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Supplementary Fig. 1 | The experimental and modelled structures of Pd single atoms on facet-
dependent CeQ,. Fourier-transformed EXAFS spectra of Pd;-CeO2(110) ASAC (a), Pd;-CeO,(100)
(b), and Pd;- CeO»(111) (c). Top views and side views of Pd SACs on CeO» with different crystal planes:
Pd;-CeO,(110) ASAC (d), Pd;-CeO2(100) (e), Pd;-CeO2(111) (f). The red, yellow, and blue spheres

represent oxygen, cerium, and palladium, respectively.
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Supplementary Fig. 2 | Charge density differences of Pd; ASACs catalyst. The white, grey, purple, red,
yellow, and blue spheres represent hydrogen, carbon, bromine, oxygen, cerium, and palladium atoms,

respectively.

The Pd in the initially four-coordinated Pd; ASACs catalyst is in a high-valence oxidized state, with
electrons predominantly transferred to the Ce and O atoms in the Pd-O-Ce linkage (Supplementary
Fig. 2a, b). During the reaction, the Pd-O bond is cleaved, forming a bicoordinated structure, and the
Pd valence state is reduced from +0.64 to +0.16 as electrons transfer back from the Ce and O atoms to
the Pd atom (Supplementary Fig. 2¢, d). Following oxidative addition, the dissociation of
bromobenzene results in the bromide ion and phenyl ring gaining 0.5 and 0.25 electrons, respectively,
leading to Pd oxidation from +0.16 to +0.49. Concurrently, additional electrons are transferred from the
Ce-O-Pd linkage to the Pd atom (Supplementary Fig. 2e, f). Thus, the continuous electron transfer
between the Pd atom and the O and Ce atoms in the Pd-O-Ce bond ensures the stabilization of the Pd

valence state throughout the reaction.
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Supplementary Fig. 3 | Characterization of Pd; ASAC. a, TEM image of Pd; ASAC. b, Atomic-
resolution ADF-STEM image of Pd; ASAC. ¢, XRD patterns of Pd; ASAC. d, Pd K-edge XANES
spectra of Pd; ASAC and references (Pd foil and PdO). e, Pd 3d XPS spectra of Pd; ASAC. f, Ce 3d
XPS spectra of Pd; ASAC and CeO,. The peaks V' and U’ correspond to the signals of Ce*species, and

the others are assigned to the Ce*" species.
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Supplementary Fig. 4 | Comparison of the experimental and modelled Pd K-edge XANES spectra.
a, Pd single-atom is anchored on the CeO,(110) facet in a 4-coordinated manner with the surface oxygen
atoms. b, Pd single-atom is anchored on the oxygen vacancy on the CeO»(110) facet. ¢, Pd single-atom
is anchored on the Ce vacancy on the CeO2(110) facet. d, Pd single-atom is anchored on the CeO2(110)
facet in a 2-coordinated manner with the surface oxygen atoms. The corresponding DFT-modelled
atomic structures are shown in the insets. The red, yellow, and blue spheres represent oxygen, cerium,

and palladium, respectively.
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Supplementary Fig. 5 | Substrate scope of Pd; ASAC catalyzed Heck and Sonogashira cross-

coupling reactions.

Conditions: a: 1 (0.5 mmol), 6 (1 mmol), Pdi ASAC (5 mg, 0.35 mol%), K,CO; (1.5 mmol),

EtOH/H>0O (2 mL: 2 mL), 100 °C, 10 h, isolated yield. b: 1 (0.5 mmol), 7 (0.75 mmol), Pd; ASAC (5

mg, 0.35 mol%), K,COs (3 mmol), EtOH/H>O (3.5 mL: 0.5 mL), 100 °C, 10 h, isolated yield.
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Supplementary Fig. 6 | Stability of Pd; ASAC in Suzuki cross-coupling. a, Cycling test for the
Suzuki cross-coupling reaction using 4-bromotoluene and phenylboronic acid over Pd; ASAC. b, XRD
patterns, ¢, Fourier transformed EXAFS spectra and d, XPS spectra of the fresh Pd; ASAC and the Pd,

ASAC recovered after 10 reaction cycles.
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Supplementary Fig. 7 | Cycling test for the Suzuki cross-coupling reaction using 4-bromotoluene and

phenylboronic acid over Pd1 ASAC under low-conversion conditions.

Reaction conditions: 4-Bromotoluene (5 mmol), phenylboronic acid (6 mmol), K»CO; (15 mmol),
catalyst, EtOH/H,O (20 mL/20 mL) were sequentially added to the round-bottomed flask. The flask
was heated and stirred in a 100 °C oil bath for 10 min. The products were extracted with DCM, and the
yield was calculated by GC analysis. The catalyst was isolated by centrifugation, washed with
EtOH/H,0, and dried at 80 °C overnight for the next cycle. To avoid the decrease in efficiency caused

by the loss of catalyst during operation, it is necessary to keep the dosage ratio of catalyst, substrate,

solvent, and base constant in each cycle.
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Yaar29

Supplementary Fig. 8 | Turnover number (TON) of Pd; ASAC in cross-coupling. a, Specific
conditions of the TON test experiment. b, Photograph of the experimental product biphenyl. TON =

mole of converted aryl halides/mole of Pd catalyst

Experimental procedure is shown in Supplementary Fig. 8a : Bromobenzene (25 mmol), phenylboronic
acid (30 mmol), K,COs (75 mmol), Pd; ASAC (2 x 10" mol%, according to Pd), ethanol (100 mL), and
H,O (100 mL) were sequentially added to the flask. The flask was placed in an oil bath preheated to
80 °C, and stirring in an ambient atmosphere, yielding biphenyl (Supplementary Fig. 8b) in

approximately 90% yield.
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Supplementary Fig. 9 | Atomic structure of Pd; ASAC calculated by DFT. Top and side views of the

optimized structure of Pd; ASAC model in all reaction steps.
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Supplementary Fig. 10 | Electrostatic potential diagram of bromobenzene.

According to the electrostatic potential diagram of bromobenzene, it can be seen that the charges of the
molecule tend to gather around the Br atom. As a result, the Br ion after bromobenzene dissociation is

adsorbed on the electrophilic Ce site, and the phenyl group is adsorbed on the nucleophilic Pd site.
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Supplementary Fig. 11 | Kinetic studies of Pd; ASAC catalysed Suzuki cross-coupling. The plots of
the natural logarithm of the concentration of aryl halide versus time: initial concentration of

bromobenzene Cy = 0.25 M (a), Cp = 0.5 M (b). All reactions were conducted with 0.1 mol% Pd.

Experimental procedure: In a capped reaction tube, sequentially add 0.25 mmol (Cy = 0.25 M) or 0.5
mmol (Cy= 0.5 M) of bromobenzene, 0.6 mmol of phenylboronic acid, 1.5 mmol of K»,COs, Pd; ASAC
(0.1 mol% Pd, according to Pd), 2 mL of ethanol, 2 mL of H,O, and 0.5 mmol of decane (as an internal
standard for GC analysis). Place the reaction tube in an oil bath at 25 °C and stir under ambient
atmosphere for the desired time (10-120 min). After the reaction, remove the cap and transfer a portion
of the solution into a vial. Extract with DCM and analyze the conversion of reactants via gas
chromatography. Under optimized reaction conditions, the natural logarithm of the bromobenzene
concentration versus time plot is linear, indicating a first-order reaction with respect to the aryl halide.

This suggests that the aryl halide is involved in the rate-determining step, consistent with DFT studies.
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Supplementary Fig. 12 | Catalytic performance for the Suzuki reaction of bromobenzene and
phenylboronic acid. Time-dependent yield of biphenyl over Pd; ASAC (a) and Pd/C (d). The
corresponding In(Co/Ci)-time curves for Suzuki coupling reactions over Pd; ASAC (b) and Pd/C (e). ¢,
Arrhenius plots of the reaction over Pd; ASAC and commercial Pd/C. f, A TOF comparison of Pd,

ASAC and commercial Pd/C.

To further study the reaction kinetics of Pdi ASAC, we investigated the coupling reaction of
bromobenzene and phenylboronic acid at different temperatures (323, 328, 333, 338, and 343 K)
(Supplementary Fig. 12a) and compared them with commercial Pd/C (Supplementary Fig. 12d). The
relationship between In (Co/C;) and time is consistent with first-order reaction kinetics (Supplementary
Fig. 12b and e). The rate constant (k) of the reaction can be calculated from the slope of the In (Co/C\)-
time curve, and then the apparent activation energy can be calculated by plotting In & as a function of
1000/T in an Arrhenius plot (Supplementary Fig. 12c¢). The results demonstrate that the activation
energy of Pd; ASAC-catalyzed reaction is much lower than that of commercial Pd/C. Notably, Pd;
ASAC is able to exhibit a significant turnover frequency (TOF) of 46,149 h™' at 343 K (Supplementary
Fig. 12f), outperforming all listed catalysts by about an order of magnitude or more in the Suzuki cross-

coupling reactions (Supplementary Table 3).
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Supplementary Fig. 14 | Electronic structure of Pd; ASAC with different coordination
configurations. a, DOS and ICOHP of the initial Pd-(40) coordination structure. b, DOS and ICOHP
of the Pd-(20, Br, Ph) coordination structure after oxidative addition. The square-planar coordinated
Pd-O bonds have obvious occupation of the antibonding orbital near Eg, while the occupation of the
antibonding orbital near Er is significantly weakened in the new tetra-coordinated structure formed by
the dissociation of bromobenzene. The calculated ICOHP also confirms that Pd center has stronger bond
interaction after bromobenzene dissociation (—5.24 eV vs. —3.47 eV), which is believed to be the driving

force for the opening of Pd-O bonds.

The Pd d-orbital center of the four-coordinated PdO4 motif lies further below Er and once two Pd-O
bonds are opened to form new four-coordinated structures, the Pd d-orbital centers shift significantly
closer to Er. Therefore, the Pd-adsorbate interactions are enhanced and show better catalytic activity.
As a result, the Pd; ASAC can adaptively regulate the Pd electronic structure to facilitate catalysis
through dynamic coordination configuration tuning during the reaction. The 5d-orbitals of adjacent Ce
revealed a slight decrease in the integrated occupied state below Er and a gradual increase in empty
states, with these empty states shifting toward Er All these observations indicate the accumulation of

positive charge over Ce as the reaction proceeds.
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Supplementary Fig. 15 | Operando XANES and ex situ XPS spectra during Suzuki cross-
coupling reaction. a, Fourier-transformed EXAFS spectra of Pd; ASAC collected before and during
the Suzuki cross-coupling reaction. b, Operando Pd K-edge XANES of Pd; ASAC recorded at
different times in the Suzuki cross-coupling reaction. ¢, Ex situ XPS spectra of Pd; ASAC measured
before and in the Suzuki cross-coupling reaction. The peaks V' and U' correspond to the signals of

Ce**species, and the others are assigned to the Ce*" species.

The changes in the chemical state of Pd; ASAC during the Suzuki cross-coupling reaction can be
observed from the in situ Pd K-edge XANES. Throughout the reaction, there are no significant peak
shifts or intensity changes, indicating that the valence state of Pd does not undergo substantial changes.
In the Fourier-transformed EXAFS spectra, the intensity of the main peaks associated with the first

coordination shell path Pd-O and the second coordination shell path Pd-O-Ce decreases, indicating a
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195

reduction in the coordination number of Pd-O. This demonstrates that during the reaction, Pd; ASAC
transfers from the initial Pd-O4 planar four-coordination structure through the opening of two Pd-O
bonds, with the Pd atom being pulled up and bonded by dissociated phenyl and bromide ions, forming
a new four-coordinated configuration, consistent with DFT calculations. Ex situ XPS results showed a
slight increase in Ce*"/Ce*" ratio during the reaction, which may be due to the transfer of electrons from
Ce atoms to Pd atoms in ASAC during the oxidative addition process, thus ensuring that the valence

state of Pd remains constant.
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Supplementary Fig. 16 | characterizations of Pd; anchored on facet-dependent CeQO,. TEM
images of Pd;-CeO(111) (a), Pd;-CeO2(110) ASAC (b), Pd;-CeO,(100) (¢), inserts are their HRTEM
images respectively. d, Pd 3d XPS spectra, e, Pd K-edge XANES spectra, f, Pd K-edge Fourier

transformed EXAFS spectra of Pd single atoms on facet-dependent CeO,.
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207  Supplementary Fig. 18 | Characterization of catalysts. a, Ce 3d XPS spectra, b, O 1s XPS spectra of

208  Pd single atoms on facet-dependent CeOs.
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Supplementary Fig. 19 | Characterization of catalysts. Low-magnification TEM images of Pd;-TiO,
(a), Pdi-Mn,0s (d), Pdi-Fe O3 (g), Pdi-Co304 (j), Pdi-NiO (m), and Pd;- CuO (p). High-resolution
TEM images 0de1-TiOz (b), Pdl-Mn203 (e), Pdl-Fe203 (h), Pd1-C0304 (k), Pdl-NiO (n), and Pdl- CuO

(q). XRD patterns of Pd;-TiO> (¢), Pdi-Mn»O; (f), Pdi-FeOs (i), Pdi-Co304 (1), Pdi-NiO (e), and Pd;-

CuO (r).
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216 Supplementary Fig. 20 | Characterization of catalysts. TEM images of Pd;-PCN (a), Pd;-NC (b). XRD

217 patterns of Pdi-PCN (¢), Pd;-NC (d).
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219 Supplementary Fig. 21 | Yield of biphenyl for reactions at 323 K (a) and 353 K (b).
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Supplementary Fig. 22 | The schematic illustration of Suzuki cross-coupling reactions.

General procedures: Compounds 1, 2, or 3, Pd; ASAC, and the base were dissolved in the specified
solvent. The reaction mixture was stirred at the designated temperature for the required duration. After
completion, the solvent was evaporated under reduced pressure, and the residue was re-dissolved in a
mixture of ethyl acetate and water. The organic phase was separated and dried over anhydrous sodium
sulfate. The solvent was again evaporated under reduced pressure, yielding the crude product mixture.

Further purification by silica gel column chromatography afforded compound 4 or 5.

Diffierent conditions for diverse substrates, refer to Fig. 3: Conditions: a: 1 (0.5 mmol), 2 (ArB(OH),,
0.6 mmol), Pd; ASAC (5 mg, 0.35 mol%), K,CO; (1.5 mmol), EtOH/H,O (2 mL: 2 mL), 80 °C, 10 h.
b: 1 (0.5 mmol), 2 (ArB(OH),, 0.6 mmol), Pd; ASAC (5 mg, 0.35 mol%), K»COs (1.5 mmol),
EtOH/H>O (2 mL: 2 mL), 100 °C, 20 h. c: 1 (0.5 mmol), 2 (ArB(OH),0.6 mmol), Pd; ASAC (5 mg,
0.35 mol%), K»COs (1.5 mmol), THF/H,O (2 mL: 2 mL), 100 °C, 24 h. d: 1 (0.2 mmol), 2 (ArBF;K,
0.3 mmol), KHCO; (0.6 mmol), Pd; ASAC (10.5 mg, 0.35 mol%), EtOH/H,0O (1.5 mL: 0.5 mL), 100 °C,
24 h. e: 1 (0.5 mmol), 2 (ArB(OH),, 1.2 mmol), Pd; ASAC (5 mg, 0.35 mol%), K,COs3 (3 mmol),
EtOH/H>0O (2 mL: 2 mL), 80 °C, 10 h, isolated yield. f: 1 (0.2 mmol), 3 (0.24 mmol), K3PO4 (0.6 mmol),
Pd; ASAC (10.5 mg, 0.35 mol%), EtOH/H,O (1.6 mL: 0.4 mL), 80 °C, 24 h. g: 1 (0.2 mmol), 3 (0.24
mmol), K3PO4 (0.6 mmol), Pd; ASAC (10.5 mg, 0.35 mol%), EtOH/H,O (1.6 mL: 0.4 mL), 80 °C, 63

h, isolated yield.
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Supplementary Fig. 23 | The schematic illustration of the Heck and Sonogashira cross-coupling

reactions.

General procedures: Compounds 1, 6, or 7, Pd; ASAC, and the base were dissolved in the specified
solvent. The reaction mixture was stirred at the designated temperature for the required duration. After
completion, the solvent was evaporated under reduced pressure, and the residue was re-dissolved in a
mixture of ethyl acetate and water. The organic phase was separated and dried over anhydrous sodium
sulfate. The solvent was again evaporated under reduced pressure, yielding the crude product mixture.

Further purification by silica gel column chromatography afforded compound 8 or 9.

Diffierent conditions for diverse substrates: a: 1 (0.5 mmol), 6 (1 mmol), Pd; ASAC (5.3 mg, 0.07
mol%), K,COs (1.5 mmol), EtOH/H,O (2 mL: 2 mL), 100 °C, 10 h, isolated yield. b: 1 (0.5 mmol), 7
(0.75 mmol), Pd; ASAC (5.3 mg, 0.07 mol%), K,COs (3 mmol), EtOH/H,0 (3.5 mL: 0.5 mL), 100 °C,

10 h, isolated yield.
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Supplementary Fig. 24 | Synthesis of bifenazate.

Procedure for the preparation of 5-Bromo-2-methoxyphenylhydrazine hydro-chloride: The reaction
mixture was maintained at 0 °C during this procedure. 5-Bromo-2-methoxyaniline (2.00 g, 10.0 mmol)
was added to vigorously stirred concentrated HCI (17 mL) and aged for 10 min. A solution of NaNO;
(691 mg, 10.0 mmol) in distilled water (4 mL) was added dropwise over 10 min and the mixture was
stirred for an additional 15 min. A solution of SnCl,-H,O (498 mg, 22.0 mol) in concentrated HCI (5
mL) was added dropwise. The reaction mixture was stirred for 30 min and filtered. The product was
dried in vacuo overnight to afford 5-bromo-2-methoxyphenylhydrazine hydrochloride as a brown solid

(2.38 g, 95% yield).

Procedure for the preparation of compound 1aa: A solution of 5-bromo-2-methoxyphenylhydrazine
hydrochloride (2.00 g, 7.90 mmol) and triethylamine (2.28 mL, 16.6 mmol) in CH,Cl, (16 mL) was
cooled to 0 °C and a solution of isopropyl chloroformate (0.93 mL, 8.08 mmol) in CH,Cl, (8 mL) was
added dropwise at a rate that maintained a temperature below 0 °C. When the addition was complete,
the reaction mixture was allowed to warm to room temperature. The reaction mixture was stirred for 3h
and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-
hexane/EtOAc, 2:1) to afford isopropyl 3-(5-bromo-2-methoxyphenyl)carbazate as a colorless solid

(2.21 g, 93% yield).

Procedure for the preparation of bifenazate: In a 20-mL round-bottom flask with a stir bar, added
isopropyl 3-(5-bromo-2-methoxyphenyl)carbazate (151 mg, 0.5 mmol), phenylboronic acid (92 mg,
0.75 mmol), K»COs (207 mg, 1.5 mmol), Pd; ASAC (5 mg, 0.35 mol%), H,O (2 mL), and EtOH (2 mL)
and the system was sealed with a septum. The mixture was stirred at 80 °C for 12 h. The mixture was
diluted with HO (50 mL) and EtOAc (50 mL), and filtered through a Celite pad. The filtrate was
separated into two layers and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined

organic layers were washed with brine (50 mL), dried over Na,SQO4, and concentrated in vacuo. The
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279  residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc, 50:1 to 5:1) to

280  afford bifenazate as a yellow solid (138 mg, 92% yield).
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Supplementary Fig. 25 | High-rate circulation flow devices for evaluating catalytic performance.

Reaction tubing, PFA tubing reactor (outer diameter (O.D.) = 4.8 mm, inner diameter (I.D.) = 3.2 mm,
volume (V) =240 mL) Contherm stainless steel water bath; load 2300W; set temperature: 80 ° C. d,
Watson-Marlow 100 series cased pump; 120S control, drive with 114DV Pumphead; 4 rollers, Max.

operating pressure 2bar, Max.; Tygon® Norprene® Peristaltic Pump.
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> H OiPr  B(OH) HN )
H )i ‘ Pd-CeO,, K,CO; MeO- A ©
MeO__ AR (0] » ’ ’ iy
] Solvent, 80°C NF
NF gy
19 bifenazate
Conditions optimization:
Eiitiias Pd-CeO; Equivalents of Flow rate Solvent Temp. Conversion
(X mg) boronic acid and base
10l 20 15 10 mL/min EtOH/H,0 (1:1) 80°C. 0
2l 50 15 10 mL/min EtOH/H,0 (1:1) 80°C. 30%
30l 50 3 10 mL/min EtOH/H,0 (1:1) 80°C. 70% (block)
4lal 50 3 10 mL/min THF/H,0 (1:1) 80°C. 0
5l 50 3 10 mL/min EtOH/H,0 (2:1) 80°C. 100% (91% yield)

Conditions: [a] Reaction time = 12 h, [b] Reaction time = 3 h, [c] Reaction time = 5 h.

Supplementary Fig. 26 | Conditions optimization for flow synthesis.

Blockage of the reaction tube is a limiting factor for heterogeneous catalysts in flow synthesis
experiments. As illustrated in Supplementary Fig. 26, at 1 g scale, insufficient feeding of the catalyst
and phenylboronic acid results in low reaction conversion. However, increasing the amounts of catalysts
and phenylboronic acid leads to micro-tubing reactor blocking. To address this issue, we optimized the
flow rate (10 mL/min), catalyst feeding (50 mg), K,CO; and boronic acid (3 equiv.), and solvent ratio
(EtOH/H,0, 2:1), achieving both sufficient reagent solubility and high reaction yields. Consequently,
this modified condition was adopted for circulation flow synthesis.

Note: When we performed a larger scale (10 g) synthesis, we further increased the amount of catalyst

(400 mg) to achieve efficient reaction and flow rate (40 mL/min) to avoid clogging.
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i 80°C,5h E bifenazate

Schematic illustration of the
circulation flow synthesis

Supplementary Fig. 27 | Large-scale circulated flow synthesis of bifenazate. High-purity
perfluoroalkoxy polymer (HPFA) tubing and fittings were purchased from IDEX Health & Science

Technologies. The peristaltic pump was purchased from Watson-Marlow.

Substrate 1aa was mixed with 400 mg Pd; ASAC, 12 g phenylboronic acid and 13.8 g potassium
carbonate in 240 mL of EtOH/H,O (2:1) to create a slurry. The slurry was continuously pumped at 40
mL/min using a peristaltic pump and directed to the PFA tubing reactor (outer diameter (O.D.) = 4.8
mm, inner diameter (I.D.) = 3.2 mm, volume (V) = 240 mL) which was heated to 80 °C with the heating
module. The reaction mixture was recirculated to the original reservoir until the reaction was completed

to afford bifenazate in 86% isolated yield.
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Supplementary Fig. 28 | Structure of Pd; ASAC calcula‘ted’llay DFT. Sideq(a) ;e;nd top (b) Vi;WS/;)f
the optimized structure of Pd; ASAC model. The red, yellow, and blue spheres represent oxygen,

33




315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

-~

30!
(PR

.‘.l l‘h‘.!ﬁ
1 \‘\-’Uf-\‘l‘
. \ll‘”\)“
1000000000009
: .OC M..lf-\
10 \‘%Mt Ull‘ :

B

a

‘ol

®
DS

‘d

&i

ey
-

.
(
-\,
.
9
e
N\
(2

.

.l
o

&
\r\\.}

Y
9D
R

N\

o

2,
. '
B

. 3

e
D | 4
-
, .
> v,
A
4 ¢/

Supplementary Fig. 29 | Structural models of Pd;-NC (a) and Pd;-AL,O; (b) and optimized

structures in the oxidative addition step calculated by DFT.

Reducible support is essential for the design of highly active catalysts for cross-coupling reactions, as
it functions as electron reservoirs to address the high reaction energy barriers associated with the
bivalent elevation at a single metal site. Moreover, achieving a dynamic and reversible coordination
transition between Pd single atoms and the support is essential to regulate the electronic structure of
the metal center during the reaction. However, in the case of NC, the Pd-N bonds lack the ability to
undergo dynamic transitions during the reaction, resulting in catalytic inactivity. In addition, carbon is
known to be a conduct but not to be a reducible support that has the excellent capability to
accept/donor the electrons. As illustrated in Supplementary Fig. 29a, the dissociation of the C-Br
bond in bromobenzene was adsorbed on Pd;-NC, followed by structural optimization. However, the
system reverted to the initial bromobenzene configuration, which was also shown in the case of Al,O;
(Supplementary Fig. 29b),demonstrating that single atom Pd on a non-reducible support is incapable

of activating bromobenzene (Supplementary Video 2 and 3).
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331 Supplementary Table 1 | The formation energies of Pd single-atom on different crystal planes of CeO,.

Crystal planes Eform (V)
Pd;-CeO2(110) ASAC —1.37
Pd;-CeO(100) —-1.66
Pd;-CeOx(111) 0.84
Pd;-NC —2.76
Pdi-AlLOs —5.52
332
333
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334  Supplementary Table 2 | Results of EXAFS fittings of catalysts.

Sample Shell N R(A) o’ (10°A%) R factor

Pd-O 4.0+0.5 2.01 +0.01 0.0024 = 0.0013
Pd; ASAC 0.026
Pd-Ce 39+1.3 3.14+£0.02 0.0068 = 0.0018

Pd;-CeO, Pd-O 4.0+0.5 1.99+0.01 0.0014+0.0008
0.024
(110) ASAC Pd-Ce 3.7+1.5 3.15+0.02 0.0055+0.0019
Pd1-CCOz
Pd-O 4.140.6 1.99+0.01 0.0012+0.0009 0.007
(100)
Pd;-CeO, Pd-O 3.9+0.3 1.9940.01 0.0010+0.0009
0.019
(111) Pd-Ce 3.4+1.0 3.18+0.02 0.0081+0.0026
Pd,-NC Pd-N 43+0.2 1.95+0.02 0.0032:0.0009 0.009
Pd;-AlO5 Pd-O 3.9+0.5 2.19+0.01 0.00610.0009 0.029

335 N, coordination number; R, distance between absorbing and backscattering atoms; o°, Debye-Waller

336 factor to account for thermal and structural disorders; R factor as a measure of the goodness of fit.
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338  Supplementary Table 3 | Comparison of turnover frequencies of reported Pd catalysts in Suzuki cross-

339  coupling reaction.

TOF
Entry Catalyst Substrate Conditions  Reaction mode Ref.
(h™)
Br
1 C1sH25C12N304Pd @ 333 K/24h homogeneous 2.0 [1]

2 Ca4H4sNP2Pd 338 K/16 h  homogeneous 3.2 [2]

3 (PPh3),PdCl, 383 K/24h homogeneous 8.2 [3]

o
o

o
NZ

4 Pd(OAC), 333 K/6 h homogeneous 15 [4]
Br
5 Pd/C @ 393 K/2 h heterogeneous 10000 [5]
Br
6 Pd/CeO 393K/4h  het 4100 5
eO> o Q eterogeneous [5]
Br
7 Pd/Graph 353 K/20h  het 57 6
raphene Hacog eterogeneous [6]
Cl
8 Pd/NMC ©/ 323K/2h  heterogeneous 137 [7]
| 298 K/30
9 Pdo.10/g-C3N4 heterogeneous  120.93 [8]
min
| 333 K/30
10 Pd@mz-x-H heterogeneous 4050 [9]
min
Br 333 K/5
11 Pd@CMK-3 heterogeneous 2800 [10]
min

12 Pd(0)-MCM-41 353 K/12h  heterogeneous 6990 [11]

w
=

13 Pd/Pyr-GDY 353 K/5h heterogeneous 18000 [12]

heterogeneous
333 K/2h 13043 [13]
(SAQ)

[oe]
=

14 Pd1/UiO-66-NH;

393 K/10 heterogeneous

[oe]
=

15 Pd-ECN 549 [14]

Q QQQa Q qQ

min (SAQC)

37



340
341

16

17

18

19

20

21

22

Pd-SAs/3DOM-

Ce0s

Pd-NsCy

Pd1/03N4/rGO

Pd/C

Pd1 ASAC

Pd1 ASAC

Pd1 ASAC

-

298 KI/15
min
373 K/24 h
333 K/60
min
323 K/2h
298 K/15
min
323 K/15
min
343 K/5
min

heterogeneous
(SAC)
heterogeneous
(SAC)
heterogeneous

(SAC)

heterogeneous

heterogeneous
(SAC)
heterogeneous
(SAC)
heterogeneous

(SAC)

520.01

4.2

362.37

325

2820

9820

46149

[15]

[16]

[17]

This
work
This
work
This
work
This

work

TOF = [(mole of converted aryl halides / mole of Pd catalyst) / reaction time].
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Supplementary Table 4 | Comparison of Pd content in catalysts before and after reaction.

Pd content (wt.%)

Catalyst
Before reaction After reaction (80 °C)  After reaction (50 °C)
Pd;-TiO; 0.23 0.22 0.22
0.16 0.33
Pdi-Mn203 0.36
0.14 0.35
Pdi-Fe,03 0.29 0.29 0.28
0.29 0.28
Pdl-CO304 0.29
0.30 0.29
0.19 0.12
Pdi-NiO 0.32
0.21 0.21
0.08 0.10
Pd:-CuO 0.32
0.09 0.11
0.27 0.27 0.28
Pd; ASAC
0.93 0.94 0.93

Experimental procedure: Bromobenzene (0.5 mmol), phenylboronic acid (0.6 mmol), K»COs (1.5
mmol), Pd; ASAC (0.07 mol%, according to Pd), ethanol (2 mL), and H,O (2 mL) were sequentially
added to the screw-top reaction tube. The reaction tube was placed in an oil bath preheated to 80 ° C,
and stirring in an ambient atmosphere. After the reaction, the catalyst was filtered out, and fresh
phenylboronic acid and base were added to the filtrate for a subsequent reaction. GC-MS analysis
detected 0% conversion of the new substrate, indicating no leaching of Pd ions into the filtrate. This
finding was supported by ICP-AES analysis, which showed that the Pd content in the catalyst remained

virtually unchanged before and after the reaction, with no detectable Pd ions in the solution
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CP2K input file for structural optimization:

&GLOBAL
PROJECT Pd1-Ce02
RUN_TYPE  GEO_OPT
PRINT_LEVEL MEDIUM
&END GLOBAL

&MOTION
&GEO_OPT
OPTIMIZER BFGS
MAX_ITER 1300
MAX_FORCE  4.50E-04
&END GEO_OPT
&CONSTRAINT
&FIXED_ATOMS
LIST  12.47 130..147
&END FIXED_ATOMS
&END CONSTRAINT
&PRINT
&TRAJECTORY SILENT
ADD_LAST NUMERIC
FILENAME /MD_TRAJECTORY xyz
&EACH
MD 5
&END EACH
&END TRAJECTORY
&VELOCITIES SILENT
&EACH
MD 5
&END EACH
&END VELOCITIES
&RESTART SILENT
&EACH
MD 10
&END EACH
&END RESTART
&END PRINT
&END MOTION

&FORCE_EVAL
METHOD Quickstep
&DFT

CHARGE 0
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396 POTENTIAL_FILE_NAME GTH_POTENTIALS

397 BASIS_SET_FILE_NAME BASIS_MOLOPT
398 WFN_RESTART_FILE_NAME ./XXX-RESTART.wfn
399 UKS T

400 &MGRID

401 CUTOFF 400

402 NGRIDS 20

403 REL_CUTOFF 60

404 &END MGRID

405 &QS

406 EPS_DEFAULT 1.0E-12

407 EPS_PGF_ORB 1.0E-6

408 EXTRAPOLATION ASPC

409 EXTRAPOLATION_ORDER 3
410 &END QS

411 &SCF

412 EPS_SCF 1.0E-6

413 MAX_SCF 60

414 SCF_GUESS RESTART

415 &OT

416 PRECONDITIONER FULL_ALL
417 MINIMIZER BROYDEN
418 BROYDEN_BETA 0.9
419 BROYDEN_SIGMA 0.1
420 LINESEARCH 2PNT

421 &END OT

422 &OUTER_SCF

423 EPS_SCF 1.0E-6

424 MAX_SCF 5

425 &END OUTER_SCF

426 &MIXING ON

427 ALPHA 0.1

428 BETA 05

429 &END MIXING

430 &PRINT

431 &RESTART_HISTORY

432 FILENAME = MD_RESTART_HISTORY.wfn
433 ADD_LAST NUMERIC
434 BACKUP_COPIES 5

435 &EACH

436 &END EACH

437 &END RESTART_HISTORY
438 &END PRINT

439 &END SCF
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440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

&XC
&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
&XC_GRID
XC_SMOOTH_RHO NN10
XC_DERIV SPLINE2_SMOOTH
&END XC_GRID
&vdW_POTENTIAL
POTENTIAL_TYPE PAIR_POTENTIAL
&PAIR_POTENTIAL
TYPE DFTD3
PARAMETER_FILE_NAME dftd3.dat
REFERENCE_FUNCTIONAL PBE
R_CUTOFF 10.
&END PAIR_POTENTIAL
&END vdW_POTENTIAL
&END XC
&PRINT
&MULLIKEN SILENT
FILENAME =CHARGE.mulliken
&EACH
MD 5
&END EACH
&END MULLIKEN
&END PRINT
&END DFT
&SUBSYS
&CELL
A 16.233000 0.000000 0.000000
B 0.000000 11.478460 0.000000
C  0.000000 0.000000 27.652310
PERIODIC XYZ
&END CELL

&TOPOLOGY
COORD_FILE_NAME init.xyz
COORD_FILE_FORMAT xyz

&END TOPOLOGY

&KIND H
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-q1

&END KIND
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485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

&KIND Br
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-q7
&END KIND
&KIND C
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-g4
&END KIND
&KIND O
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-q6
&END KIND
&KIND Pd
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-q18
&END KIND
&KIND Ce
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-q12
&DFT PLUS U T
L 3
U_MINUS_J [eV] 5
&END DFT_PLUS_U
&END KIND

&END SUBSYS
&END FORCE_EVAL
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Analysis of the NMR data

%

1,1'-biphenyl (4a). The compound was prepared in 99% yield when X=I, Br and Cl. *H NMR (500
MHz, Chloroform-d) J [ppm] 7.65-7.56 (m, 4H), 7.45 (dd, J = 8.4, 7.0 Hz, 4H), 7.39-7.31 (m, 2H); 1*C
NMR (125 MHz, Chloroform-d) & [ppm] 141.21, 128.72, 127.14.

%

FsC
4-(trifluoromethyl)-1,1'-biphenyl (4b). The compound was prepared in 99% yield. "H NMR (500
MHz, Chloroform-d) ¢ [ppm] 7.70 (s, 4H), 7.62-7.60 (m, 2H), 7.49-7.45 (m, 2H), 7.41-7.33 (m, 1H);
13C NMR (125 MHz, Chloroform-d) & [ppm] 144.71, 139.75, 128.96, 128.73, 128.16, 127.40, 127.26,
127.15, 125.67.F NMR (471 MHz, Chloroform-d) 8§ [ppm] -62.39.

%

Ac
1-([1,1'-biphenyl]-4-yl) ethan-1-one (4¢c). The compound was prepared in 98% yield when X=I and
Br. 'H NMR (400 MHz, Chloroform-d) ¢ [ppm] 8.07-8.01 (m, 2H), 7.72-7.67 (m, 2H), 7.66-7.60 (m,
2H), 7.52-7.44 (m, 2H), 7.44-7.38 (m, 1H), 2.64 (s, 3H); *C NMR (125 MHz, Chloroform-d) & [ppm]
197.74, 145.75, 139.84, 135.82, 128.93, 128.89, 128.20, 127.24, 127.19, 26.64.

%

NC

[1,1'-biphenyl]-4-carbonitrile (4d). The compound was prepared in 99% yield when X=I, Br and CI.
'H NMR (500 MHz, Chloroform-d) 6 [ppm] 7.78-7.71 (m, 2H), 7.71-7.66 (m, 2H), 7.61-7.57 (m, 2H),
7.49 (dd,J=10.4, 4.8 Hz, 2H), 7.45-7.41 (m, 1H); '3C NMR (125 MHz, Chloroform-d) & [ppm] 145.68,
139.18, 132.59, 129.10, 128.64, 127.73, 127.22, 118.93, 110.91.

%

O,N
4-nitro-1,1'-biphenyl (4e). The compound was prepared in 99%, 99% and 93% yield when X=I, Br
and ClI, respectively. *H NMR (500 MHz, Chloroform-d) 6 [ppm] 8.30 (d, J = 8.9 Hz, 2H), 7.79-7.70
(m, 2H), 7.67-7.59 (m, 2H), 7.55-7.47 (m, 2H), 7.47-7.42 (m, 1H); *C NMR (125 MHz, Chloroform-
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619

d) & [ppm] 147.60, 147.05, 138.74, 129.12, 128.88, 127.77, 127.35, 124.07.

O,N E NO,

2,4-dinitro-1,1'-biphenyl (4f). The compound was prepared in 99% yield when X=I and C1. 'H NMR
(500 MHz, Chloroform-d) ¢ [ppm] 8.74-8.68 (m, 1H), 8.47 (ddd, J = 8.5, 2.3, 1.1 Hz, 1H), 7.73-7.64
(m, 1H), 7.53-7.44 (m, 3H), 7.40-7.30 (m, 2H); *C NMR (125 MHz, Chloroform-d) & [ppm] 149.03,
146.80, 142.21, 135.16, 133.19, 129.52, 129.05, 127.63, 126.44, 119.67.

2-(p-tolyl) benzofuran (4g). The compound was prepared in 99% yield when X=I and Br. *H NMR
(500 MHz, Chloroform-d) ¢ [ppm] 7.87 (d, J = 8.2 Hz, 2H), 7.69-7.60 (m, 2H), 7.41-7.30 (m, 4H), 7.06
(s, 1H), 2.50 (s, 3H); *C NMR (125 MHz, Chloroform-d) § [ppm] 156.16, 154.74, 138.54, 129.45,
129.32, 127.72, 124.85, 123.96, 122.82, 120.71, 111.05, 100.53, 21.34.

Me—N =~
A—

N

1-methyl-4-phenyl-1H-pyrazole (4h). The compound was prepared in 89% yield. *H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 7.76 (d, J = 0.8 Hz, 1H), 7.60 (d, J = 0.7 Hz, 1H), 7.50 — 7.44 (m, 2H), 7.40 —
7.32 (m, 2H), 7.25 — 7.19 (m, 1H), 3.94 (s, 3H); '*C NMR (125 MHz, Chloroform-d) & [ppm] 136.73,
132.61, 128.82, 126.86, 126.32, 125.48, 123.23, 39.07.

N
N

OHC Z

6-phenylnicotinaldehyde (4i). The compound was prepared in 93% yield. *H NMR (500 MHz,
Chloroform-d) & [ppm] 10.13 (s, 1H), 9.13 (d, J = 2.1 Hz, 1H), 8.22 (dd, J = 8.2, 2.2 Hz, 1H), 8.11-8.05
(m, 2H), 7.90 (d, J = 8.2 Hz, 1H), 7.55-7.47 (m, 3H); *C NMR (125 MHz, Chloroform-d) § [ppm]
190.44, 162.18, 152.37, 137.94, 136.50, 130.36, 129.82, 128.97, 127.52, 120.58.
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2-phenyl-5-(trifluoromethyl) pyridine (4j). The compound was prepared in 89% yield. "H NMR (500
MHz, Chloroform-d) J [ppm] 8.98-8.93 (m, 1H), 8.07-8.01 (m, 2H), 7.98 (dd, J = 8.3, 2.4 Hz, 1H), 7.85
(d, J = 8.3 Hz, 1H), 7.55-7.45 (m, 3H); *C NMR (125 MHz, Chloroform-d) & [ppm] 160.66, 146.60,
137.93, 133.92, 130.04, 128.95, 127.25, 124.94, 124.82, 124.67, 122.66, 119.94. '’F NMR (471 MHz,

Chloroform-d) 6 [ppm] -62.24.
F
F | N
N A,
F

2,3,5,6-tetrafluoro-4-phenylpyridine (4k). The compound was prepared in 92% yield. '"H NMR (500
MHz, Chloroform-d) é [ppm] 7.54-7.47 (m, 5H); 3C NMR (125 MHz, Chloroform-d) § [ppm] 145.41,
143.42, 141.30, 139.31, 136.49, 136.26, 134.26, 129.84, 129.82, 127.07. F NMR (471 MHz,
Chloroform-d) 6 [ppm] -94.28, -94.34 (d, ] = 6.9 Hz), -94.39, -145.48 — -145.51 (m), -145.54 — -145.57

(m).
X
/ N
Me 0]

1-(6-phenylpyridin-2-yl) ethan-1-one (41). The compound was prepared in 98% yield. *H NMR (500
MHz, Chloroform-d) ¢ [ppm] 8.10 (dd, J = 7.2, 1.7 Hz, 2H), 7.96 (dd, J = 7.5, 1.2 Hz, 1H), 7.92-7.82
(m, 2H), 7.51 (dd, J = 8.3, 6.5 Hz, 2H), 7.47-7.42 (m, 1H), 2.82 (s, 3H); C NMR 200.41, 156.28,
153.23, 138.25, 137.50, 129.35, 128.74, 126.76, 123.30, 119.65, 25.66.

X
N
Me

2-methyl-6-phenylpyridine (4m). The compound was prepared in 91% yield. *H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 8.09-7.95 (m, 2H), 7.62 (t, J = 7.7 Hz, 1H), 7.54-7.45 (m, 3H), 7.42 (d,J=7.4
Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 2.65 (s, 3H); '*C NMR (125 MHz, Chloroform-d) & [ppm] 158.20,
156.82, 139.63, 136.77, 128.59, 128.56, 126.89, 121.48, 117.50, 24.63.

N
L

2-([1,1'-biphenyl]-4-yl) pyridine (4n). The compound was prepared in 99% yield. *H NMR (500 MHz,
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Chloroform-d) & [ppm] 8.81-8.67 (m, 1H), 8.19-8.05 (m, 2H), 7.80-7.74 (m, 3H), 7.74-7.65 (m, 3H),
7.48 (dd, J=8.4,7.0 Hz, 2H), 7.44-7.35 (m, 1H), 7.27-7.20 (m, 1H); ¥C NMR (125 MHz, Chloroform-
d) & [ppm] 156.82, 149.54, 141.60, 140.42, 138.06, 136.71, 128.73, 127.43, 127.35, 127.21, 126.98,
122.02, 120.35.

X
P

2,6-diphenylpyridine (40). The compound was prepared in 99% vyield. *H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 8.23-8.11 (m, 4H), 7.83 (td, J = 7.6, 3.0 Hz, 1H), 7.71 (td, ] = 7.6, 3.5 Hz, 2H),
7.52 (qd, J = 7.5, 2.3 Hz, 4H), 7.47-7.41 (m, 2H); '3C NMR 156.81, 139.47, 137.46, 128.95, 128.66,
126.97, 118.62.

CN

[1,1'-biphenyl]-2-carbonitrile (4p). The compound was prepared in 99% yield. 'H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 7.77 (dd, J = 7.8, 1.3 Hz, 1H), 7.65 (td, J = 7.7, 1.3 Hz, 1H), 7.59 — 7.55 (m,
2H), 7.54 —7.42 (m, 5H); ¥C NMR (125 MHz, Chloroform-d) & [ppm] 145.42, 138.06, 133.69, 132.76,
130.02, 128.69, 128.66, 127.48, 118.67, 111.20.

Me I

4-methyl-1,1'-biphenyl (4q). The compound was prepared in 99% yield when X=1 and Br. *H NMR
(500 MHz, Chloroform-d) ¢ [ppm] 7.59 (dd, J = 8.2, 1.3 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.43 (t,J =
7.7 Hz, 2H), 7.37-.31 (m, 1H), 7.28-7.24 (m, 2H), 2.41 (s, 3H); 1*C NMR (125 MHz, Chloroform-d) &
[ppm] 141.13, 138.33, 136.99, 129.45, 128.68, 126.97, 126.94, 21.08.

“OOMG
Me

4,4'-dimethyl-1,1'-biphenyl (4r). The compound was prepared in 99% yield. *H NMR (500 MHz,
Chloroform-d) 6 [ppm] 7.63-7.55 (m, 4H), 7.38-7.30 (m, 4H), 2.49 (s, 6H); *C NMR (125 MHz,
Chloroform-d) 6 [ppm] 138.24, 136.62, 129.39, 126.76, 21.04.
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OMe O

2-methoxy-1,1'-biphenyl (4s). The compound was prepared in 80% yield. *H NMR (400 MHz,
Chloroform-d) ¢ [ppm] 7.60-7.54 (m, 2H), 7.48-7.41 (m, 2H), 7.39-7.32 (m, 3H), 7.11-6.99 (m, 2H),
3.84 (s, 3H); ¥C NMR (125 MHz, Chloroform-d) J [ppm] 156.42, 138.51, 130.86, 130.69, 129.51,
128.57, 127.94, 126.87, 120.79, 111.19, 55.50.

2-phenyl-9H-fluorene (4t). The compound was prepared in 99% yield. *H NMR (500 MHz,
Chloroform-d) & [ppm] 7.93-7.75 (m, 3H), 7.67 (d, J = 8.1 Hz, 2H), 7.63 (d, ] = 7.7 Hz, 1H), 7.57 (d, J
= 7.4 Hz, 1H), 7.47 (dd, ] = 8.3, 7.1 Hz, 2H), 7.43-7.29 (m, 3H), 3.98 (s, 2H); *C NMR (125 MHz,
Chloroform-d) ¢ [ppm] 143.85, 143.43, 141.46, 141.36, 140.89, 139.83, 128.74, 127.15, 127.08, 126.79,
126.70, 125.97, 125.02, 123.77, 120.08, 119.93, 36.98.

Cl I

3-chloro-1,1'-biphenyl (4u). The compound was prepared in 99% vyield. 'H NMR (500 MHz,
Chloroform-d) 6 [ppm] 7.68-7.59 (m, 3H), 7.50 (ddd, J = 9.9, 6.8, 1.8 Hz, 3H), 7.47-7.34 (m, 3H); C
NMR (125 MHz, Chloroform-d) & [ppm] 142.99, 139.72, 134.59, 129.92, 128.84, 127.80, 127.22,

127.20, 127.04, 125.23.
“O 7
Me

4-methoxy-4'-methyl-1,1'-biphenyl (4v). The compound was prepared in 99% yield. '"H NMR (500
MHz, Chloroform-d) ¢ [ppm] 7.59 (d, J = 8.8 Hz, 2H), 7.53 (d, ] = 8.2 Hz, 2H), 7.30 (d, ] = 7.5 Hz,
2H), 7.04 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H), 2.46 (s, 3H); *C NMR (125 MHz, Chloroform-d) & [ppm]
158.86, 137.88, 136.25, 133.64, 129.38, 127.87, 126.50, 114.08, 55.21, 20.99.

’/‘Ogme
NC

2-methyl-6-(phenylethynyl) pyridine (4w). The compound was prepared in 99% yield. '"H NMR (500
MHz, Chloroform-d) ¢ [ppm] 7.76-7.61 (m, 4H), 7.50 (d, J = 8.1 Hz, 2H), 7.30 (d, ] = 8.0 Hz, 2H), 2.42
(s, 3H); *C NMR (125 MHz, Chloroform-d) & [ppm] 145.48, 138.65, 136.13, 132.45, 129.74, 127.34,
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126.95, 118.96, 110.42, 21.10.

MeO

%

Cl

4-chloro-3-methoxy-1,1'-biphenyl (4x). The compound was prepared in 90% yield. *H NMR (400
MHz, Chloroform-d) ¢ [ppm] 7.52-7.47 (m, 2H), 7.45-7.38 (m, 2H), 7.37-7.32 (m, 1H), 7.27-7.23 (m,
1H), 7.03 (dd, J = 8.1, 2.0 Hz, 1H), 6.98 (d, J = 2.0 Hz, 1H), 3.81 (s, 3H); C NMR (125 MHz,
Chloroform-d) é [ppm] 156.97, 137.46, 133.88, 131.50, 129.38, 129.22, 128.06, 127.19, 120.81, 111.85,
55.75.

OHC

%

Cl

4-chloro-[1,1'-biphenyl]-3-carbaldehyde (4y). The compound was prepared in 75% yield. *H NMR
(400 MHz, Chloroform-d) o [ppm] 10.53 (s, 1H), 8.15 (d, J = 2.4 Hz, 1H), 7.76 (dd, J = 8.3, 2.4 Hz,
1H), 7.63-7.57 (m 2H), 7.53 (d, ] = 8.3 Hz, 1H), 7.50-7.43 (m, 2H), 7.43-7.36 (m, 1H); *C NMR (125
MHz, Chloroform-d) 6 [ppm] 189.78, 140.52, 138.61, 136.82, 133.47, 132.53, 130.98, 129.04, 128.23,
127.62, 126.93.

p4
N

Cl I

4-chloro-2-nitro-1,1'-biphenyl (4z). The compound was prepared in 81% yield. *H NMR (500 MHz,
Chloroform-d) 6 [ppm] 7.86 (dd, J = 3.4, 2.3 Hz, 1H), 7.68 (d, ] = 8.6 Hz, 1H), 7.60 (dd, J = 8.3, 2.2
Hz, 1H), 7.44-7.41 (m, 2H), 7.41-7.38 (m, 1H), 7.30-7.25 (m, 2H); *C NMR (125 MHz, Chloroform-
d) o [ppm] 135.94, 133.31, 132.99, 132.36, 128.79, 128.54, 127.80, 125.77, 124.20.

O Me
Me

2,4'-dimethyl-1,1'-biphenyl (4aa). The compound was prepared in 99% yield. *H NMR (500 MHz,
Chloroform-d)  [ppm] 7.42-7.22 (m, 8H), 2.56-2.43 (m, 3H), 2.42-2.26 (m, 3H); *C NMR (125 MHz,
Chloroform-d) 6 [ppm] 141.84, 138.99, 136.31, 135.34, 130.23, 129.81, 129.03, 128.73, 127.02, 125.70,
21.14, 20.48.

Me

%
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3,4'-dimethyl-1,1'-biphenyl (4ab). The compound was prepared in 99% yield. *H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 7.60 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 12.4 Hz, 2H), 7.43 (t, J = 7.6 Hz, 1H), 7.35
(d,J=7.8 Hz, 2H), 7.26 (t, ] = 8.1 Hz, 1H), 2.53 (s, 3H), 2.50 (s, 3H); *C NMR (125 MHz, Chloroform-
d) & [ppm] 141.11, 138.42, 138.19, 136.83, 129.37, 128.58, 127.73, 127.67, 126.95, 124.04, 21.51,

21.05.
"O J
Me

4-chloro-4'-methyl-1,1'-biphenyl (4ac). The compound was prepared in 99% yield when X=I and Br.
'H NMR (500 MHz, Chloroform-d) § [ppm] 7.49 (ddd, J = 18.6, 8.0, 1.8 Hz, 3H), 7.38 — 7.28 (m, 3H),
7.27-7.15 (m, 2H), 2.46 (s, 3H); '*C NMR (125 MHz, Chloroform-d) & [ppm] 139.53, 137.37, 137.04,
132.98, 129.55, 128.80, 128.12, 126.75, 21.06.

Me

2-fluoro-4'-methyl-1,1'-biphenyl (4ad). The compound was prepared in 99% yield when X=I and Br.
'H NMR (400 MHz, Chloroform-d) 6 [ppm] 7.50-7.40 (m, 3H), 7.34-7.24 (m, 3H), 7.23-7.11 (m, 2H),
2.42 (s, 3H); BC NMR (125 MHz, Chloroform-d) & [ppm] 159.77 (d, J = 245.8 Hz), 137.46, 132.86,
130.65 (d, J = 3.5 Hz), 129.14, 128.86 (d, J = 2.7 Hz), 128.67, 128.60, 124.26 (d, J = 3.6 Hz), 116.02
(d, J =22.7 Hz), 21.18.’F NMR (377 MHz, Chloroform-d) & [ppm] -118.05.

/@/W
M902C

methyl (E)-4-(pent-1-en-1-yl) benzoate (5a). The compound was prepared in 93% yield. '"H NMR
(400 MHz, Chloroform-d) ¢ [ppm] 8.00-7.91 (m, 2H), 7.41-7.36 (m, 2H), 6.46-6.30 (m, 2H), 3.90 (s,
3H), 2.22 (td, J = 7.4, 5.9 Hz, 2H), 1.57-1.46 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); *C NMR (125 MHz,
Chloroform-d) & [ppm] 167.01, 142.45, 133.98, 129.86, 129.16, 128.21, 125.73, 51.97, 35.18, 22.33,

13.72.
/@/W
O,N

(E)-1-nitro-4-(pent-1-en-1-yl) benzene (5b). The compound was prepared in 93% yield. "H NMR
(400 MHz, Chloroform-d) ¢ [ppm] 8.20-8.10 (m, 2H), 7.47-7.42 (m, 2H), 6.50-6.36 (m, 2H), 2.32-2.15
(m, 2H), 1.58-1.47 (m, 2H), 0.97 (t, ] = 7.4 Hz, 3H); '3C NMR (125 MHz, Chloroform-d) & [ppm]
146.38, 144.42, 136.40, 128.24, 126.30, 123.94, 35.22, 22.16, 13.70.

©j\/\/
CN
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(E)-2-(pent-1-en-1-yl) benzonitrile (5¢). The compound was prepared in 88% yield. 'H NMR (500
MHz, Chloroform-d) ¢ [ppm] 7.64-7.56 (m, 2H), 7.53-7.48 (m, 1H), 7.28-7.24 (m, 1H), 6.79-6.71 (m,
1H), 6.50-6.40 (m, 1H), 2.27 (ddd, J = 14.6, 7.2, 1.5 Hz, 2H), 1.56-1.50 (m, 2H), 0.98 (t, J = 7.4 Hz,
3H); C NMR (125 MHz, Chloroform-d) 8§ [ppm] 141.24, 136.60, 132.87, 132.56, 126.87, 126.08,
125.36, 118.11, 110.47, 35.19, 22.23, 13.68.

(9
(9
/
A

(E)-2-(3-methoxyprop-1-en-1-yl) naphthalene (5d). The compound was prepared in 50% yield. "H
NMR (400 MHz, Chloroform-d) ¢ [ppm] 7.84-7.77 (m, 3H), 7.75 (s, 1H), 7.62 (dd, J = 8.6, 1.7 Hz,
1H), 7.53-7.40 (m, 2H), 6.79 (d, ] = 16.0 Hz, 1H), 6.42 (dt, J = 15.9, 6.0 Hz, 1H), 4.16 (dd, J = 6.0, 1.4
Hz, 2H), 3.43 (s, 3H); *C NMR (125 MHz, Chloroform-d) & [ppm] 134.16, 133.54, 133.01, 132.49,
128.17, 127.96, 127.63, 126.44, 126.32, 126.23, 125.87, 123.55, 73.14, 58.04.

1

Ac

(E)-1-(4-(pent-1-en-1-yl) phenyl) ethan-1-one (5¢). The compound was prepared in 99% yield. "H
NMR (400 MHz, Chloroform-d) J [ppm] 7.94 — 7.84 (m, 2H), 7.45 - 7.37 (m, 2H), 6.47 — 6.25 (m, 2H),
2.58 (s, 3H), 2.22 (td, ] = 7.4, 5.8 Hz, 2H), 1.52 (dq, J = 14.6, 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); *C
NMR (125 MHz, Chloroform-d) é [ppm] 197.61, 142.66, 135.40, 134.31, 129.09, 128.73, 125.91, 35.21,
26.53,22.31, 13.73.

1

NC

(E)-4-(pent-1-en-1-yl) benzonitrile (5f). The compound was prepared in 70% yield. '"H NMR (500
MHz, Chloroform-d) ¢ [ppm] 7.61-7.51 (m, 2H), 7.46-7.34 (m, 2H), 6.45-6.29 (m, 2H), 2.26-2.19 (m,
2H), 1.57-1.45 (m, 2H), 0.96 (t, ] = 7.4 Hz, 3H); *C NMR (125 MHz, Chloroform-d) § [ppm] 142.38,
135.30, 132.28, 128.55, 126.33, 119.12, 109.87, 35.11, 22.19, 13.67.

/©/\/\O/
NC

(E)-4-(3-methoxyprop-1-en-1-yl) benzonitrile (5g). The compound was prepared in 81% yield. "H
NMR (400 MHz, Chloroform-d) ¢ [ppm] 7.62-7.54 (m, 2H), 7.47-7.42 (m, 2H), 6.68-6.54 (m, 1H),
6.39 (dt, J = 16.0, 5.5 Hz, 1H), 4.11 (dd, J = 5.5, 1.6 Hz, 2H), 3.40 (s, 3H); 3C NMR (125 MHz,
Chloroform-d) é [ppm] 141.20, 132.34, 130.13, 129.93, 126.83, 118.86, 110.74, 72.44, 58.31.

P4
(@)
/i\:
(@)
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4-(3,6-dihydro-2H-pyran-4-yl) benzonitrile (5h). The compound was prepared in 87% yield. 'H
NMR (500 MHz, Chloroform-d) ¢ [ppm] 7.65-7.56 (m, 2H), 7.50-7.43 (m, 2H), 6.27 (dq, J =4.5, 1.5
Hz, 1H), 4.34 (q, J = 2.8 Hz, 2H), 3.93 (t, ] = 5.4 Hz, 2H), 2.50 (ddq, J = 5.4, 4.5, 2.7 Hz, 2H); BC
NMR (125 MHz, Chloroform-d) 6 [ppm] 144.44, 132.89, 132.24,125.89, 125.16, 118.87, 110.61, 65.71,
64.12,26.75.

_Boc

NC
tert-butyl 4-(4-cyanophenyl)-3,6-dihydropyridine-1(2H)-carboxylate (5i). The compound was
prepared in 99% yield. 'H NMR (500 MHz, Chloroform-d) J [ppm] 7.63-7.54 (m, 2H), 7.44 (d,J = 8.4
Hz, 2H), 6.15 (s, 1H), 4.30-3.95 (m, 2H), 3.63 (t, J = 5.7 Hz, 2H), 2.64-2.36 (m, 2H), 1.47 (s, 9H); 1*C
NMR (125 MHz, Chloroform-d) & [ppm] 154.61, 144.87, 134.11, 132.18, 125.37, 124.19, , 118.80,

110.53, 79.83, 43.60, 28.36, 26.97.
/@/\/Ph
NC

(E)-4-styrylbenzonitrile (5j). The compound was prepared in 99% yield. 'H NMR (400 MHz,
Chloroform-d) ¢ [ppm] 7.67-7.60 (m, 2H), 7.60-7.51 (m, 4H), 7.43-7.36 (m, 2H), 7.36-7.29 (m, 1H),
7.21 (d, J = 16.3 Hz, 1H), 7.09 (d, J = 16.3 Hz, 1H); *C NMR (125 MHz, Chloroform-d) & [ppm]
141.75,136.21, 132.41, 132.33, 128.79, 128.58, 126.85, 126.79, 126.64, 118.97, 110.48.

NC
(E)-4-(hex-3-en-3-yl) benzonitrile (5k). The compound was prepared in 99% yield. 'TH NMR (500
MHz, Chloroform-d) J [ppm] 7.62 — 7.51 (m, 2H), 7.47 — 7.39 (m, 2H), 5.74 (t, J = 7.3 Hz, 1H), 2.51
(q,J=7.5Hz, 2H), 2.23 (p, ] = 7.5 Hz, 2H), 1.07 (t, J = 7.5 Hz, 3H), 0.97 (t, J = 7.6 Hz, 3H); *C NMR
(125 MHz, Chloroform-d) & [ppm] 147.64, 139.71, 133.11, 132.00, 126.74, 119.16, 109.79, 22.42,
21.81, 14.16, 13.51..

Ph

Fon

4-(1-phenylvinyl) benzonitrile (51). The compound was prepared in 99% yield. '"H NMR (400 MHz,
Chloroform-d) ¢ [ppm] 7.66-7.59 (m, 2H), 7.48-7.41 (m, 2H), 7.40-7.32 (m, 3H), 7.32-7.24 (m, 2H),
5.57 (dd, J = 17.3, 0.7 Hz, 2H); '3C NMR (125 MHz, Chloroform-d) & [ppm] 148.64, 146.02, 140.14,
132.02, 128.79, 128.41, 128.21, 128.10, 118.81, 116.68, 111.28.

54



831
832

833
834
835
836

837
838

839
840
841
842
843

844
845

846
847
848
849

850

851
852
853
854
855
856
857

(‘O s
NO,

4'-chloro-2-nitro-1,1'-biphenyl (4ae). "H NMR (500 MHz, CDCl3) 6 7.91 (dd, J = 8.1, 1.3 Hz, 1H),
7.65 (td, J=17.5, 1.3 Hz, 1H), 7.53 (ddd, /= 8.0, 7.4, 1.5 Hz, 1H), 7.47 — 7.35 (m, 3H), 7.28 (d, /=8.3
Hz, 2H). *C NMR (126 MHz, CDCls) §149.09, 135.94, 135.23, 134.48, 132.53, 131.87, 129.3 0,

128.93, 128.60, 124.29.
F
L
SO
NO,

3',4",5'-trifluoro-2-nitro-1,1'-biphenyl (4af). 'TH NMR (500 MHz, CDCl3) 6 7.96 (dd, J=8.1, 1.3 Hz,
1H), 7.69 (td, J= 7.6, 1.3 Hz, 1H), 7.62 — 7.56 (m, 1H), 7.41 (dd, /= 7.6, 1.5 Hz, 1H), 7.04 — 6.92 (m,
2H). 13C NMR (126 MHz, CDCl3) § 151.14 (ddd, J = 251.3, 10.1, 4.2 Hz), 148.72, 139.78 (td, J =
251.3, 15.0 Hz), 133.54, 132.82, 131.67, 129.41, 124.54, 112.61 (d, J = 22.5 Hz), 112.61 (d, J=11.2
Hz). YF NMR (471 MHz, CDCl3) 6 -133.43 (d, J = 20.1 Hz), -160.54 (t, J = 20.8 Hz).

O CH,

CH,OH

(2-methyl-[1,1'-biphenyl]-3-yl) methanol (4ag). "H NMR (500 MHz, CDCI;) 6 7.48 — 7.42 (m, 3H),
7.40 —7.36 (m, 1H), 7.35 —7.27 (m, 3H), 7.24 (dd, ] = 7.6, 1.6 Hz, 1H), 4.80 (s, 2H), 2.28 (s, 3H). 3C
NMR (126 MHz, CDCl3) ¢ 142.89, 142.07, 139.25, 133.62, 129.61, 129.40, 128.09, 126.83, 126.78,

125.62, 64.09, 15.91.
Cl
Cl
s
NO,

3',4'-dichloro-5-fluoro-2-nitro-1,1'-biphenyl (4ah). "H NMR (500 MHz, CDCl;) ¢ 8.04 (dd, J = 9.0,
5.0 Hz, 1H), 7.53 (d, /= 8.2 Hz, 1H), 7.44 (d, J=2.1 Hz, 1H), 7.24 (ddd, /=9.0, 7.3, 2.7 Hz, 1H), 7.15
(dd, J=8.2,2.1 Hz, 1H), 7.12 (dd, J = 8.5, 2.8 Hz, 1H). *C NMR (126 MHz, CDCl;) 6 164.10 (d, J =
258 Hz), 144.74,137.32 (d, /=10 Hz), 136.55, 133.14 (d, /= 22.5 Hz), 130.73, 129.69, 127.43 (d, J =
8.8 Hz), 127.13, 118.89 (d, J = 23.8 Hz), 116.02 (d, J = 23.2 Hz). '’F NMR (471 MHz, CDCl;) ¢ -
103.57.
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0
FSC

4'-(trifluoromethyl)-[1,1'-biphenyl]-3-carboxylic acid (4ai). '"H NMR (500 MHz, Methanol-ds) ¢
8.34 (t, J=1.8 Hz, 1H), 8.09 (dt, /= 7.8, 1.4 Hz, 1H), 7.94 (ddd, /= 7.8, 2.0, 1.1 Hz, 1H), 7.92 — 7.86
(m, 2H), 7.80 (m, 2H), 7.63 (t, J = 7.7 Hz, 1H). 13C NMR (126 MHz, Methanol-ds) J 168.03, 143.82,
139.76, 135.44, 131.45, 131.28, 129.39 (q, J = 32.5 Hz),129.09, 128.95, 127.93, 127.28, 125.53 (q, J =
3.8 Hz) 124.37 (q, J = 270 Hz). ’F NMR (471 MHz, CDCl;) J -64.02.

4
F
NO,

3',4'-difluoro-2-nitro-1,1'-biphenyl (4aj). '"H NMR (500 MHz, CDCl;) 6 7.92 (dd, J = 8.1, 1.3 Hz,
1H), 7.66 (td, J= 7.5, 1.3 Hz, 1H), 7.55 (td, /= 7.8, 1.4 Hz, 1H), 7.43 (dd, /= 7.8, 1.4 Hz, 1H), 7.30 —
7.15 (m, 2H), 7.07 — 7.04 (m, 1H). BC NMR (126 MHz, CDCl;) 6 150.44 (dd, J = 248.8, 12.5 Hz),
150.16 (dd, J=247.5, 12.5 Hz), 149.00, 134.35 (d, /= 3.8 Hz), 134.29, 132.62, 131.85, 128.93, 124.34,
124.29 (d,J=3.8 Hz), 117.63 (d, 17.5 Hz). 117.34 (d, 17.5 Hz). Y"FNMR (471 MHz, CDCl5) § -136.93
(d,J=21.0 Hz), -138.15 (d, /= 21.6 Hz).

Br

4-bromo-2-methyl-1,1'-biphenyl (4ak). 'H NMR (500 MHz, CDCl;) 6 7.48 — 7.43 (m, 3H), 7.42 —
7.37 (m, 2H), 7.34 — 7.30 (m, 2H), 7.13 (d, J = 8.1 Hz, 1H), 2.28 (s, 3H). *C NMR (126 MHz, CDCl5)
0 140.89, 140.79, 137.67, 133.02, 131.33, 129.04, 128.82, 128.24, 127.15, 121.09, 20.34.

(4'-chloro-[1,1'-biphenyl]-2-yl) methanol (4al). '"H NMR (400 MHz, Chloroform-d) J [ppm] 7.57-
7.53 (m, 1H), 7.43-7.34 (m, 4H), 7.34-7.29 (m, 2H), 7.28-7.23 (m, 1H), 4.57 (s, 2H), 1.94 (s, 1H); C
NMR (125 MHz, Chloroform-d) & [ppm] 140.08, 138.98, 137.82, 133.31, 130.45, 129.91, 128.58,
128.35, 127.98, 127.76, 62.90.

HO
DA
O
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(2-ethylbenzofuran-3-yl) (2'-hydroxy-[1,1':3",1""-terphenyl]-5'-yl) methanone (4am). '"H NMR
(500 MHz, CDCls) 6 7.88 (s, 2H), 7.61 — 7.57 (m, 5H), 7.54 — 7.48 (m, 5H), 7.45 — 7.41 (m, 2H), 7.35
—7.26 (m, 2H), 6.00 (s, 1H), 3.02 (q, J = 7.5 Hz, 2H), 1.38 (t, J = 7.5 Hz, 3H). *C NMR (126 MHz,
CDCls) 6 190.49, 165.66, 153.65, 136.46, 131.95, 131.71, 129.32, 129.06, 128.92, 128.75, 128.20,
127.21,124.37,123.44, 121.32, 116.15, 111.06, 21.88, 12.44.

OMe

HO
e

(2-ethylbenzofuran-3-yl) (2'-hydroxy-4,4''-dimethoxy-[1,1':3',1"'-terphenyl]-5'-yl) methanone
(4an). 'TH NMR (500 MHz, CDCI3) & 7.83 (s, 2H), 7.62 — 7.58 (m, 1H), 7.54 — 7.49 (m, 4H), 7.39 —
7.25 (m, 2H), 7.08 — 7.00 (m, 4H), 6.03 (s, 1H), 3.86 (s, 6H), 3.01 (q, J = 7.6 Hz, 2H), 1.38 (t,J =7.5
Hz, 3H). ¥C NMR (126 MHz, CDCls) J 190.66, 165.59, 159.50, 153.88, 153.70, 131.80, 131.29,
130.51, 128.68, 128.52, 127.26, 124.35, 123.42, 121.35, 116.20, 116.09, 114.48, 111.05, 55.36, 21.87,
12.44.

Cl

HO
L,

(4,4"'-dichloro-2'-hydroxy-[1,1':3',1"'-terphenyl]|-5'-yl) (2-ethylbenzofuran-3-yl) methanone (4a0).
"H NMR (500 MHz, CDCl3) 6 7.83 (s, 2H), 7.53 — 7.43 (m, 10H), 7.32 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H),
7.28 —7.23 (m, 1H), 3.00 (q, J = 7.5 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H). *C NMR (126 MHz, CDCl;) ¢
190.16, 165.98, 153.71, 153.38, 134.67, 134.42,132.16, 131.80, 130.66, 129.30, 127.92, 127.05, 124.47,
123.46, 121.17, 115.96, 111.18, 21.86, 12.40.

OMe
Br- : NHNHeHCI

(5-bromo-2-methoxyphenyl) hydrazine. '"H NMR (500 MHz, Methanol-d4) & 7.31 — 7.16 (m, 2H),
6.98 (d, J = 8.6 Hz, 1H), 3.92 (s, 3H). *C NMR (126 MHz, Methanol-ds) & 148.22, 134.99, 126.04,
117.85, 112.46, 55.23.
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Br

isopropyl 2-(5-bromo-2-methoxyphenyl) hydrazine-1-carboxylate (1aa). "H NMR (500 MHz,
CDCl3) 6 6.98 (d,J =2.4 Hz, 1H), 6.94 (dd, J = 8.5, 2.4 Hz, 1H), 6.67 (d, ] = 8.5 Hz, 1H), 6.44 (s, 1H),
6.25 (s, 1H), 4.99 (p, J = 6.2 Hz, 1H), 3.85 (s, 3H), 1.42 — 1.04 (m, 6H). *C NMR (126 MHz, CDCl;)
0 156.50, 145.96, 138.91, 122.69, 114.95, 113.60, 111.52, 69.86, 55.77, 22.03.

H .
N QiPr

Ny
MeO O o]

isopropyl 2-(4-methoxy-[1,1'-biphenyl]-3-yl) hydrazine-1-carboxylate (bifenazate). '"H NMR (500

MHz, CDCl) 6 7.58 — 7.54 (m, 2H), 7.42 (dd, J = 8.5, 7.0 Hz, 2H), 7.35 — 7.30 (m, 1H), 7.12 (d, J =

2.2 Hz, 1H), 7.10 (dd, /= 8.2, 2.3 Hz, 1H), 6.91 (d, /= 8.3 Hz, 1H), 6.46 (s, 1H), 6.32 (s, 1H), 4.99 (p,

J=6.2 Hz, 1H), 3.92 (s, 3H), 1.41 — 1.10 (m, 6H). *C NMR (126 MHz, CDCL3) § 156.72, 146.64,
141.40, 137.75, 134.36, 128.63, 126.92, 126.67, 119.17, 111.11, 110.49, 69.62, 55.75, 22.06.

g

(E)-1,2-diphenylethene (8a). The compound was prepared in 99% yield. '"H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 7.54 (dd, J = 8.2, 1.3 Hz, 4H), 7.38 (dd, ] = 8.5, 6.9 Hz, 4H), 7.30-7.26 (m, 2H),
7.13 (s, 2H); 13C NMR (125 MHz, Chloroform-d) § [ppm] 137.29, 128.65, 127.59, 126.48.

O
Me

(E)-1-methyl-4-styrylbenzene (8b). The compound was prepared in 97% and 92% yield when X=I
and Br, respectively. 'H NMR (400 MHz, Chloroform-d) J [ppm] 7.55-7.50 (m, 2H), 7.47-7.41 (m, 2H),
7.41-7.35 (m, 2H), 7.30-7.24 (m, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.16-7.05 (m, 2H), 2.39 (s, 3H); C
NMR (125 MHz, Chloroform-d) & [ppm] 137.49, 134.52, 129.37, 128.62, 128.60, 127.67, 127.38,

126.41, 126.37, 21.23.

o
Cl
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(E)-1-chloro-4-styrylbenzene (8c). The compound was prepared in 99% yield. '"H NMR (500 MHz,
Chloroform-d) J [ppm] 7.56-7.50 (m, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.39 (dd, J = 8.4, 6.9 Hz, 2H), 7.36-
7.32 (m, 2H), 7.32-7.28 (m, 1H), 7.12-7.04 (m, 2H); *C NMR (125 MHz, Chloroform-d) & [ppm]
136.92, 135.78, 133.10, 129.25, 128.78, 128.68, 127.81, 127.61, 127.29, 126.50.

o

(E)-1-fluoro-4-styrylbenzene (8d). The compound was prepared in 85% yield. '"H NMR (400 MHz,
Chloroform-d) ¢ [ppm] 7.55-7.46 (m, 4H), 7.42-7.34 (m, 2H), 7.32-7.26 (m, 1H), 7.13-6.98 (m, 4H);
13C NMR (125 MHz, Chloroform-d) § [ppm] 162.31 (d, J = 245.7 Hz), 137.14, 133.48 (d, ] = 3.2 Hz),
128.68, 128.46 (d, ] = 2.1 Hz), 127.96 (d, ] = 7.9 Hz), 127.64, 127.44, 126.42, 115.59 (d, J = 21.5 Hz).
F NMR (377 MHz, Chloroform-d) & [ppm] -114.20.

Ac

(E)-1-(4-styrylphenyl) ethan-1-one (8¢). The compound was prepared in 80% yield. "H NMR (400
MHz, Chloroform-d) ¢ 7.98-7.93 (m, 2H), 7.61-7.50 (m, 4H), 7.42-7.34 (m, 2H), 7.33-7.28 (m, 1H),
7.23 (d,J=16.4 Hz, 1H), 7.13 (d, ] = 16.4 Hz, 1H), 2.61 (s, 3H); ®C NMR (125 MHz, Chloroform-d)
O [ppm] 197.48, 141.99, 136.67, 135.92, 131.45, 128.86, 128.78, 128.30, 127.42, 126.80, 126.48, 26.57.

I
O,N

(E)-1-nitro-4-styrylbenzene (8f). The compound was prepared in 99% yield. "H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 8.28-8.12 (m, 2H), 7.68-7.59 (m, 2H), 7.59-7.51 (m, 2H), 7.45-7.37 (m, 2H),
7.37-7.31 (m, 1H), 7.27 (d, J = 16.4 Hz, 1H), 7.14 (d, J = 16.3 Hz, 1H); C NMR (125 MHz,
Chloroform-d) & [ppm] 146.71, 143.80, 136.13, 133.26, 128.86, 128.81, 126.98, 126.81, 126.23, 124.10.

o

(E)-1-butyl-4-styrylbenzene (8g). The compound was prepared in 53% yield. '"H NMR (500 MHz,
Chloroform-d) ¢ [ppm] 7.55-7.47 (m, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.39-7.30 (m, 2H), 7.28-7.22 (m,
1H), 7.18 (d, J = 8.1 Hz, 2H), 7.13-7.04 (m, 2H), 2.67-2.58 (m, 2H), 1.63 (ddd, J = 15.3, 11.0, 7.5 Hz,
2H), 1.39 (dq, J = 14.7, 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H); *C NMR (125 MHz, Chloroform-d) &
[ppm] 142.62, 137.66, 134.87, 128.76, 128.64, 127.84, 127.38, 126.45, 126.42, 35.42, 33.53, 22.34,
13.90.
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Me NN

cl ‘
(E)-1-chloro-2-methyl-4-styrylbenzene (8h). The compound was prepared in 60% yield. '"H NMR
(500 MHz, Chloroform-d) ¢ [ppm] 7.56-7.47 (m, 3H), 7.37 (t, ] = 7.6 Hz, 2H), 7.32-7.24 (m, 2H), 7.21

(d,J=7.8 Hz, 1H), 7.04 (q, ] = 16.3 Hz, 2H), 2.38 (s, 3H); 3C NMR (125 MHz, Chloroform-d) § [ppm]
137.00, 136.71, 135.20, 134.69, 131.08, 129.07, 128.70, 127.79, 127.18, 126.77, 126.52, 124.72, 19.83.

O

cl I ™
Me

(E)-2-chloro-1-methyl-4-styrylbenzene (8i). The compound was prepared in 50% yield. "H NMR

(400 MHz, Chloroform-d) ¢ [ppm] 7.54-7.48 (m, 3H), 7.42-7.33 (m, 2H), 7.32-7.26 (m, 2H), 7.23-7.19

(m, 1H), 7.11-6.98 (m, 2H), 2.39 (s, 3H); 3C NMR (125 MHz, Chloroform-d) & [ppm] 136.99, 136.70,
135.19, 134.68, 131.07, 129.06, 128.69, 127.78, 127.16, 126.76, 126.51, 124.71, 19.82.

Z

1,2-diphenylethyne (9a). The compound was prepared in 98% and 68% yield when X=I and Br,
respectively. "TH NMR (400 MHz, Chloroform-d) 6 [ppm] 7.60-7.50 (m, 2H), 7.43-7.30 (m, 3H); 3C
NMR (125 MHz, Chloroform-d) 8 [ppm] 131.59, 128.32, 128.23, 123.25, 89.35.

&
Me

1-methyl-4-(phenylethynyl) benzene (9b). The compound was prepared in 97% and 57% yield when
X=I and Br, respectively. 'TH NMR (500 MHz, Chloroform-d) J [ppm] 7.55-7.51 (m, 2H), 7.43 (d, ] =
8.1 Hz, 2H), 7.37-7.30 (m, 3H), 7.16 (d, J = 7.9 Hz, 2H), 2.37 (s, 3H); '*C NMR (125 MHz, Chloroform-
d) & [ppm] 138.38, 131.53, 131.48, 129.10, 128.30, 128.06, 123.46, 120.17, 89.53, 88.69, 21.50.

g

1-chloro-4-(phenylethynyl) benzene (9¢). The compound was prepared in 99% yield. "H NMR (500
MHz, Chloroform-d) § [ppm] 7.59-7.50 (m, 2H), 7.50-.44 (m, 2H), 7.40-7.29 (m, 5H); 3C NMR (125

C
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MHz, Chloroform-d) ¢ [ppm] 134.23, 132.78, 131.57, 128.66, 128.46, 128.37, 122.90, 121.76, 90.30,

88.22.
F

1-fluoro-4-(phenylethynyl) benzene (9d). The compound was prepared in 99% yield. 'TH NMR (500
MHz, Chloroform-d) & [ppm] 7.57-7.50 (m, 4H), 7.39-7.32 (m, 3H), 7.09-7.02 (m, 2H); *C NMR (125
MHz, Chloroform-d) 6 [ppm] 162.48 (d, ] = 248.1 Hz), 133.46 (d, J = 8.3 Hz), 131.54, 128.36, 128.32,
123.07, 119.36 (d, J = 3.3 Hz), 115.63 (d, J = 22.0 Hz), 89.02, 88.26. ’F NMR (377 MHz, Chloroform-

d) o [pprn] -110.94.
/‘/‘ O¢
Ac

1-(4-(phenylethynyl)phenyl)ethan-1-one (9¢). The compound was prepared in 99% and 56% yield
when X=I and Br, respectively. "H NMR (500 MHz, Chloroform-d) 6 [ppm] 8.01-7.88 (m, 2H), 7.65-
7.58 (m, 2H), 7.58-7.53 (m, 2H), 7.41-7.33 (m, 3H), 2.61 (s, 3H); *C NMR (125 MHz, Chloroform-d)
o [ppm] 197.28, 136.14, 131.70, 131.65, 128.78, 128.41, 128.23, 128.16, 122.61, 92.68, 88.57, 26.59.

O,N

1-nitro-4-(phenylethynyl) benzene (9f). The compound was prepared in 99% yield. 'TH NMR (500
MHz, Chloroform-d) ¢ [ppm] 8.27-8.17 (m, 2H), 7.71-7.63 (m, 2H), 7.61-7.51 (m, 2H), 7.44-7.34 (m,
3H); 3C NMR (125 MHz, Chloroform-d) & [ppm] 146.95, 132.24, 131.82, 130.24, 129.26, 128.52,

123.61, 122.07, 94.68, 87.52.
/ ‘¢

2-(phenylethynyl)-9H-fluorene (9g). The compound was prepared in 42% yield. "H NMR (400 MHz,
Chloroform-d) ¢ [ppm] 7.81-7.74 (m, 2H), 7.74-7.70 (m, 1H), 7.62-7.51 (m, 4H), 7.43-7.30 (m, 5H),
3.92 (s, 2H); ¥C NMR (125 MHz, Chloroform-d) & [ppm] 143.56, 143.19, 141.88, 141.09, 131.56,
130.50, 128.35, 128.16, 128.13, 127.15, 126.91, 125.09, 123.45, 121.27, 120.18, 119.78, 90.15, 89.37,
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g

cl I Z
1-chloro-3-(phenylethynyl) benzene (9h). The compound was prepared in 56% yield. 'H NMR (500
MHz, Chloroform-d) ¢ [ppm] 7.55-7.50 (m, 3H), 7.41 (dt, J=7.3, 1.4 Hz, 1H), 7.39-7.33 (m, 3H), 7.33-

7.27 (m, 2H); 3C NMR (125 MHz, Chloroform-d) & [ppm] 134.22, 131.69, 131.47, 129.71, 129.54,
128.60, 128.49, 128.40, 125.08, 122.82, 90.57, 87.93.

2-methyl-6-(phenylethynyl) pyridine (9i). The compound was prepared in 59% yield. 'TH NMR (500
MHz, Chloroform-d) ¢ [ppm] 8.01-7.88 (m, 2H), 7.65-7.58 (m, 2H), 7.58-7.53 (m, 2H), 7.41-7.33 (m,
3H), 2.61 (s, 3H); 3C NMR (125 MHz, Chloroform-d) § [ppm] 158.85, 142.50, 136.61, 132.09, 128.90,
128.32, 124.45, 122.69, 122.33, 89.32, 88.51, 24.42.
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1036 'H and **C-NMR spectra of product 4a.
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'H and *C, °F-NMR spectra of product 4b.
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'H and ¥C-NMR spectra of product 4c.
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'H and *C-NMR spectra of product 4d.
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'H and ¥C-NMR spectra of product 4e.
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'H and *C-NMR spectra of product 4f.
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'H and ¥C-NMR spectra of product 4g.
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'H and *C-spectra of product 4h.
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'H, 3C-NMR spectra of product 4i.
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'H and 3C, *F-NMR spectra of product 4;j.
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'H and BC, *F-NMR spectra of product 4k.
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'H and *3C spectra of product 4l.
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'H and ¥C-spectra of product 4m.
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'H and BC-NMR spectra of product 4n.
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'H and *3C spectra of product 4o.
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'H and *C- NMR spectra of product 4p.

1128
1129

9z'L
ev'L
ev'L
¥ Ly
5v1
S¥ L9
ot/
o',
N
8v' .1
052
LG LA
252
€61
951
oG
852
€9'2
¥9°2]
69'/
§9'2
99°21
191
911
sl

mhi
8.1

»

£€C§
00¢C
€0°1L
00°L

=
S

10.5

110

f1 (ppm)

1130
1131

vL'9.L
66'9L
GT'LL

0C' L —
L9811
mv.hN—./
99'8¢l
69'8cl
cooel—
9LeeL T
mw.mm_,“
90'8€l
cr syl —

180 170 160 150 140 130 12 110 100 90 80 70 60 50 40 30 20 10

190

200

f1 (ppm)

81



'H and *C-NMR spectra of product 4q.
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1137  'H and '3C- NMR spectra of product 4r.
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'H and ¥C-NMR spectra of product 4s.
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'H and ¥C-NMR spectra of product 4t.
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'H and *C-NMR spectra of product 4u.
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'H and *C- NMR spectra of product 4v.
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'H and *C-NMR spectra of product 4w.
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'H and BC-NMR spectra of product 4x.
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'H and ¥C-NMR spectra of product 4y.
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'H and BC-NMR spectra of product 4z.
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'H and *C-NMR spectra of product 4aa.
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'H and *C-NMR spectra of product 4ab.

1181
1182

05¢

eyl

gT'l
9¢'.L
8¢'L
el
Ge'L
Wl
[A
L2
6v°L
1671
652
1972

fl (.pnm)

Me

Me

1183

SO'Le~
151"

YL9L
mm.whv
ST LL

YOFZL
56921
19421
€141
86°ZL~
1e62L”
€8°9EL~,
6LgeL 7
ereeLy
LobpL

10

20

30

60 40

80

90

110 100
f1 (ppm)
93

121

130

N

140

160 15

17

Me
180 7

190

200

Me

1184



'H and ¥C-NMR spectra of product 4ac.
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'H and 3C, ®F-NMR spectra of product 4ad.
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'H and C-NMR spectra of product 5a.
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'"Hand *C-NMR spectra of product 5b.
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'H and *C-NMR spectra of product Sc.
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'H and C-NMR spectra of product 5d.
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'H and *C-NMR spectra of product Se.
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'H and *C-NMR spectra of product 5f.
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'H and C-NMR spectra of product 5g.
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'H and C-NMR spectra of product 5h.
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'H and *C-NMR spectra of product 5i.
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'H and *C-NMR spectra of product 5j.
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'H and C-NMR spectra of product 5k.
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'H and *C-NMR spectra of product 51.

1257
1258

555
5G5S
65'G
8¢ 7
1L
8L
6Z'L
6L
0g'L
0g'L
ve' L
ge'L]
gL
9¢g'/
e
1L
181
8e'L
8¢'L
gL
er'L
vyl
Sv'L
Sl
oL
192
z9'L
z9'L
£9'L
¥9'L
vo'L

|

il

A

Ph

NC

L)

sl

x4

[
0'¢
0C
0¢C

3.5

4.0

4.

5

6.0

6.

9.0 8.5 8.0

9.5

5

11.

12.0

f1 (ppm)

1259

SL'9L
oo.RW
SC'LL

8C L
8991l ~
1881 ~

01'8cl
Lz'szl
L¥'8cl
6.8C)
c0'cel
1458
[A 1N
98Pl ~

Ph

NC

110

0

£l (ppm)

1260
1261

108



'H, 3C-NMR spectra of product 4ae.
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'H,3C and ""F NMR of product 4af.
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'H and *C spectra of product 4ag.
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'H,3C and "F NMR spectra of product 4ah.
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'H,3C and "°F NMR spectra of product 4ai.
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'H,3C and "F NMR spectra of product 4aj.
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'H and C NMR spectra of product 4ak.
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'H and *C- NMR spectra of product 4al.
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'H and C spectra of product 4am
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'H and *C spectra of product 4an
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'H and BC spectra of product 4a0
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'H and C- NMR spectra of product.
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'H and BC spectra of product 1aa
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'H and 3C spectra of product bifenazate.
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'H and C-NMR spectra of product 8a.
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'H and C-NMR spectra of product 8b.
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'H and *C-NMR spectra of product 8c.
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'H and C, °F-NMR spectra of product 8d.
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'H, ¥C-NMR spectra of product Se.
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'H, 3C-NMR spectra of product 8f.
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'H, 3C-NMR spectra of product 8g.
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'H and C-NMR spectra of product 8h.

1367
1368

= €86} — -
88z — W EO0E |
e 5.9/
2 OONFW
=2 SZ'LL
002 |
€02
90°Z | e
60°L1
0z’ 1 -
12 LA Fo
92’1 1
LS LA 102 | =
621 — mc._ -
621 e — A AR cA!
[y A — 0zl 25921
0g'L )aqm L29Z)
gg'L - gl el
1€ o 6L LTI~k -
ges | 0Lzl 7 B
6%/ 1 - E.mm_\
05/ 1 Mo 80'1€1
1l ] Anv 69'bEL
1g1! - 0z'5¢}
y) 9 129g )
00°L€
2 O £ o

1369
1370

150

160

1371

1372



'H and *C-NMR spectra of product 8i.
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'H and C-NMR spectra of product 9a.
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'H and C-NMR spectra of product 9b.
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'H and C-NMR spectra of product 9c.
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'H and C, YF-NMR spectra of product 9d.
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'H and *C-NMR spectra of product 9e.
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'H and *C-NMR spectra of product 9f.
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'H and C-NMR spectra of product 9g.
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'H and C-NMR spectra of product 9h.
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'H, 3C-NMR spectra of product 9i.
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