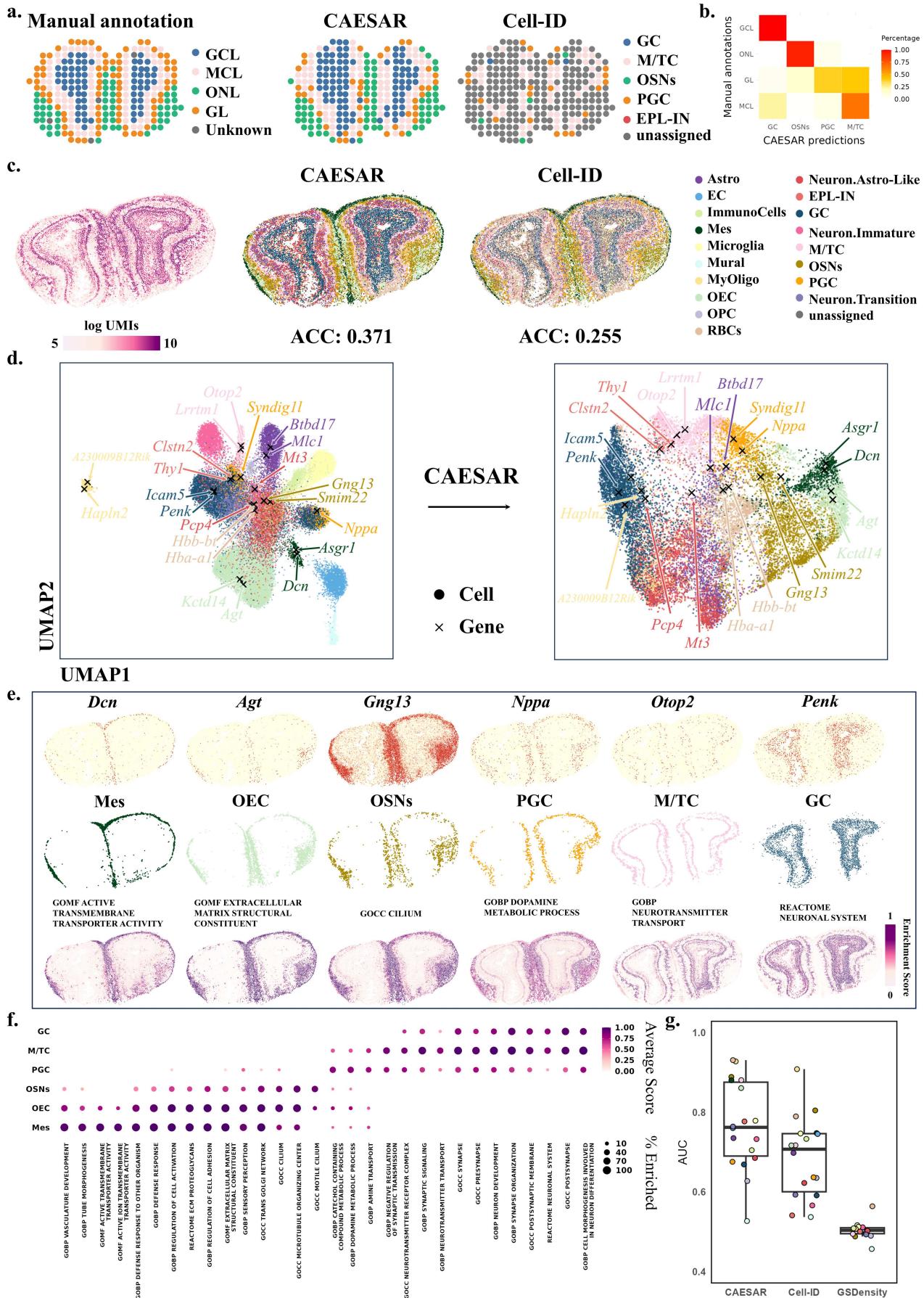
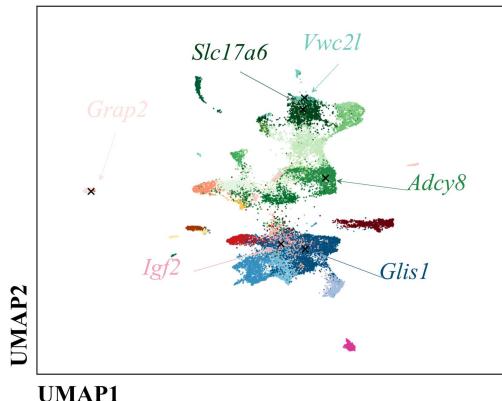
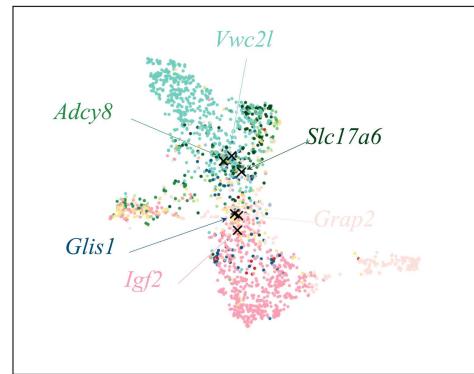
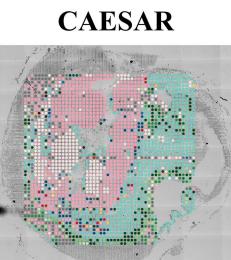
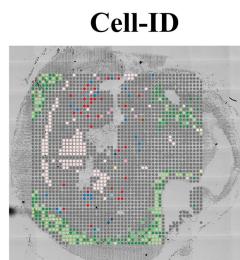


Figure 4: Analysis of MOB ST and Pixel-seq data. (a) Spatial heatmaps of manual annotations (left panel), annotations obtained by CAESAR suite and Cell-ID for MOB ST data, where GCL, the granule cell layer; MCL, the mitral cell layer; ONL, the nerve layer; GL, the glomerular layer; GC, granule cell; M/TC, mitral and tufted cell; OSNs, Olfactory sensory neurons; PGC, periglomerular cell; EPL-IN, external plexiform layer interneuron. (b) Heatmap of confusion matrix between manual annotations and the predicted cell types obtained by CAESAR suite. (c) Spatial heatmaps of logarithm of UMIs, and annotations obtained by CAESAR suite and Cell-ID for MOB Pixel-seq data, the cell types include: Astro, astrocyte; EC, endothelial cell; ImmunoCells, monocyte and macrophage; Mes, mesenchymal cell; Microglia, microglia; Mural, mural cell; MyOligo, myelinating oligodendrocyte; OEC, olfactory ensheathing cell; OPC, oligodendrocyte precursor; RBCs, red blood cells; Neuron.Astro-Like, astrocyte like neuron; EPL-IN; GC; Neuron.Immature, immature neuron; M/TC; OSNs; PGC; Neuron.Transition, transitional neuron. (d) UMAP plots of embeddings for cells/spots and two overlapped signature genes between MOB scRNA-seq reference and the MOB Pixel-seq data. (e) Spatial heatmaps of expression levels of the cell type specific genes, cell types and enrichment scores of cell type differentially enriched pathways. (f) Dot plot of average enrichment scores for cell-type differentially enriched pathways in MOB Pixel-seq data. (g) Boxplot of AUC obtained by CAESAR suite, Cell-ID and GSDensity for assessing the pathway enrichment performance.

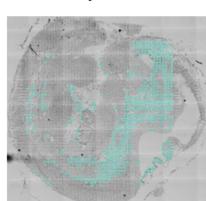
a.**CAESAR**

- Cell
- ×
- Gene

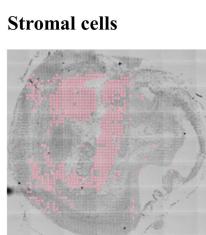
**b.**

ACC: 0.253

ACC: 0.090

c.**d.** **Excitatory neurons**

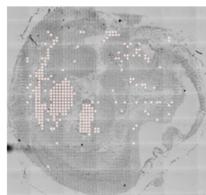
GOBP CHLORIDE TRANSMEMBRANE TRANSPORT



GOBP EPITHELIAL TO MESENCHYMAL TRANSITION INVOLVED IN ENDOCARDIAL CUSHION FORMATION

Stromal cells

CGP WELCH GATA1 TARGETS

Enrichment Score
1
0**Primitive erythroid lineage**

CGP INORGANIC ANION TRANSMEMBRANE TRANSPORT

Figure 5: Analysis of mouse Embryo 11 spATAC-seq data. (a) UMAP plots of co-embeddings for cells/spots and overlapped signature genes between mouse embryo scRNA-seq reference and the mouse Embryo 11 spATAC-seq data. (b) Spatial heatmaps for cell-type assignment of CAESAR and Cell-ID. (c) Dot plot of the top five differentially enriched pathways for each of top six domain cell types. (d) Spatial heatmaps for top three domain cell types and the corresponding enriched pathway.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SupplementrayData1.xlsx](#)
- [CAESARsupplementary.pdf](#)