

Genetic affinities between an ancient Greek colony and its metropolis: the case of Amvrakia in western Greece

Nikolaos Psonis, Eugenia Tabakaki, Despoina Vassou, Stefanos Papadantonakis, Angelos Souleles, Argyro Nafplioti, Georgios Kousis Tsampazis, Angeliki Papadopoulou, Kiriakos Xanthopoulos, Panagiotis Panailidis, Ioannis Christidis, Michael Ioannou, Angeliki Georgiadou, Dimitra Papakosta, Sevasti Koursioti, Maria Evangelinou, Athanasios Arkoumanis, Theodora Kontogianni, Varvara Papadopoulou, Paraskevi Evangeloglou, Eleni Korka, Alexandros Stamatakis, Nikos Poulakakis, Christina Papageorgopoulou, Pavlos Pavlidis.

Supplementary Information

Table of Contents

15	1. Archaeological Background	3
16	1.1. Ancient Greek Colonization	3
17	1.2. Corinthian colonization	5
18	1.3 The colony of Amvrakia	5
19	1.4 Tenea as a proxy for Ancient Corinthian ancestry	7
20	2. Archaeological and anthropological context of sampled individuals	10
21	2.1 Amvrakia cemeteries	10
22	2.1.1 Graves associated with the deep-sequenced individuals of the present study	12
23	2.2. Ammotopos - "Kokkino Lithari" site	25
24	2.3. Cemeteries of Tenea	27
25	3. Ancient DNA Analysis	40
26	3.1 Sample Preparation	40
27	3.2 Read Processing, Damage estimation, Genetic sex determination	42
28	3.2.1 Analyses at the FastQ level	43
29	3.2.2 Analyses at the library level	44
30	3.2.3 Analyses at the individual level	45
31	3.3 Contamination estimation	47
32	3.4 Uniparental haplogroup estimation	49
33	3.4.1 mtDNA	49
34	3.4.2 Y-chromosome	50
35	3.5 Population Genomics analysis	51
36	3.5.1 Lists of genomic sites	51
37	3.5.2 Genotype calling and pseudohaploidization	51
38	3.5.3 Genetic relatedness analysis	52

39	3.5.4 Runs of homozygosity	56
40	3.5.5 Imputation and Identity-by-Descent segments screening	56
41	3.5.6 Merging with public data	58
42	3.5.7 Principal Component Analysis	59
43	3.5.8 Population clustering analysis (ADMIXTURE)	62
44	3.5.9 f3 Statistics and Ancestry Proportion Analysis (qpAdm)	74
45	3.6 Phenotypes	103
46	3.6.1. Pigmentation	103
47	3.6.2. Monogenic Phenotypes	103
48	3.7 Microbial Metagenomics	105
49	3.8 Visualization	106
50	4. Provenance, mobility and diet analysis using stable isotopes	107
51	4.1 Strontium isotope ratio analysis of bioarchaeological skeletal remains: principles	107
52	4.2 Geological context of the study area	108
53	4.3 Materials and Methods	110
54	4.3.1 Samples	110
55	4.3.2 Sample preparation and analysis	110
56	4.4 Results and Discussion	110
57	5. Supplementary Information References	112
58		
59		

60 1. Archaeological Background

61 ***Eugenia Tabakaki, Christina Papageorgopoulou, Aggeliki Georgiadou, Elena Korka,***
62 ***Paraskevi Evaggeloglou, Ioannis Christidis, Michael Ioannou, Panagiotis Panailidis***

63

64 1.1. Ancient Greek Colonization

65 Migrations are ubiquitous in human history. From the great out-of-Africa journey, over
66 the Neolithic demographic transition, and up to present times, there has been a constant flow
67 of migratory waves across the planet.

68 An important outcome of migratory expeditions and local interactions is the ancient
69 Greek civilization, a period of political, philosophical, artistic, and scientific achievements that
70 formed a legacy with substantial influence on Western civilization. Having its roots in the post-
71 Mycenaean era usually described as the Greek Dark Ages, it is almost universally recognised
72 that it started to take shape during the Archaic period (c. 800-479 BCE), as an outcome of
73 migratory movements and interactions in the Mediterranean and the Black Sea, known as
74 ancient Greek colonization.

75 The Ancient Greek Colonization started during the 8th century BCE. During this period,
76 *poleis*¹ (cities) in continental Greece, the Aegean, and along the coast of Asia Minor initiated
77 colonization campaigns, both towards the West, including western Greece, southern Italy,
78 Sicily, south France, and Spain, and towards the East, expanding from the northern Aegean
79 coast and the islands, all the way to the Black Sea [3–7]. In particular, the northern Aegean
80 and north-western Greece were heavily colonized by major Euboean centers, Corinth, the
81 Cycladic islands, and Ionian cities. At present more than 100 colonies from Amvrakia and
82 Corcyra to Chalcidice, the Thermaic Gulf, and further East to the Thracian coast and the
83 islands of Thasos and Samothrace are known. The Colonisation of the Black Sea was initially
84 undertaken by the Greek cities of Asia Minor under the leading role of Miletus and until the
85 end of the 6th century BCE when the Athenian expansion policy began to overshadow all other
86 attempts in the area with a record breaking 200 colonies [7,8].

87 Ancient Greeks used the word *apoikia* (*Αποίκια*), a term that may best be translated
88 as "home away from home", predominantly emphasizing the separation, but also the

¹ The central focus of civilization for the Greeks, after the oikos or family unit, was the polis (plural: *poleis*). Polis is usually translated as 'city-state', as polis was generally an independent state, with its own laws, customs, political system, military force, currency and sometimes calendar. According to Aristotle those who did not live in a polis were 'tribeless, lawless, heartless', and to the Greeks the fact that they lived in a city-state was proof that they were a civilized people. But the polis should also in Aristotle's opinion be limited in size and self-sufficient [1]. The concept of the polis mattered to the Greeks. They did not just live in *poleis*, they found it important to live in *poleis* rather than in some other form of political community. Every Greek colony was founded as a polis or became a polis not long after its foundation. Nevertheless, no one has ever investigated how many *poleis* there were and which settlements were actually *poleis*. For the colonies there is no comprehensive study at all. The polis and the concept of polis have been investigated either in general or in relation to one individual polis. The general studies are mostly based on sources relating to Athens, and most of the individual studies deal with the Athenian democratic polis of the Classical period or with Archaic and Classical Sparta [2].

89 connection between the *metropolis*² ("mother city") and the new *oikos*³ [9]. The colonies were
90 usually sovereign states and not dominions. Therefore scholars emphasize the misleading
91 connotation of the term "colonization" compared to the modern colonial era [10,11]. The
92 relationships between the metropoles and colonies were bidirectional and typically beneficial
93 for both entities. In some cases, the colonies outperformed the metropoles with respect to
94 cultural and political developments. Each colony had its individual history and founding myth,
95 colonies of its own, allies, and special ties to the metropolis. Despite these distinct profiles,
96 common features are observed among the foundation myths of most colonies, such as the
97 substantial role of the Delphic oracle in indicating new lands; the figure of the *oikistes*, the
98 divine or mortal hero whose name was often given to the colony and may have led the group
99 of settlers; the foundation of the first sanctuaries and the determination of the social order
100 following the *nomima* (the laws and traditions of the metropolis) [12]. Based on these data,
101 archaeologists and historians identify a colony *vis-à-vis* the metropolis, although this
102 connection is not always straightforward.

103 Their search for new homes was instigated for a plethora of reasons: internal strife,
104 social conflicts, political strategies, famine or poverty, a quest for better opportunities. *Emporia*
105 (trading posts) were in some cases the predecessors of colonies. Yet, starting in the mid-8th
106 century BCE the Greek *poleis* (city-states), as well as regional or ethnic groups started to
107 expand with more targeted, longer-term intentions. The founding of hundreds of new cities,
108 within a wide and geographically diverse range, the interaction of the settlers with
109 heterogeneous indigenous populations, and the relatively short time in which the colonies
110 evolved into major cultural, commercial, and political centers indicates that Greek Colonization
111 constitutes one of the most influential phenomena in European ancient history and
112 archaeology.

113 Although numerous colonies have been excavated, the debate surrounding the mode,
114 intensity, and pace of these migratory movements [e.g. 13,14] remains unresolved. Were
115 these movements more akin to a gradual drift, or did they represent an organized colonization
116 effort? Can we reliably identify biological, linguistic, religious, cultural, or social groups whose
117 origins might have been as much a product of invented founding myths as of reality? What
118 role did the local populations play—were they assimilated or differentiated? The settlement

² The Greek colonization is temporally and causally connected with the very creation of the Greek city as an organized city - urban community of citizens. We can not actually date the birth of the city state. The oldest legal text of Greek antiquity, an inscription of the Cretan Dreros (c. 630 BCE), presupposes the existence of the city in the sense of the city-state. The term "metropolis" itself implies the existence of a city. In Greek "metropolis" meant the "mother city" and refers to the relationship between cities and colonies. The term metropolis has a highly complex definition. The 'mother-city' of a Greek colony (*apoikia*) usually nominated the founder (*oikistēs*), conducted rituals of divination and departure, organized a body of settlers, and formulated the charter of their individual status [4].

³ The term "Oikos" in ancient Greece did not mean only "house", as it does today, nor did it denote only a family (i.e. the sum of the members of a group of people who are connected by family ties). The *oikos*, as Aristotle says in his *Politics*, was the smallest unit, the smallest component of society; of course, especially in archaic societies, the *oikos* was also linked to the possession of land (this was no longer necessarily true in societies such as 5th century Athens, with its developed commercial and craft economy). The characteristic of the house, however, at the ideological level, was that it had a continuity through time, it had a past (the ancestors) and a future (the descendants). Therefore, it was the duty of every adult male to respect the past of his house and to ensure its continuity into the future. Therefore, the social attitude and ethics of each man had consequences not only individually, but also in terms of the maintenance and preservation of the prestige of his house.

119 nuclei likely attracted many others, possibly including local women. But what was their role?
120 Many of these pressing questions are anthropological and population genetic in nature, and
121 they have been only partially addressed to date.

122 1.2. Corinthian colonization

123 Colonization was not a flight into the unknown, but the creation of a stable network of
124 economic and political ties [15,16]. This is particularly evident in the case of Corinth, which
125 grew into a powerful metropolitan city through the foundation of colonies and trading posts
126 across the Mediterranean (Corcyra, Leukas, Syracuse), the Adriatic (Epidamnus, Apollonia),
127 the Aegean (Potidaea in Chalcidice), and mainland Greece (Amvrakia). Historical texts and
128 archaeological evidence (artifacts, burials, grave goods, coins) reveal the substantial influence
129 of Corinth on the colonies' lifestyle and economy [17–19]. Based on its colonies, Corinth
130 developed a trade route, from the Saronic Sea, through the Corinthian Gulf, along the western
131 coasts of Sterea Ellada (geographical unit of modern-day Greece), Epirus, and the Adriatic to
132 Sicily [20]. The main trading stations (and colonies at the same time) were Anactorion, Ithaca,
133 Lefkas, Corcyra [21], Amvrakia [18,22], Apollonia [22,23], and Epidamnus [22].

134 Through this network, Corinth established a dominance in the West, as observed by
135 Thucydides. Within a generation after the foundation of Syracuse, by about 700 BCE, Corinth
136 monopolized the western trade. This is substantiated by the archaeological findings of
137 Corinthian origin covering the end of the 8th century BCE and the beginning of the 7th century
138 BCE in the West that exceed the findings from all other Greek poleis combined [24]. Corinth
139 exported pottery, textiles, metalwork, ivory-carving, sculpture, and imported grain, as well as
140 the raw materials it lacked. During this period, the Corinthian architectural style experienced
141 a new phase of rapid commercial development.

142 Overall, the city of Corinth was an active and competitive metropolis in Archaic times
143 and had intense relations with the cities it founded. The colonies remained under Corinthian
144 control, that is, having their coins minted in Corinth as late as the fifth century BCE. However,
145 there also existed conflicts between the metropolis and its colonies. The dispute between the
146 Corinthians and Corcyraeans in the mid of the 5th century BCE over the control of Epidamnus
147 is a representative example [25].

148 Corinth contributed to the history of the ancient Mediterranean world through the
149 foundation of its colonies, some of which evolved into major cities of the ancient and modern
150 world.

151 1.3 The colony of Amvrakia

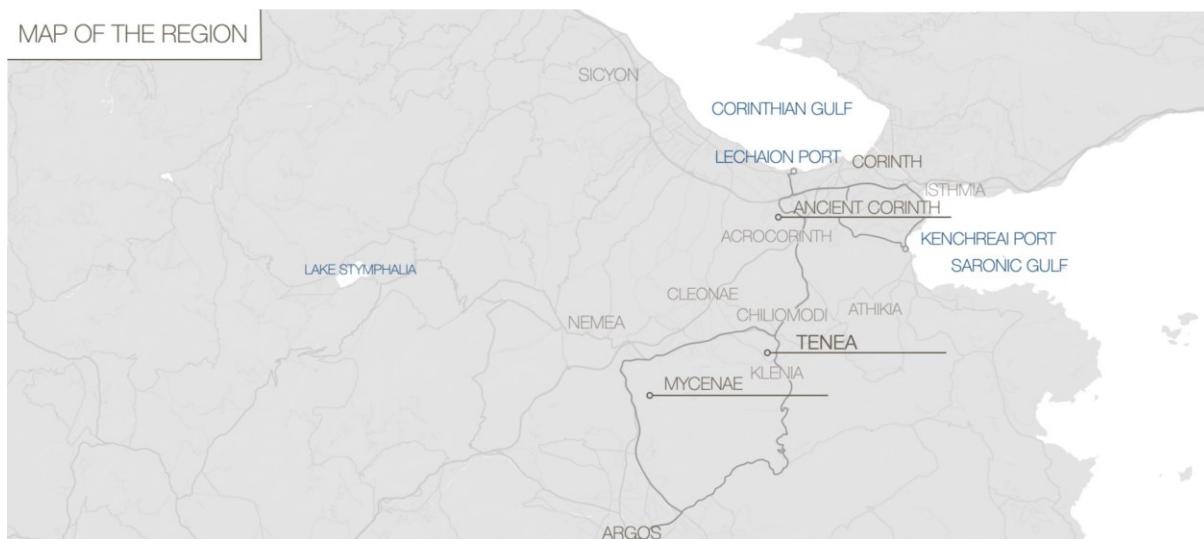
152 Amvrakia (also known as Ambracia) was founded by Corinth during the last half of the
153 7th century BCE on the banks of the river Arachthos [26] and at a short distance from the
154 northern coast of the Amvrakian Gulf [22]. Already in the 8th century BCE, before the formal
155 establishment of the colony, Corinth had established a trading post to support the wide trade
156 network it had developed along the Ionian and Adriatic coasts. Individual burials found in the
157 northern part of the city confirm this [27].

158 Amvrakia was founded on an important crossroad that connected southern Greece
159 with the mainland of Epirus and reached as far as Apollonia, another Corinthian colony on the
160 eastern Adriatic coast. Amvrakia had access to maritime trade routes through the Arachthos
161 river. In the area of the Amvrakian Gulf, Corinth had also founded the colonies of Lefkada,

162 Anaktorion, and Sollion known as the “sister-cities” of Amvrakia. They all formed part of the
163 Corinthian trade network.

164 According to the foundation myth, the Corinthians, led by Gorgos (oikistes), son of
165 Cypselos, the tyrant of Corinth, founded a colony on the banks of the Arachthos river [28]. The
166 foundation of Amvrakia, is evidenced by the strong presence of the metropolis in the material
167 culture of the ancient city. The archaeological, epigraphic, and numismatic finds indicate that
168 there was a strong relationship between the colony and its metropolis. Amvrakia strengthened
169 Corinth's economic influence and commercial control in northwestern Greece. This colony,
170 situated at the verge of the Hellenic world, was the connecting link that united the Greek city-
171 states, especially in the Epirus-Illyrian region.

172 Based on archaeological evidence, the latter archaic city of Amvrakia had strong
173 fortifications protecting the city, and was centrally planned and organized. The city was built
174 according to a geometric urban masterplan. Streets of N-S direction intersected with avenues
175 creating residential blocks. Each urban block measured 150 × 30 m and contained about
176 twenty houses. This urban organization remained unchanged throughout the centuries. Each
177 house, following the principles of isometry and isonomy had the same dimensions
178 (approximately 15 × 15 m). The urban plan of Amvrakia dedicated the north-western part of
179 the town to the public life of the town [29]. The administrative and religious center with
180 monumental public buildings and temples was located in the north-western part of the city.
181 Private residences of the classical and Hellenistic periods had almost identical shapes with
182 those of the archaic period. Successive phases of the private houses of the Archaic, Classical,
183 and Hellenistic periods are a common place in Amvrakia. This means that life continued
184 uninterrupted in the city.


185 During the 6th century BCE, the city developed demographically and politically and
186 transitioned from tyranny to a form of representative democracy. In 582 BCE, it acquired a
187 democratic constitution by rebelling against the tyrants as stated by Aristotle [30]. In the 5th
188 century BCE, the city minted its own coins following the Corinthian model.

189 The Amvrakians took part in the Persian Wars and the Peloponnesian War supporting
190 the metropolis of Corinth. The prime of Amvrakia was during the Hellenistic period under the
191 reign of Pyrrhus, the King of Epirus (c. 319-272 BCE). In 295 BCE, Pyrrhus established
192 Amvrakia as the capital of his kingdom. Representative public and private buildings and
193 spaces constituted a model city that provided a good quality of life to its citizens until the
194 conquest by the Romans under Aemilius Paulus in 167 BCE. Amvrakia declined in 31 BCE,
195 when the residents were forced to populate the neighboring Nicopolis, which was a city
196 founded by Octavian Augustus [31].

197 1.4 Tenea as a proxy for Ancient Corinthian ancestry

198 Tenea was an important settlement located in the eastern periphery of Corinth at a key
199 strategic position controlling Kontoporeia, the shortest path leading from Corinth to Mycenae
200 and Argos (**Supplementary Figure S1**). For many centuries, Tenea was the largest and most
201 important “*Kome*⁴” (town) in the eastern region of Corinth. The status of Tenea as *Kome* was
202 different to that of the independent polis. It was a community or settlement, in the Dorian
203 Peloponnese, which joined forces [2].

204

205

206 **Supplementary Figure S1.** Map of the Corinthia region, with the respective location of Tenea
207 and Ancient Corinth.

208

209 The city is mentioned in Strabo [1] and Pausanias [2]. Strabo provides more
210 information on Tenea than almost all the smaller towns of the Peloponnese, which emphasizes
211 its importance [32]. According to written sources, Tenea was the place where Oedipus was
212 brought up in the summer palace of Polybus, king of Corinth. In the Archaic and Classical
213 periods, the Greek city of Tenea in Corinthia was part of the city-state of Corinth. Wiseman
214 [33] mentions “Citizens of all the towns of the Korinthia evidently considered themselves,
215 throughout most of the antiquity citizens of Corinth”. Tenea developed substantially, and, in
216 the 8th century BCE, a large part of its population actively participated in the Greek
217 colonization under Corinth. Together with Corinth, the two cities provide an example of a
218 common colonization. For instance, in 734 BCE, residents of Tenea participated in the
219 colonization of Syracuse led by Archias from Corinth [16]. During this period, although being
220 under the direct influence of Corinth, Tenea had already evolved into a populous and

⁴ The status of *kome* is different to that of the independent polis. It is a form of community, “municipality” or “village”, but not as developed and valuable as the polis, which is the perfect form of human society. We hear about *komai* in the Dorian Peloponnese, in some parts of central and western Greece, in Makedonia and Thrace and along the west coast of Asia Minor. It is believed that the term *kome* was Dorian, whereas the term *demos* was used in the non-Dorian parts of Hellas. *Kome* is more a notion of how the Greeks designated and classified settlements that were not *Poleis*. The overlap between the two terms seems to occur principally when *kome* is used in a political sense about a subdivision of a larger polis [2].

221 prosperous city with an extensive region, *Teneatis*⁵, which is confirmed by the latest
222 archaeological evidence. The participation of Tenea in the colonization of Syracuse shows
223 that it was a well-developed city and that the colonization contributed decisively to the
224 prosperity of its society, due to the commercial contacts that were developed. Tenea had
225 always had a tendency for independence. During Hellenistic times, Tenea attempted
226 unsuccessfully to gain autonomy from the Corinthians by minting its own currency [34]. Only
227 during the late Hellenistic period, Tenea became a free city in the sense that it had its own
228 government and was not under Corinthian authority any more. Its development, however,
229 attained its peak during the Roman period, since it was the only city of Corinth that was not
230 destroyed by the Romans [35]. This political status appears to have been maintained by the
231 Romans after they had conquered Greece. According to Pausanias: "The inhabitants (of
232 Tenea) say that they are Trojans who were taken prisoners in Tenedos by the Greeks, and
233 were permitted by Agamemnon to dwell in their present home". The common Trojan mythical
234 origin of the residents of Tenea and the Romans, from the lineage of Tennes, king of Tenedos,
235 and the trojan hero Aeneas [22], seems to have created a strong link between them. The city
236 was favored by the Romans, not only because of their supposed common ancestry from Troy
237 but also because of its support for them during the war against the Achaean League. The myth
238 of common ancestry came to help and justified the Roman decision. The earliest reference to
239 Tenea being independent from Corinth, sometime before 146 BCE, is by Strabo who claims
240 that the city had already gained independence when it joined the Romans against Corinth in
241 that year: "Tenea prospered more than the other settlements (in Corinthia), and finally even
242 had a government of its own, and, revolting from the Corinthians, joined the Romans, and
243 endured after the destruction of Corinth". Tenea remained an important center during the
244 Roman era, until the 6th century CE, when it was abandoned due to the raids of the Avaro-
245 Slavs.

246 Today, systematic archaeological research⁶ conducted in the area gradually reveals
247 aspects of the ancient city. In general, the first results of the research show rich and
248 remarkable activity in Tenea from the Archaic to the late Roman times. However, the oldest
249 settlement evidence in the area dates to the Early Bronze Age. During excavations, remains
250 of the Early Helladic period were revealed, such as a built ritual deposit that is about four
251 meters deep, as well as part of the Early Helladic settlement, which came to light for the first
252 time. The discovery of evidence for Early Helladic habitation in the area confirms the strategic
253 importance of the site over the course of centuries. New findings from prehistoric Corinth and
254 other prehistoric settlements around Tenea, help us gain new insights regarding the area
255 between the modern towns of Chliomodi and Klenia before the Greek colonization of Sicily
256 and Southern Italy. It is worth noting the strong presence of imported pottery from Aegina,
257 Attica, Argolis, Corinth, and the Cyclades, which indicates the contacts Tenea had developed
258 with distant regions.

259 All the above evidence that has been uncovered in the context of the project prove that
260 Tenea was indeed a developed area, with significant activity from the prehistoric to the late
261 Roman period. The participation of Tenea at the colonization of Syracuse supports the

⁵ Teneatis included the present-day villages of Stefani, Agios Vasileios, Athikia, Mapsos, Koutalas, Agionori, and Spathovouni.

⁶ The archaeological program, known as "Tenea Project", is the first systematic archaeological research in the region of ancient Tenea and is being conducted since 2013 under the direction of Dr. Elena Korka, implemented by the Directorate of Prehistoric and Classical Antiquities of the Hellenic Ministry of Culture. It is also supported by an interdisciplinary team in the context of various scientific collaborations with Greek academic institutions.

262 observation that the city was in a state of economic, demographic, and cultural prosperity [36].
263 Regarding the colonization of Amvrakia, there is no ancient text or other source or inscriptions
264 indicating that the people of Tenea were actively involved in the colonization process.
265 However, as Tenea was a *kome* of Corinth, belongs to the region of Corinthia and has
266 participated in its colonization efforts, therefore we can also not exclude their presence in the
267 foundation of Amvrakia either.
268
269

270 2. Archaeological and anthropological context of
271 sampled individuals

272 *Eugenia Tabakaki, Aggeliki Georgiadou, Kiriakos Xanthopoulos, Panagiotis Panailidis,*
273 *Dimitra Papakosta, Varvara Papadopoulou, Elena Korka, Paraskevi Evaggeloglou,*
274 *Ioannis Christidis, Michael Ioannou, Theodora Kontogianni, Arkoumanis Athanasios*

275 2.1 Amvrakia cemeteries

276

277 **Supplementary Figure S2.** The western cemetery of Ancient Amvrakia. Image(s) source:
278 Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

279

280 The earliest burial evidence dates back to the 8th-7th century BCE, before the official
281 foundation of the city as a Corinthian colony. Individual burials in jars found in the northern
282 part of the city date back to this period. From the 6th century BCE onwards, the two cemeteries
283 of the city were organized in areas outside the city walls, namely on the eastern and south-
284 western fringes of the Peranthis hill.

285 The southwestern cemetery (**Supplementary Figure S2**) was larger and better
286 organized [37]. A monumental road, which started from the southern gate of the city wall and
287 led to the port in the Amvrakian Gulf, traversed it. This 10-12 m wide road was paved in its

288 eastern part with an elevated pavement, while in its western part it was made of simpler
289 materials. On either side of the avenue, there were retaining limestone walls with elaborate
290 carving, which defined the fronts of the square enclosures (periboloi). The most monumental
291 enclosure was the “Polyandron” (a cenotaph), erected by the city of Amvrakia in honor of its
292 dead warriors.

293 The enclosures contained a large number of burials, dating from the 6th century BCE
294 to the early Roman period. The arrangement of the tombs inside the “periboloi” is very dense
295 and testifies the intensive use of the necropolis until the late Hellenistic period. The Π-shaped
296 burial enclosures, bearing facades, contained various cist, tile-covered, and pit graves,
297 sarcophagi, as well as burial cases with copper or clay vessels holding the remains of the
298 cremations. In many cases, the Hellenistic tombs are found on the cist graves and burial cist
299 cases of the Classical era [27].

300 The cemetery took its final form during the late Classical and especially the Hellenistic
301 period. Graves were made for one individual with some exceptions that contained two burials.
302 During the Hellenistic period reusing the graves became common practice. These graves were
303 probably used by extended families. Numerous burial offerings were placed in the tombs. A
304 total of 700 graves have been investigated in the Necropolis [26].

305 In Amvrakia, inhumation was the most common practice and cremation was very
306 limited. It appears that all the dead were buried in an extended posture, with the hands parallel
307 to their body. The orientation rule is N-S and the head of the deceased is placed toward the
308 south. In general, the predominant tomb type is the cist grave, in different variations. More
309 than half of the graves are of the cist type. The limestone cist graves were also used as family
310 tombs. In many cases they contained more than one burial, that is, the bones of the older
311 burials were set aside for the new burial. In some cases, the graves also contained cremation
312 urns or vessels. Porous sarcophagi have also been excavated, but they do not represent the
313 common burial type.

314 During the last period of the Archaic era, especially the years 500-480 BCE, the
315 number of burials in both cemeteries of the city increased substantially. The majority of adult
316 burials are accompanied by at least one drinking vessel as grave goods.

317 The cemeteries of Amvrakia are different in comparison with the Epirus hinterland,
318 (tombs in the valley of Gormos in Pogoni, Vitsa in Zagori, Liatovouni in Konitsa, and Dourouti
319 Ioannina). In some cases in Epirus, tumuli had been erected (covering a period: LBA - 3rd
320 century BCE), but never became the main burial monument type. So far, they are only found
321 in two areas, Ephyra and Pogoni [38]. The construction of tumuli, is linked with symbolic acts
322 that promote and maintain the collective identity and continuity of preceding communities. [39].

323 In other cases, graves were often arranged in clusters, while in some cases the graves
324 were arranged around a particular burial. The Amvrakia cemeteries do not appear to follow
325 the conservatism of the burial customs of Epirus, which exhibits a lack of innovations. The
326 simple grave types in the Epirus hinterland and the absence of grave markers are in contrast
327 to the cemeteries of Amvrakia. It is therefore obvious that Amvrakia adopted the burial
328 customs of southern Greece, such as those of Corinth and Athens. The Amvrakia burial
329 customs of the 6th century BCE follow those of the metropolis. Yet, during the early colonial
330 stages of Amvrakia it appears that burial customs were still different from those of the
331 metropolis [40].

332 The eastern cemetery of the city was smaller in size than the western one. The plots
333 that have been investigated in the eastern cemetery are scattered. Therefore we do not have
334 the comprehensive picture we do have for the western cemetery. The eastern cemetery did
335 not have the monumentality that the western cemetery had acquired, at least during the Late

336 Classical period. It had a 6m wide burial street with burial enclosures on both sides and a
337 paved pavement along the eastern side [41]. The archaeological research from the beginning
338 of the 20th century to the present day has revealed a large section of the Amvrakia eastern
339 cemetery, with burials dating from the Late Archaic, Classical, and Hellenistic periods. This
340 proves the continuous use and functionality of the burial site. Most graves are cist-shaped,
341 followed by the pit graves, and the small cist-cases. The absence of graves dating to the late
342 Hellenistic period indicates the progressive abandonment of the eastern cemetery [42].

343 Particularly important evidence in modern research are the funerary stelae of
344 Amvrakia, one of the largest sets of inscribed monuments we have to date in northwestern
345 Greece. Most of the stelae come from the western cemetery; numerically fewer are those from
346 the eastern cemetery [43].

347

348 2.1.1 Graves associated with the deep-sequenced individuals of the
349 present study

350

351 **Archaic period**

352

353 **-Grave CVII:** The limestone cist-grave CVII, oriented north-south, was located at southwestern
354 cemetery of Amvrakia (Theodorou plot) and it was excavated on 19/08/1997 in trench D2. The
355 grave is of small dimensions and measures approximately: 2.00 × 0.65 × 0.64 m. The floor of
356 the cist tomb is paved with gravel and mud. The opening was covered by a large limestone
357 slab. The grave was reused. It contained a primary (orientation N-S; Anthro ID 5) and a
358 secondary burial (Anthro ID 781), each of one individual. The primary burial was an adult
359 individual (18-50 years old) with undetermined sex (after macroscopic estimation). The
360 secondary burial (earlier remains) was pushed to the sides of the cist when the grave was
361 reopened. No grave goods were found, but a fragmented iron nail was discovered. There is
362 no direct dating, as the chronology is mostly based upon ceramics. The burials were dated to
363 the late Archaic period, second half of the 6th century BCE (ca. 550-500 BCE).

364 Deep-sequenced individual: Individual A (primary burial), **Amv_Epi_Arch_1**.

365 -**Grave LXIX**: Pithos (storage vessel) subadult (infant) burial (**Supplementary Figure S3**).
366 The pithos was located in the burial enclosure γ, southwestern cemetery of Amvrakia
367 (Kommenos plot) and it was excavated on 04/10/2011. The pottery vessel is undecorated and
368 was found in a vertical position at a depth of 12.62 m from the surface. The pithos contained
369 a single inhumation of an infant (Anthro ID 267). The pithos was fragmented. Four ceramic
370 pots were found in situ. Three of them were Corinthian imports and the kyathos was probably
371 made by an Amvrakian workshop [40]. The burial was dated to the late Archaic period, third
372 quarter of the 6th century BCE (ca. 550-525 BCE). It is worth mentioning that the burial of
373 adults in pithoi did not occur in the burial customs of Corinth. This seems to be a practice of
374 the local population before colonization. Lefkada and Corfu, also Corinthian colonies, buried
375 their dead in pithoi as a common practice in northwestern Greece in pre-colonial times.
376 Deep-sequenced individual: **Amv_Epi_Arch_1**.
377

378
379 **Supplementary Figure S3**. Grave LXIX, Western Necropolis of Amvrakia. Image(s) source:
380 Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

381 -**Grave CXXVI:** The limestone cist-grave CXXVI (**Supplementary Figure S4**), oriented S-E
382 and N-W, was located in burial enclosure E, at the southwestern cemetery of Amvrakia
383 (Kommenos plot) and it was excavated on 25/10/2012 at a depth of 11.84 m from the surface.
384 The grave contained two burials (I: primary - II: secondary). A burial of a 35 year old male
385 (Anthro ID 1) and a burial of a 35-45 years old female (Anthro ID 51), were identified by the
386 excavation team [40]. The floor of the cist tomb was paved with gravel and mud. One individual
387 (I) was accompanied by a black-figured flask located above the right shoulder. Additionally,
388 two bronze 'scrapers' (stleggides) for cleaning the dust and the remaining oil from their skin
389 after training and a fragmented bronze end of a musical instrument (all offerings for the man)
390 were found. There is no direct dating, as the chronology is based mostly upon ceramics. The
391 burials were dated to the late Archaic period ca. 500-480 BCE.
392 Deep-sequenced individual: Individual I (burial I), **Amv_Epi_Arch_3**.
393

394
395 **Supplementary Figure S4.** Grave CXXVI (primary), Western Necropolis of Amvrakia.
396 Image(s) source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

397 Classical period

398

399 **-Grave CXIX:** The limestone cist-grave CXIX was located in burial enclosure E, at the
400 southwestern cemetery of Amvrakia (Kommenos plot) and it was excavated on 25/09/2012,
401 at a depth of 12.49 m from the surface. A fragmented limestone slab was found *in situ*,
402 probably covering the grave opening. The grave was reused. It contained a primary
403 (orientation S-N; Anthro ID 7) and a secondary burial (**Supplementary Figure S5**; Anthro ID
404 8), each of one individual. The earlier remains were pushed to the north side of the cist when
405 the grave was reopened. One individual was accompanied by a kyathos (drinking-cup for
406 wine) and two small lekythoi and a bronze ring. According to A. Aggeli, a burial of a 45-49
407 years old woman was found *in situ*. A secondary burial of a female individual over 60 years of
408 age, with no grave goods, was also recognised [40]. There is no direct dating, as the
409 chronology is based mostly upon ceramics. The burials were dated to the late Classical period,
410 second quarter of the 4th century BCE (ca. 375-350 BCE).

411 Deep-sequenced individual: Retrieval individual (=secondary burial), **Amv_Epi_CI_1**.

412

413

414 **Supplementary Figure S5.** Grave CXIX (retrieval), Western Necropolis of Amvrakia.
415 Image(s) source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

416 -**Grave CCCXXXIX:** The limestone cist-grave CCCXXXIX (**Supplementary Figure S6**),
417 oriented north-south, was located at the southwestern cemetery of Amvrakia (Kommenos plot)
418 and it was excavated on 30/07/2014 in trench E18 at a depth of 14.76 m from the surface. The
419 opening was covered by a large limestone slab. Grave CCCXXXIX, which had dimensions
420 1,95 m × 0,67 m, height: 0,53 m is located north of the grave CCCXXXVII. It contained two
421 burials, each of one individual: burial I (Anthro ID 16) and II (Anthro ID 11), both with a S-N
422 orientation. According to A. Aggeli, the main burial belonged to a female, with a poor state of
423 skeletal preservation. The head was oriented to the south, probable age of 50 years (after
424 macroscopic estimation). A canastron was placed at both sides of the body at the level of the
425 neck. Underneath, of the female burial, a male burial of a young man 18-19 years old (after
426 macroscopic estimation), in extended posture, and heading to the south, was discovered. One
427 ceramic vessel, a black figure skyphos (drinking-cup) and two bronze 'scrapers' (stleggides)
428 for cleaning the dust and the remaining oil from their skin after training are associated with the
429 male burial [40]. There is no direct dating, as the chronology is based mostly upon ceramics.
430 The burials were dated to the Classical period, third quarter of the 5th century BCE (ca. 450-
431 425 BCE).

432 Deep-sequenced individual: Individual II (burial II), **Amv_Epi_CI_2**.

433

434

435 **Supplementary Figure S6.** GraveCCCXXXIX, Western Necropolis of Amvrakia. Image(s)
436 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

437 -**Grave CXLVII:** The limestone cist-grave CXLVII (**Supplementary Figure S7**) was located in
438 the southwestern cemetery of Amvrakia (Kommenos plot) and it was excavated on 17/06/2013
439 in trench A12 at a depth of 13.25 m from the surface. A limestone slab was found *in situ*. The
440 grave was located and partially constructed below the cist XL. The grave contained one
441 individual (orientation SE-NW; Anthro ID 12). The individual (probably female, after
442 macroscopic estimation) was accompanied by a red figured lekythos (oil container) and a
443 silver coin (not well preserved)[40]. There is no direct dating, as the chronology is based mostly
444 upon ceramics. The burials were dated to the Classical period, first quarter of the 4th century
445 BCE (ca. 400-370 BCE).

446 Deep-sequenced individual: **Amv_Epi_CI_3**.

447

448

449 **Supplementary Figure S7.** Grave CXLVII, Western Necropolis of Amvrakia. Image(s) source:
450 Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

451 -**Grave CCCLXXXVIII:** The pit-grave CCCLXXXVIII (**Supplementary Figure S8**) was located
452 at the southwestern cemetery of Amvrakia (Kommenos plot) and it was excavated on
453 28/07/2015 in trench E21 at a depth of 15.28 m from the surface. The grave was located and
454 partially constructed below the burial CCCLXXXVI. The grave contained two individual burials.
455 Both primary (Anthro ID 14) and secondary (Anthro ID 13) burials had orientation N-S. The
456 individuals were accompanied by a small lekythos (oil container) [40]. There is no direct dating,
457 as the chronology is based mostly upon ceramics. The burials were dated to the Classical
458 period, second quarter of the 5th century BCE (ca. 475-450 BCE).
459 Deep-sequenced individual: Individual II (burial II), **Amv_Epi_CI_4**.
460

461
462 **Supplementary Figure S8.** Grave CCCLXXXVIII, Western Necropolis of Amvrakia. Image(s)
463 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

464 -Grave CV: The pit-grave CV (**Supplementary Figure S9**) was located in burial enclosure ε,
465 at the southwestern cemetery of Amvrakia (Kommenos plot) and it was excavated on
466 30/03/2012 at a depth of 13.10 m from the surface. A limestone slab was found *in situ*. The
467 grave contained distracted secondary burials of two subadults represented by two temporal
468 bones (bonedata_30032012_cv1 and bonedata_30032021_cv2). The estimated age of the
469 subadults was 4 and 4-18 years old (after macroscopic estimation), respectively. One ceramic
470 vessel, a black-figured skyphos (drinking-cup), is associated with the burials. A clay rattle and
471 a clay doll figurine were also found *in situ* [40]. The chronology is based upon ceramics. The
472 burials were dated to the late Classical period, second quarter of the 4th century BCE (ca.
473 375-350 BCE).

474 Deep-sequenced individuals: Retrieval individual I (=secondary burial I), **Amv_Epi_CI_5** and
475 retrieval individual II (=secondary burial II), **Amv_Epi_CI_6**.

476

477

478 **Supplementary Figure S9.** Grave CV, Western Necropolis of Amvrakia. Image(s) source:
479 Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

480 Hellenistic period

481

482 **-Grave CCVIII:** The build limestone cist-grave CCVIII (**Supplementary Figure S10**), oriented
483 E-W, was located at the southwestern cemetery of Amvrakia (Kommenou plot) and it was
484 excavated on 19/07/2012 in trench E14. It was excavated at a depth of 15.90 m from the
485 surface. A pile of stones was found *in situ*. The grave was reused. According to the excavation
486 log book the grave contained two primary (orientation E-W; Anthro ID 211-212) and three
487 secondary burials (Anthro ID 214-216). The earlier remains were pushed to the side of the cist
488 when the grave was reopened. One ceramic vessel, a skyphos (drinking-cup), is associated
489 with one of the burials. There is no direct dating, as the chronology is based mostly upon
490 ceramics. The burials were dated to the Hellenistic period, 1st-3rd quarter of 2nd century BCE
491 (ca. 200-125 BCE).

492 Deep-sequenced individual: primary burial individual Anthro ID 212, **Amv_Epi_Hel_1**.

493

494

495 **Supplementary Figure S10.** Grave CCVIII, Western Necropolis of Amvrakia. Image(s)
496 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

497 -**Grave CXCIV:** The pit-grave CXCIV (**Supplementary Figure S11**), oriented E-W, was
498 located at the southwestern cemetery of Amvrakia (Kommenou plot) and it was excavated on
499 26/06/2012 in trench Section E12 and Benchmark E11 - E12, and Section E13 (North of Wall
500 103), at a depth of 14.90 m from the surface. The grave contained one primary burial
501 (orientation N-S; Anthro ID 656). An unidentified Hellenistic bronze coin found *in situ*, is
502 associated with the burial. There is no direct dating, as the chronology is based mostly upon
503 ceramics. The burial was dated to the Hellenistic period, 2nd half of 3rd century BCE (ca. 250-
504 200 BCE).

505 Deep-sequenced individual: **Amv_Epi_Hel_2.**

506

507

508 **Supplementary Figure S11.** Grave CXCIV, Western Necropolis of Amvrakia. Image(s)
509 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

510 -**Grave CCXLV**: The pit-grave CCXLV (**Supplementary Figure S12**), oriented S-N, was
511 located at the southwestern cemetery of Amvrakia (Kommenou plot). It was excavated on
512 05/10/2012 at a depth of 14.52 m from the surface. The grave contained one primary burial
513 (orientation S-N; Anthro ID 389) and one secondary burial (Anthro ID 390). A golden “danake”
514 (coin), served as the so-called Charon's obol, was placed in the individual's mouth. It was
515 found *in situ* among the individual's teeth. There is no direct dating, as the chronology is based
516 mostly upon ceramics. The burials were dated to the Hellenistic period, 2nd-3rd quarter of 2nd
517 century BCE (ca. 175-125 BCE).
518 Deep-sequenced individuals: Retrieval individual (=secondary burial), **Amv_Epi_Hel_3** and
519 primary burial individual, **Amv_Epi_Hel_4**.
520

521

522 **Supplementary Figure S12.** Grave CCXLV, Western Necropolis of Amvrakia. Image(s)
523 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

524 -**Grave CCXXIII:** The limestone cist-grave CCXXIII (**Supplementary Figure S13**), oriented N-
525 S, was located at the southwestern cemetery of Amvrakia (Kommenos plot) and it was
526 excavated on 30/08/2012, in the precinct within the walls 105, 107, and 110, at a depth of
527 14.62 m from the surface. Broken limestone slabs were found *in situ*. The grave contained a
528 total of five burials; three primary burials (Anthro ID 438 - 440), two secondary burials (Anthro
529 ID 441-442), and one cremation burial (bonedata_30082012_CCXXIII) found in an amphora.
530 The cremation amphora was found in the west side of the tomb. It held a lid made of lead
531 (M89/OM697). The burials were accompanied by a terracotta spindle-shaped unguentarium
532 (perfume bottle). There is no direct dating, as the chronology is based mostly upon ceramics.
533 The burials were dated to the Hellenistic period. Due to absence of associated grave finds
534 with the secondary burials, the dating is based on the usage period of the grave; late 4th to
535 the 2nd century BCE (ca. 325-100 BCE).
536 Deep-sequenced individual: Retrieval individual (=secondary burial) Anthro ID 441,
537 **Amv_Epi_Hel_5.**
538

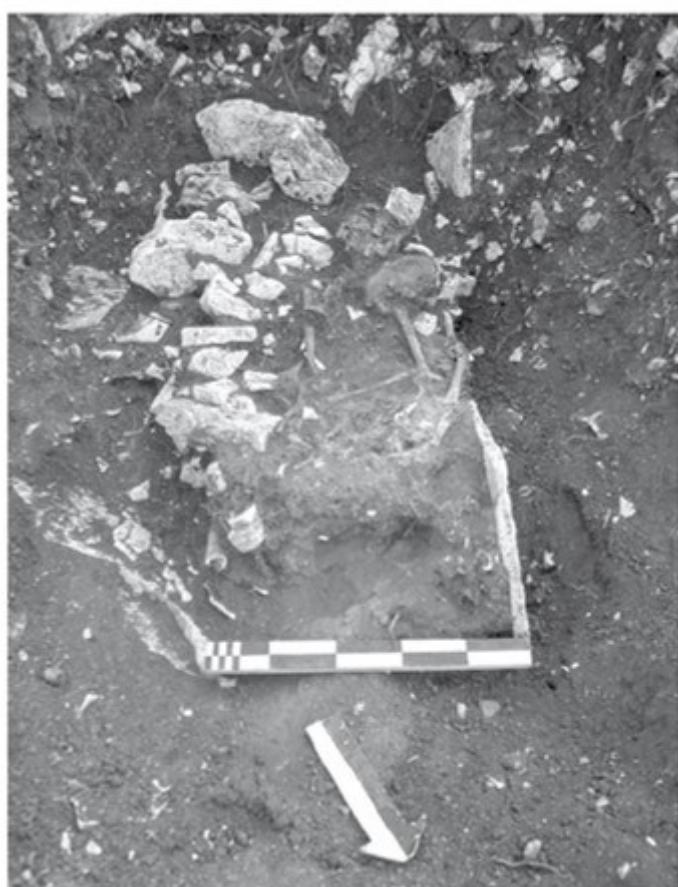
539
540 **Supplementary Figure S13.** Grave CCXXIII, Western Necropolis of Amvrakia. Image(s)
541 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

542 **Undated burial**

543

544 **-Grave CCXLIII:** The limestone cist-grave CCXLIII (**Supplementary Figure S14**), oriented E-W, was located at the southwestern cemetery of Amvrakia (Kommenos plot) and it was
545 excavated on 04/10/2012, in the perivolos within walls 85, 103, and 109, at a depth of 14.54
546 m from the surface. A limestone slab was found *in situ*. The grave contained two burials: one
547 primary burial (orientation N-S; Anthro ID 661) and one secondary burial, as well as several
548 isolated teeth (bonedata_04102012_CCXLIII). A fragmented iron stleggis (body scraper) was
549 found *in situ*. Neither direct, nor indirect (e.g. ceramics-based) dating is available. Due to
550 absence of -chronology-indicative- associated grave finds with these burials, their dating is
551 based on the usage period of the necropolis; Archaic to Roman period (ca. 700 BCE - 476
552 CE).

553 Deep-sequenced individual: bonedata_04102012_CCXLIII, **Amv_Epi_Archaic_to_Roman**.


555

556 **Supplementary Figure S14.** Grave CCXLIII, Western Necropolis of Amvrakia. Image(s)
557 source: Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

558 2.2. Ammotopos - "Kokkino Lithari" site

559 A prehistoric settlement of great importance was discovered (2015 - 2016) during
560 construction work for the Ionian highway connecting western Greece to Athens. The site is
561 situated at a crossroad of people and goods for the topography of the area, connecting
562 Athamania, Molossida, and the Amvrakian plain. Remains of dry masonry constructions with
563 finds of pottery, (big storage vessels), numerous stone tools etc. are dated to the Middle and
564 Late Bronze Age (c. 2000-1000 BCE). The new archaeological site, named "Kokkino Lithari",
565 is located on the steep side of the hill directly opposite of House A of Orraos. The hill of
566 "Kokkino Lithari" is a site where Neolithic structures and stone tools have been found. One of
567 the most interesting finds was a grave located on the southern part of the hill, with walls made
568 of limestone slabs. The tomb contained four burials (**Supplementary Figure S15**), an
569 unglazed drinking vessel (kantharos type of local production), and a bronze ring. Another
570 grave located closeby, at the Kastri hill, was uncovered. The Kastri tomb was dated to the Late
571 Helladic (LH IIIA2- IIIB) period (ca. 1350-1200 BCE). This tomb contained five burials, a
572 bronze knife, a necklace of stone beads, fragmented pottery (which were later restored and
573 reconstructed to a Mycenaean jar and a Mycenaean globular alabastron), and four Mycenaean
574 kylikes from unstratified layers. The pottery clearly indicates the influence of the Mycenaean
575 workshops in the area [26,44-46].

576

577

578 **Supplementary Figure S15.** Grave I, Kokkino Lithari site in Ammotopos. Image(s) source:
579 Archive of the Ephorate of Antiquities of Arta, Ministry of Culture, Greece.

580 **Sampled Individuals**

581

582 **-Grave I:** The grave was built with limestone slabs. It was located in the southern part of the
583 "Kokkino Lithari" hill (IONIA Highway, X.Θ. 153+975). It was excavated on 26 & 27-05-2015,
584 and contained four skeletons preserved from the femur and above. Two of them were oriented
585 S-N (Anthro ID 17, Anthro ID 18), a third one in a N-S orientation, whereas the skeletal remains
586 of a fourth burial were pushed toward the margins of the grave. No particular care was taken
587 during the burial to ensure the position and orientation of the deceased. The grave goods were
588 a bronze ring and a ceramic kantharos type vessel (drinking vessel) of probable local origin
589 [46]. The finds date the burials to the Late Bronze Age (c.1350 - c.1125 BCE), and C¹⁴ dating
590 of individuals I and II narrows it down to 1276-1126 calBCE [3225-3075 calBP (95.4%)]. The
591 dating was performed by the Oxford Radiocarbon Accelerator Unit (ORAU), University of
592 Oxford, and the dates were calibrated using OxCal v.4.4.4 [47] and the IntCal20 atmospheric
593 data from Reimer et al. [48].

594 Deep-sequenced individuals: Individual I (**Amm_Epi_LBA_1**) and individual II
595 (**Amm_Epi_LBA_2**).

596 2.3. Cemeteries of Tenea

597 Since 2013 until today, ancient Tenea has been systematically excavated in the
598 context of the "[Tenea Project](#)" that is supported by an interdisciplinary team. Important remains
599 of the ancient city have been uncovered, which relate to its public and private life. The
600 excavation of a large part of its cemeteries yielded important information concerning the living
601 conditions of its inhabitants, as well as the broader image of the city in terms of its organization
602 and layout, customs and practices.

603 Initially, in 1984, the archaeological service brought to light the archaic porous
604 sarcophagus of Chliomodi, which is now exhibited in the Archaeological Museum of Ancient
605 Corinth [49]. Inside the sarcophagus, a female burial aged 18–28 years was preserved in an
606 outstretched position, oriented SW/NE. The burial was enriched with, among other things, a
607 metal and wooden pin, a bronze mirror, a pyxis - kalathos, and a handless decorated pyxis
608 with curved walls, which are representative examples of Corinthian art during the early 6th
609 century BCE [50]. The uniqueness of the find, however, lies in the covering slab of the
610 sarcophagus, which had a painted representation on its inner side in ad secco technique. Two
611 lions heraldically placed on an off-white background are depicted with an antefix in between
612 in the form of a palmate. The image is framed by a red band and is definitely related to the
613 monumental painting of the Archaic period [49,50].

614 Around the sarcophagus of 1984, a cluster of Archaic graves was discovered in the
615 years 2013-2015 (**Supplementary Figure S16**), which yielded a substantial number of grave
616 goods, many of which introduce new typological shapes in the relevant bibliography [51]. More
617 specifically, four burials in porous monolithic sarcophagi, which date from the beginning of
618 the 6th to the beginning of the 5th century BC, have come to light. These are burials of a child
619 (Grave 02), a woman about 50 years old (Grave 03), and two men (Grave 04 and 05), aged
620 about 40-50 years and over 50 years old. The burials were enriched with ceramic and metal
621 objects that were located, either inside, or around the graves. The graves were not uniformly
622 oriented. The child's burial (Grave 02) stands out, around and within which 58 ceramic, metal
623 and lead objects that accompanied the burial were found. Typologically, the findings consist
624 of oenochoes, aryballooi, pyxides, as well as a lekanis, a hydriske, a lekythos and two bronze
625 lekanides that date to the Corinthian art of the early 6th century BCE. Remarkable finds are a
626 double askos with a rope handle and trefoil strained spout, as well as two small-sized handless
627 vases, for which no parallel finds have been identified so far [36]. The other graves had
628 undisturbed burials in an extended position-oriented SW/NE. Graves 03 and 04 contained only
629 one burial each, and date to the mid and late 6th century BCE. Grave 05 dates to the beginning
630 of the 5th century BCE and contained six vases, two kylikes, two lekythoi, a skyphos. and an
631 oenochoe. In the proximity of the grave a modern deposit was found, in which two lekanides
632 with lids, two kylikes, two skyphoi, and an oenochoe were found [36].

633 At a short distance from the archaic cluster, a Hellenistic period pit grave was found,
634 which housed the remains of two adults. The burials were adorned with a krateriskos, a
635 miniature oinochoe, a miniature cup, and a lamp, which can be dated through the four coins
636 minted in the reign of Ptolemy III that were also placed as grave goods.

637 Hellenistic burials were also found at the southwestern border of the cemetery zone,
638 at the "Palaio Scholeio" area (**Supplementary Figure S19**). The burials were organized in the
639 area north and east of a semi-underground cistern, violating in some cases earlier structures
640 for their encapsulation. The excavation revealed a total of ten graves of the Hellenistic period,
641 the majority of which were reused in Roman times. The number and type of grave goods found
642 inside the undisturbed graves is impressive, with vases representative of the Hellenistic

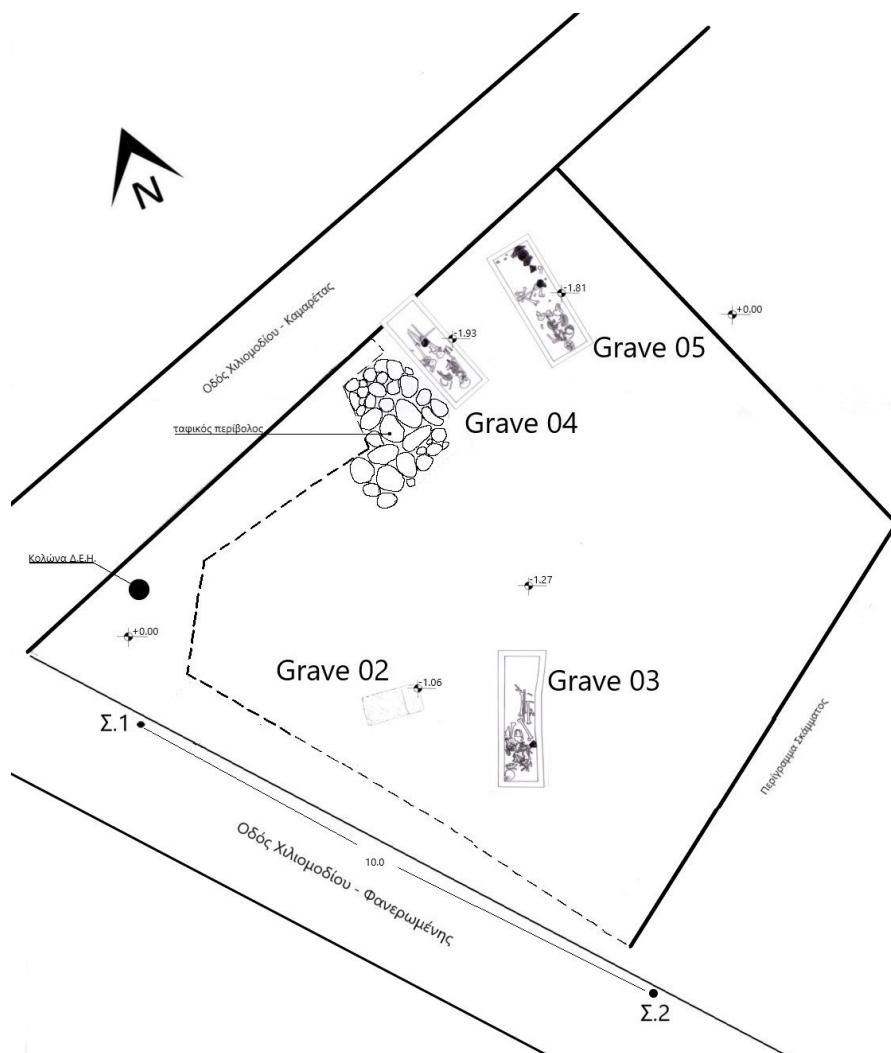
643 period, such as miniature vases and unguentaria, but also more refined shapes, such as the
644 lagynos and the funerary calpe found in Grave 17. Also noteworthy are the metal objects that
645 came to light, such as bronze mirrors, iron strigils, and a bronze oinochoe. A gold-plated
646 bronze wreath of myrtle leaves and fruits, a gold ring, and other metal jewellery are included,
647 as well as gold danakes.

648 The graves belong to the types of pit graves, monolithic sarcophagi, but also stone
649 cofins with porous covering slabs. The reuse of the graves during the Roman period resulted
650 in the identification of sidelined anthropological remains on the outside of the graves and the
651 coexistence of Hellenistic and Roman finds. The macroscopic study of the anthropological
652 remains found inside and outside the graves played a key role in the separation of the main
653 and secondary burials.

654 The Roman burials identified as having reused Hellenistic graves and others in upper
655 excavation layers in the same area, belong to a well-organized Roman cemetery around the
656 perimeter of an above-ground funerary monument discovered in 2016 (**Supplementary**
657 **Figure S22**). The monument is a two-room above-ground and temple-shaped funerary
658 monument of the 1st - 2nd century CE. with dimensions 10.53×5.82 m, orientation E/W, and
659 entrance to the West. In the burial chamber, five built cist graves are formed with dimensions
660 of 2.00×0.68 m each in a circumferential layout that has the shape of the Greek letter "Π".
661 Monuments of similar typology, roofed with vaults, can be found in Patras, Argos, Nicopolis,
662 Ostia, and Asia Minor [35][36]. The funerary monument of Tenea is one of the few above-
663 ground burial monuments found so far in the Corinthia regional unit of present-day Greece,
664 yet without there being another of similar typology.

665 Around the monument, an organized cemetery of Roman times was revealed, dating
666 from the 3rd century CE, up to the 5th century CE. The graves are distinguished according to
667 their typology into pit graves, kalyvites pit graves, and jar burials. The burials were found richly
668 adorned with lamps, glass, gold, silver, lead, bronze and iron jewellery, vases of everyday use,
669 glass vessels, metal tools, bone jewellery and tools, organic remains, coins, and shoe nails
670 [36,51].

671 As all the above evidence suggests, the "Palaio Scholeio" area and specifically the
672 location of the funerary monument, was a place with long burial use and ritual value in
673 antiquity, near the ancient city and the residential web.


674 2.3.1 Graves associated with the deep-sequenced individuals of the present study

675

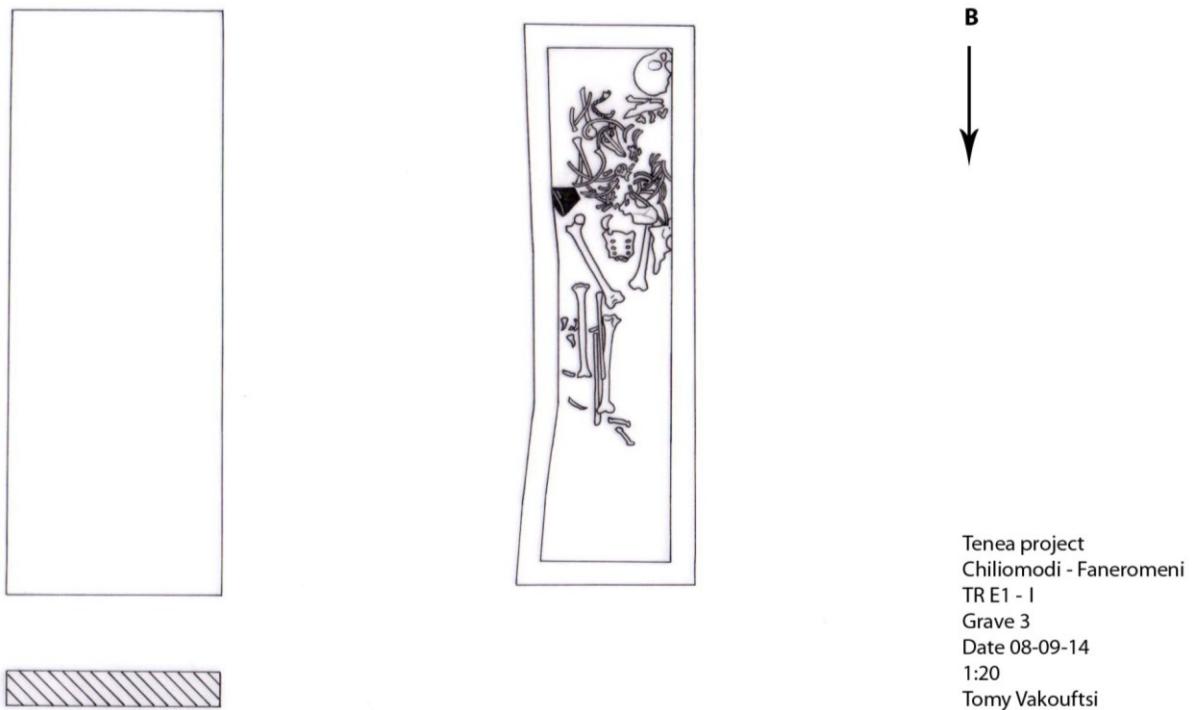
676

677 Archaic period (Faneromeni-Kamareta site)

678

679

680 **Supplementary Figure S16.** The location of graves 3 and 5 in the Faneromeni-Kamareta site
681 of Ancient Tenea. Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry
682 of Culture, Greece.

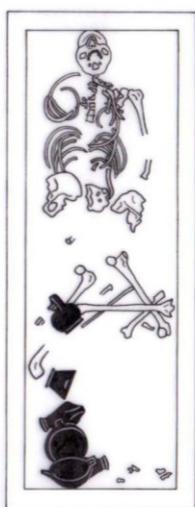
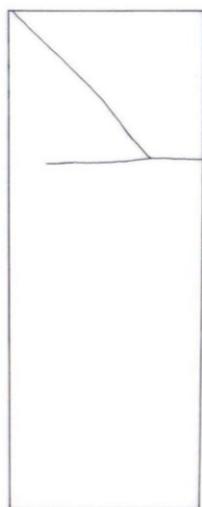

683

684

685 -**Grave 03:** The porous sarcophagus (**Supplementary Figure S17**), oriented N-S, was
686 excavated on 08/09/2014, in trench E1-I, in the cemetery of Tenea (Faneromeni-Kamareta,
687 Tsirtsis plot). The sarcophagus carried a porous lid. The dimensions of the sarcophagus are
688 2.20 × 0.09 × 0.45 m. A layer of mortar covers much of the sarcophagus. The mortar thickness
689 is 1-3.5 cm. The interior of the sarcophagus contained one burial of an adult. It contained one
690 skyphos (drinking-cup) and an iron nail, all found *in situ*. The chronology is based mostly on
691 the ceramics and dates to the late Archaic period (ca. 550-500 BCE).

692 Deep-sequenced individual: **Ten_Pel_Arch_2**.

693



694

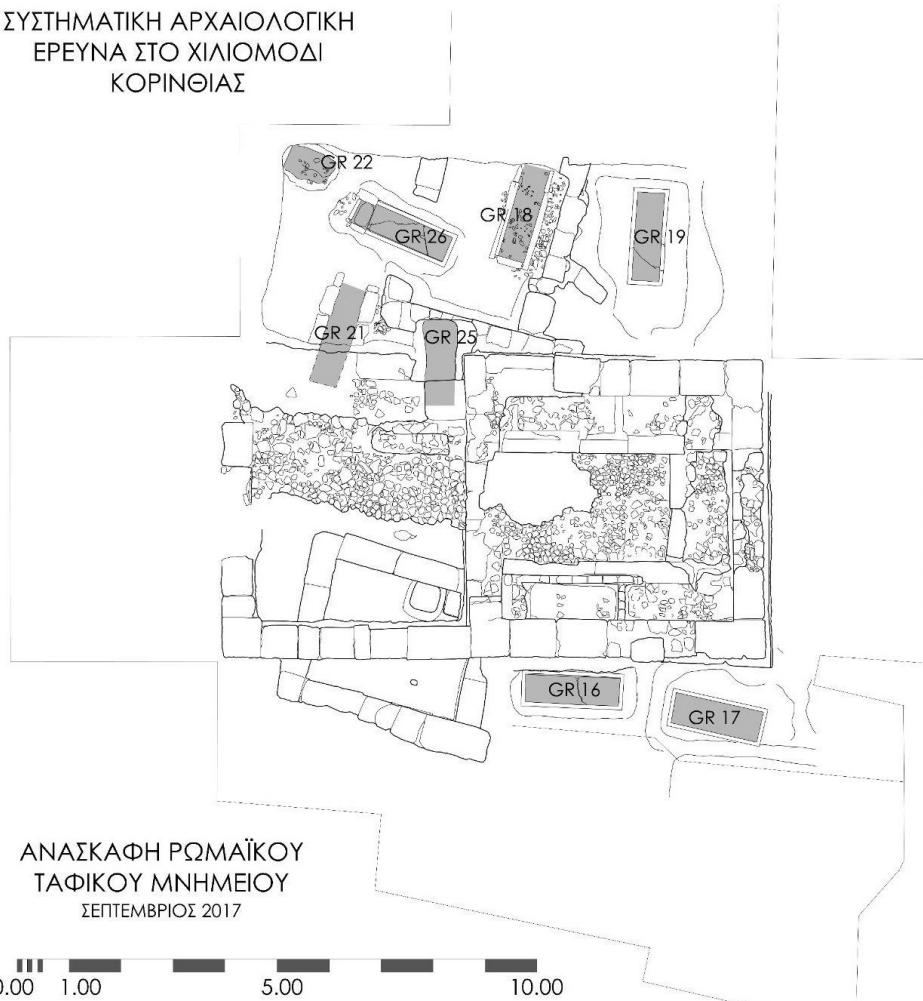
695

Supplementary Figure S17. The sarcophagus of grave 5 in the Faneromeni-Kamareta site
696 of Ancient Tenea. Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry
697 of Culture, Greece.

698 -**Grave 5**: The porous sarcophagus (**Supplementary Figure S18**), oriented NE-SW, was
699 excavated on 08/10/2014, in trench E1-I, in the cemetery of Tenea (Faneromeni-Kamareta,
700 Tsirtsis plot). The sarcophagus carried a porous lid. The dimension of the sarcophagus are
701 $0.80 \times 0.82 \times 2.10$ m. A modern layer covers much of the sarcophagus. Its thickness is 1 cm.
702 The interior of the sarcophagus contained one burial of an adult. It contained six vases (among
703 them two kylikes, two lekythoi, one skyphos, and one oinochoe) and one iron ring. The
704 chronology is based on the ceramics and dates to the late Archaic period (ca. 500-480 BCE).
705 Deep-sequenced individual codes: **Ten_Pel_Arch_1**.

Tenea project
Chiliomodi - Faneromeni
TR E1 - I
Grave 5
Date 08-10-14
1:20
Tomy Vakouftsi

706
707 **Supplementary Figure S18.** The sarcophagus of grave 5 in the Faneromeni-Kamareta site
708 of Ancient Tenea. Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry
709 of Culture, Greece.
710


711 Hellenistic and Roman periods (Cemetery of Tenea)

712

713 Hellenistic period

714

ΣΥΣΤΗΜΑΤΙΚΗ ΑΡΧΑΙΟΛΟΓΙΚΗ ΕΡΕΥΝΑ ΣΤΟ ΧΙΛΙΟΜΟΔΙ ΚΟΡΙΝΘΙΑΣ

715

716 **Supplementary Figure S19.** The Hellenistic graves in the cemetery of Tenea (Palaio
717 Scholeio, Haskidis plot). Image(s) source: Archive of the Ephorate of Antiquities of Corinth,
718 Ministry of Culture, Greece.

719

720 **-Grave 18:** The porous sarcophagus, oriented N-S, was excavated on 24/09/2017 in trench
721 2017/3, in the cemetery of Tenea (Palaio Scholeio, Hasikidis plot). The grave was located
722 north of a cistern used for ritual purposes, upon which the Roman grave monument (Grave
723 Monument I) was built. Grave 18 contained the burial of one adult. The individual was
724 accompanied by seven fusiform unguentaria, a terracotta lamp, a skyphos, two miniature
725 vases, two pytharia, a gold *Danake*, a ring with semi-precious stone, a folded mirror, a bronze
726 wreath with gilded leaves and myrtle fruits, red-colored pigments, metal fragments, a bone
727 hinge, etc. The chronology is based on the ceramics and dates to the Hellenistic period (ca.
728 150-100 BCE).

729 Deep-sequenced individual: **Ten Pel Hel 1.**

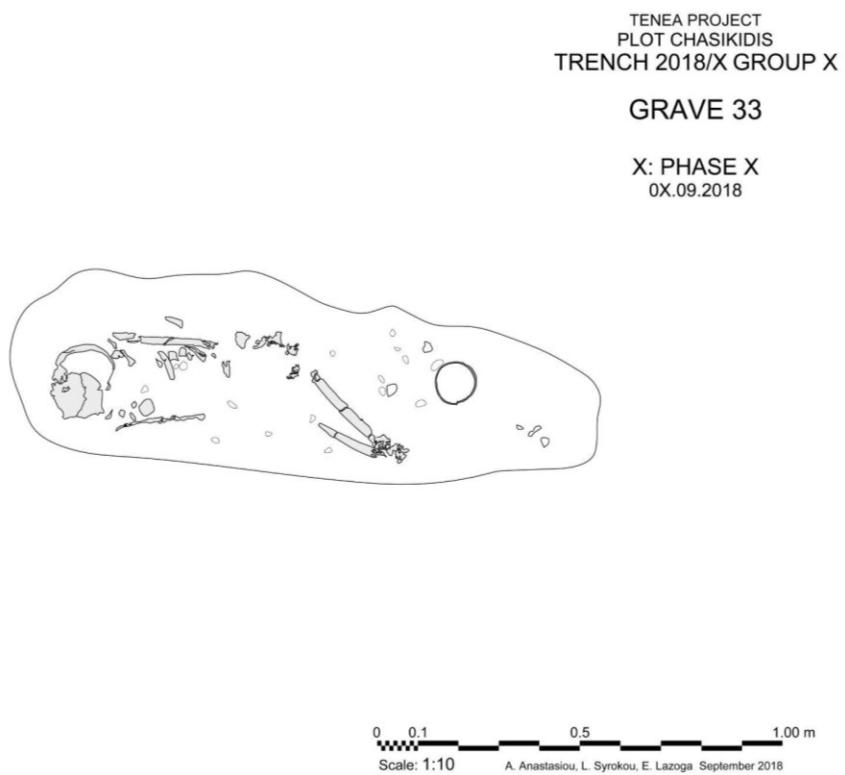
730

731

732 -**Grave 26 (re-used Hellenistic grave)**: The porous sarcophagus (**Supplementary Figure**
733 **S20**), oriented E-W, was excavated on 09/10/2017 in trench 2017/2 in the cemetery of Tenea
734 (Palaio Scholeio, Hasikidis plot). The sarcophagus carried a porous lid. The dimensions of the
735 grave are 1.91 × 0.53 m. The interior of the sarcophagus contained three burials of three
736 adults. The coffin itself, as well as one of the burials (Individual 2), dates to the Hellenistic
737 times (323–31 BCE), while the remaining burials were located inside the sarcophagus during
738 the Roman period. The sarcophagus contained various offerings, including a glass
739 unguentarium, six ceramic unguentaria, two ceramic oinochoe, a bronze oinochoe, a skyphos,
740 a glass vessel, a ceramic pedestal, a silver coin, etc. The chronology is based mostly on the
741 ceramics.

742 Deep-sequenced individual codes: Individual 2, **Ten_Pel_Hel_2**.

743



744

745 **Supplementary Figure S20.** Grave 26, cemetery of Tenea (Palaio Scholeio, Hasikidis plot).

746 Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of Culture, Greece.

747 -**Grave 33 (re-used Hellenistic grave):** The pit-grave 33 (**Supplementary Figure S21**),
748 oriented W-E, was excavated on 20/09/2018, in trench 2018/3, in the cemetery of Tenea
749 (Palaio Scholeio, Hasikidis plot). The grave was covered with a porous lid, upon which a roman
750 vase was found. The dimensions of the grave are 1.31 × 0.42 m. The grave contained the
751 burial of one adult. The individual was accompanied by a fragmented Hellenistic unguentarium
752 (perfume bottle). From the evidence of the burial assemblage, it is not possible to determine
753 whether the skeletal remains belong to a burial contemporary with the Hellenistic vase found
754 inside the pit or contemporary with the Roman vase found on top of the covering lid. In either
755 case it appears that the grave was disturbed during the Roman period either for reuse or
756 because of the construction (foundation) of the Roman wall found parallel to the grave.
757 Putative date: late Hellenistic - early Roman period, 1st century BCE - 1st century CE (ca. 100
758 BCE - 100 CE).
759 Deep-sequenced individual: **Ten_Pel_LHellenisticERoman**.
760

761 **Supplementary Figure S21.** Grave 33, cemetery of Tenea (Palaio Scholeio, Hasikidis plot).
762 Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of Culture,
763 Greece.
764

765
766

Roman period

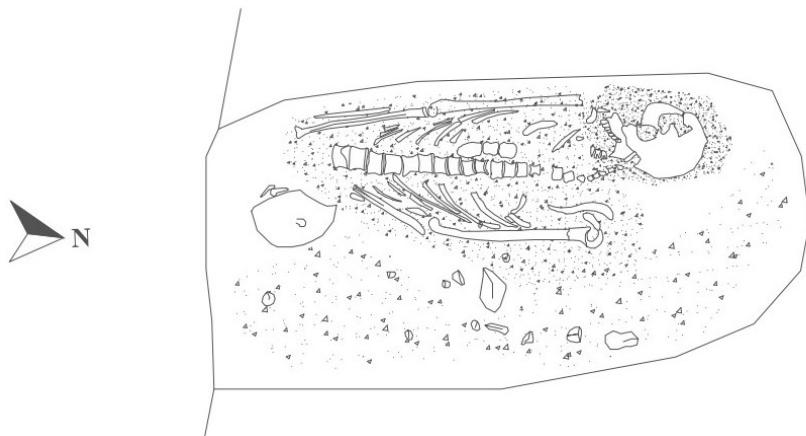
ΣΥΣΤΗΜΑΤΙΚΗ ΑΡΧΑΙΟΛΟΓΙΚΗ
ΕΡΕΥΝΑ ΣΤΟ ΧΙΛΙΟΜΟΔΙ
ΚΟΡΙΝΘΙΑΣ

767
768 **Supplementary Figure S22.** The Roman graves in the cemetery of Tenea (Palaio Scholeio, Hasikidis plot). Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of
769 Culture, Greece.
770
771
772

773 -**Grave 07:** The pit - kalyvites grave (**Supplementary Figure S23**), oriented E-W, was
774 excavated on 06/10/2016, in the cemetery of Tenea (Palaio Scholeio, Hasikidis plot). The
775 grave was found intact, with dimensions 1.50 × 0.60 m. The grave contained the burials of
776 three children. The main child, aged about 5 years old (Individual 1) was placed in an extended
777 position, while the skulls and some long bones of two other children were found toward the
778 west of the main burial. The individuals were accompanied by a glass unguentarium (perfume
779 bottle), a needle and several nails. The chronology is based mostly on the grave offerings and
780 dates to the Roman Period (3rd century CE).
781 Deep-sequenced individual: Individual 1, **Ten_Pel_Rom_3**.
782

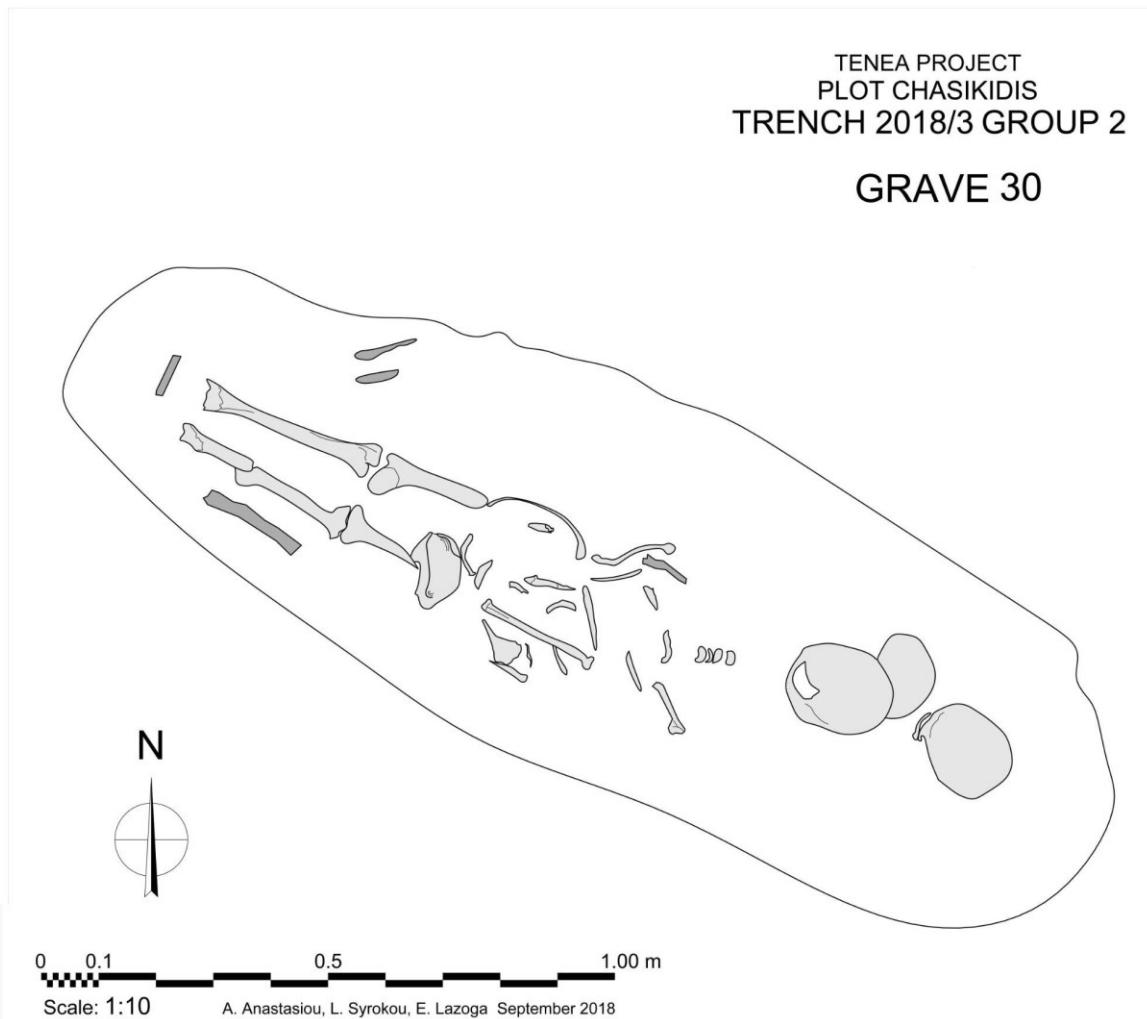
783
784 **Supplementary Figure S23.** Grave 07, cemetery of Tenea (Palaio Scholeio, Hasikidis plot).
785 Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of Culture, Greece.

786 -**Grave 15:** The pit - kalyvites grave (**Supplementary Figure S24**), oriented N-S, was
787 excavated on 15/09/2017 in trench 2017/4, in the cemetery of Tenea (Palaio Scholeio,
788 Hasikidis plot). The grave was found intact, with dimensions 1.17 × 0.52 m. The grave
789 contained the burial of one child, aged about 7 years. The individual was accompanied by a
790 lamp bearing an image of Aphrodite, a ceramic plate and a coin. The chronology is based
791 mostly on the grave offerings and dates to the Roman period, (2nd century CE).
792 Deep-sequenced individual: **Ten_Pel_Rom_2**.


793

794

795 **Supplementary Figure S24.** Grave 15, cemetery of Tenea (Palaio Scholeio, Hasikidis plot).
796 Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of Culture, Greece.


797 -**Grave 22**: The pit-grave (**Supplementary Figure S25**), oriented NW-SE, was excavated on
798 06/10/2017 in trench 2017/2, in the cemetery of Tenea (Palaio Scholeio, Hasikidis plot). The
799 pit grave carried a porous lid. The dimensions of the grave are 1.00 × 0.60 m. The grave
800 contained the burial of a woman aged around 18 years old and a fetus around 20–22 weeks
801 old, found in the pelvic area. The individuals were accompanied by a gold foil, while remains,
802 probably of a wooden carrier, were collected along with iron nails. From the evidence of the
803 burial assemblage, it is not possible to determine the chronology of the grave, although it most
804 likely belongs to the roman period (31 BCE - 330 CE).
805 Deep-sequenced individual: Individual 1 (adult), **Ten_Pel_Rom_4**.
806

Tenea Project 2017
Grave 22 B
Scala: 1:20
Chiara Tesserin

807
808 **Supplementary Figure S25.** Grave 22, cemetery of Tenea (Palaio Scholeio, Hasikidis plot).
809 Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of Culture, Greece.

810 -**Grave 30:** The pit - kalyvites grave (**Supplementary Figure S26**), oriented SE-NW, was
811 excavated on 07/09/2018 in the cemetery of Tenea (Palaio Scholeio, Hasikidis plot). The grave
812 contained three burials of two adults (Individual 1 and Individual 3) and one child (Individual
813 2). The individuals were accompanied by a gold earring, handless vase, lekanis, bone pins,
814 and a Hellenistic coin placed as *Charon's obol*. The chronology is based on the grave offerings
815 and dates to the Roman period (3rd - 4th century CE).
816 Deep-sequenced individual codes: Individual 2 (child), **Ten_Pel_Rom_1**.
817

818
819 **Supplementary Figure S26.** Grave 30, cemetery of Tenea (Palaio Scholeio, Hasikidis plot).
820 Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry of Culture, Greece.

821 **3. Ancient DNA Analysis**

822 **3.1 Sample Preparation**

823 ***Despoina Vassou, Sevasti Koursioti, and Nikolaos Psonis***

824
825 All analyses, that is, sample processing, DNA extraction, and genomic library
826 preparation were performed in the cleanroom facilities of the Ancient DNA Lab at IMBB-
827 FORTH. Negative controls (DNA-free) were included in all steps of the experimental procedure
828 (DNA extraction, library preparation, and PCR amplification) to control for exogenous DNA
829 contamination. Details on the analyses conducted for each sample are provided in **Additional**
830 **file 1**.

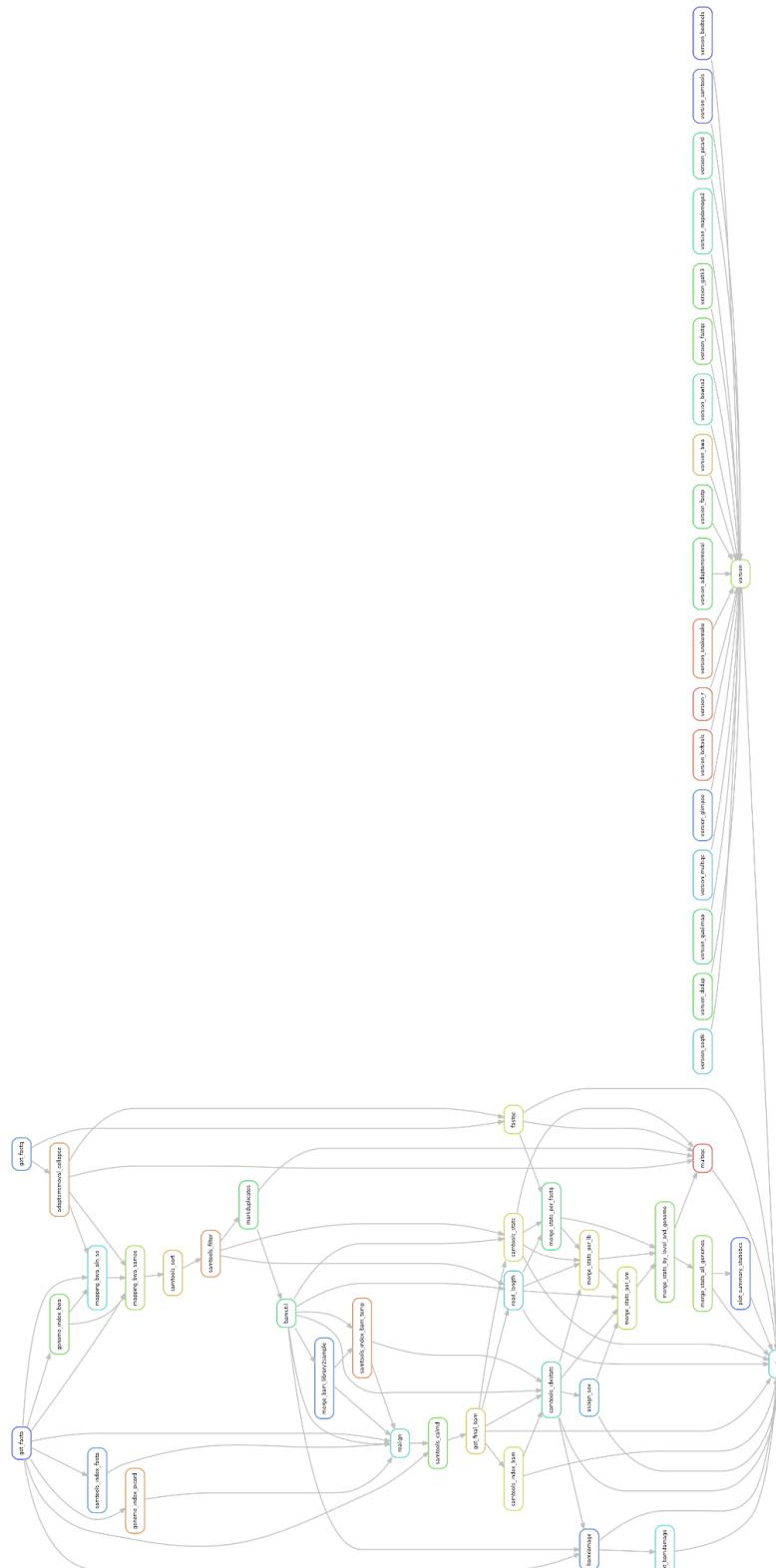
831 ***Dental samples processing***

832 For all dental samples, we used the minimally destructive dental root cementum
833 decalcification method of Harney *et al.* [52]. Briefly, the outer surface of the tooth was
834 decontaminated by a series of gentle washes using a cotton swab, starting with water, then
835 0.5% sodium hypochlorite solution (bleach), water again to remove all bleach traces, and
836 finally absolute ethanol to remove all water traces. The samples were left to dry completely
837 and were subsequently UV irradiated (6 J/cm² at 254 nm) in a UVP CL-1000 UV Crosslinker
838 for 10 mins on each side. Each dental root was submerged in a 1 ml extraction buffer (0.45M
839 EDTA, 0.05% Tween 20, Proteinase K 0.25 mg/ml) at 42 °C under mild agitation. The buffer
840 was exchanged after 24 hours in some cases, if cementum was still visible. DNA extraction
841 and purification was performed using the magnetic beads-based protocol of Rohland *et al.*
842 [53] with buffer D.

843 ***Pars petrosal samples processing***

844 For the majority of the temporal bone samples, the outer surface of the petrous area
845 was cleaned using a diamond disk at low speed with a multitool drill (ProLab Basic Laboratory
846 Control, Bien Air, Switzerland). *Pars petrosal* was isolated and powdered using pliers. For one
847 sample (Amv_Epi_Arch_3), we used the minimally destructive petrous bone powder sampling
848 method of Orfanou *et al.* [54] that involves targeted drilling toward the petrous area without
849 cutting the bone. Before drilling, the outer surface of the petrous bone was decontaminated in
850 the same way as described above for the teeth. For all *pars petrosal* samples, approximately
851 50-150 mg of powder were used for demineralization, DNA extraction and purification using
852 either the magnetic beads-based or the large-volume column-based protocol of Rohland *et al.*
853 [53] with buffer D.

854 ***Genomic libraries and sequencing***


855 Double stranded, blunt-end libraries were constructed following published protocols
856 [55,56], albeit by substituting buffer BL01 with buffer D [57] to enrich for smaller fragments of
857 DNA. No library pre-treatment was used during pre-screening. The number of
858 amplification/indexing PCR cycles for each library was determined with qPCR. Single or
859 double indexing was performed for pre-screening purposes. Purification of amplified libraries
860 was performed twice with AMPure XP Beads (BeckMan Coulter, Inc., USA) at a 1:1.8 ratio
861 (DNA:beads). Quality control and quantification of the libraries was performed with Qubit

862 (Thermo Fisher Scientific, Inc., USA) and Bioanalyzer (Agilent Technologies, Inc., USA).
863 Endogenous DNA content and post-mortem deamination (PMD) damage was initially
864 estimated via shallow sequencing on an Illumina NextSeq500 platform using either, single-
865 end (1×75), or paired-end (2×75) chemistry (Genomics Facility, IMBB-FORTH, Greece).

866 For deeper sequencing on selected samples and libraries (useful mapped content
867 >1.0%), we prepared fresh libraries (from previous or new DNA extractions) following the same
868 procedure as above, albeit with two modifications: a) pre-treatment of the libraries with the
869 USER™ enzyme (New England BioLabs Inc., USA) for 30 min [partial UDG-treatment method
870 of Rohland *et al.* [58]] in order to reduce deamination misincorporation in the DNA sequence
871 data and b) double indexing with unique 8bp barcodes in order to reduce potential cross-
872 sample contamination issues during indexing. USER treatment was not performed for two
873 samples (Amv_Epi_Arch_2 and Amv_Epi_Arch_3). Deeper sequencing was performed in an
874 Illumina Novaseq6000 platform (Macrogen, Inc., South Korea), using paired-end (2×100 and
875 2×150) chemistry.

876 3.2 Read Processing, Damage estimation, Genetic sex
877 determination

878 **Nikolaos Psonis**

879
880 **Supplementary Figure S27.** Rulegraph of the mapache pipeline used in this study, as
881 produced by snakemake. The graph depicts the second mapache run that includes bamUtil.

882 Initial analyses using the raw reads were performed at three levels: (a) at the FastQ
883 level corresponding to the sequencing reads in each FastQ file, (b) at the library level,
884 corresponding to multiple BAM files from the same (PCR amplified) library, and (c) at the level
885 of individuals, corresponding to multiple BAM files from the same individual. All analyses were
886 performed as implemented in the mapache v.0.3.0 commit f1316e1 [59] pipeline
887 (**Supplementary Figure S27**) by using the snakemake v.7.18.2 workflow manager [60] with
888 parameter `--notemp` to retain intermediate files that are required for downstream analyses
889 (e.g., the BAM files at the FastQ or the library level). In order to ensure reproducibility of the
890 results, our mapache configuration (config.yaml) and samplelist files are available at
891 <https://doi.org/10.5281/zenodo.10848927>.

892 Note that pre-screening data were exclusively used to identify the most promising
893 libraries for deep sequencing and are not included in the final dataset (i.e., not merged with
894 the deep sequencing data).

895 All computational analyses were conducted on an AMD EPYC 7452 system with 64
896 physical cores and 1 TB of RAM running Ubuntu 20.04.6 LTS.

897 3.2.1 Analyses at the FastQ level

898 We received already de-multiplexed sequences from the sequencing facility. De-
899 multiplexing relied on the two 6- to 8-bp barcodes of each double-indexed library. Initial quality
900 control was performed for each FastQ file using FastQC v.0.11.9
901 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Using AdapterRemoval v.2.3.2
902 [61] the raw sequences were filtered using a base quality of 2 [default value; values > 2 yield
903 a larger amount of short sequences that will not be propagated to the mapping step; stricter
904 base quality filtering (Illumina proposed values of >20-30 that equal to 0.01-0.001 error
905 probability) is applied *after* mapping (see downstream analyses)] to remove low quality bases
906 from the read ends, trimmed for Illumina adapters and stretches of ambiguous bases (Ns).
907 Paired-end reads were merged by requiring at least 11 bp (default value; a corresponding
908 parameter exploration with 9 up to 11bp showed no substantial difference in results) overlap
909 between the pairs, whereas merged reads shorter than 30 bp were discarded to avoid mere
910 random matches [see e.g. 62] in the next step (parameters used: `--trimqualities --`
911 `gzip --trimns --collapse --minalignmnetlength 11 --minlength 30`). Only
912 the output with fully (non-truncated) collapsed reads was used for downstream analyses.
913 FastQC was then used again to verify that (i) trimming was successful and (ii) to assess the
914 post-adapter-removal quality of the reads.

915 The merged reads were mapped to the 1000 Genomes project version of the human
916 reference genome *hs37d5* [63] using BWA v.0.7.17 [64] and the *aln/samse* algorithm using
917 settings optimized for aDNA reads, including disabling the seed length (`-l 1024`) and using
918 `-n 0.01` (the fraction of missing alignments given a 2% uniform base error rate) and `-o 2`
919 (maximum number of gap openings) to allow for higher sensitivity [65] and to minimize
920 reference bias in downstream population genomics analyses [66]. Informative read groups
921 (RG) were also added during the above step (using `-r`) to keep track of PCR-parallels.
922 SAMtools v.1.14 [67] was used to sort the uniquely mapped reads by chromosome order (*sort*
923 function) and to filter them using the *view* function for a mapping quality of 30 (`-q30`) such as
924 to only keep alignments with but a few mismatches, remove reads with flag 4 (denoting an
925 unmapped read) in their header (`-F4`), and index (*index* function) the final BAM file. Note that

926 indexing was also performed in all BAM outputs generated by the intermediate steps outlined
927 below.

928 Trimming and mapping metrics reported by mapache at the FastQ level include (a) the
929 absolute number and proportion of fully collapsed reads from the total number of raw reads
930 (reported by mapache as trim_prop and reads_trim, respectively), as well as their mean length
931 (length_reads_trimmed) and (b) the absolute number and the proportion of mapped reads -
932 including duplicates - from the total number of raw reads, known as *mapped content* (reported
933 by mapache as mapped_raw and endogenous_raw, respectively), as well as their mean length
934 (length_mapped_raw). All of the above metrics are provided in **Additional file 2**.

935 **3.2.2 Analyses at the library level**

936 Multiple BAM files from the same library were merged with SAMtools *merge*.
937 Duplicated sequences (PCR clones and single amplification clusters incorrectly detected as
938 being multiple clusters by the sequencer's optical sensor; also known as optical duplicates) at
939 the library level were removed using the *MarkDuplicates* function of the Picard software tool
940 [68].

941 Mapping metrics calculated by mapache at the library level included the same metrics
942 as at the FastQ level, but also (a) the absolute number and proportion of duplicate reads in
943 the overall number of mapped reads (reported by mapache as duplicates and duplicates_prop,
944 respectively) and (b) the absolute number and proportion of uniquely mapped (non-duplicate)
945 reads in the overall number of reads, known as *useful mapped content* (reported by mapache
946 as mapped_unique and endogenous_unique, respectively), as well as their length
947 (length_mapped_unique). In addition, we manually calculated (c) the *endogenous DNA*
948 *content* (ratio of number of mapped reads, including duplicates, over the number of fully (non-
949 truncated) collapsed reads), (d) *the efficient endogenous DNA content* (number of mapped
950 reads, excluding duplicates, to the number of fully collapsed reads). All mapping metrics
951 mentioned above are provided in **Additional file 2**.

952 Based on a visual inspection of the damage plots (see below) and to avoid
953 incorporating incorrect sequence information caused by *post-mortem* deamination at either
954 end of the reads, we soft-clipped (a) six bases at either ends of each read in libraries obtained
955 by shotgun sequencing *without* UDG (USERTM) treatment and (b) two bases at either ends of
956 each read from libraries treated *with* UDG. Soft clipping was performed using the *trimBam*
957 function of bamUtil v.1.0.15 [69].

958 To investigate the level of *post-mortem* DNA degradation, such as DNA fragmentation
959 and deamination (C-to-T for both ds- and ss-libraries and G-to-A transitions for ds-libraries
960 only), the uniquely mapped deduplicated sequences were analyzed with a modified version⁷
961 (see [https://github.com/sneuensc/mapache/wiki/3.-Config-file-\(parameters\)](https://github.com/sneuensc/mapache/wiki/3.-Config-file-(parameters))) of bamdamage
962 [70] as implemented in the mapache pipeline using 10,000 reads per BAM file. By default,
963 mapping quality and base quality thresholds were set to 30 and 20, respectively, in order to
964 keep well-aligned and high-quality reads only. Deamination damage values are provided in
965 **Additional file 3**.

⁷ the following changes were made:

- speed up: there is now a subsampling (every nth alignment) if desired. Can be specified in the config file.
- Output is not just the pdf, but also the underlying data. The figure is improved and the y-axis of R1 and R2 have the same scale.

966 Note that in the mapache pipeline, the bamUtil program is executed before
967 mapdamage. Thus, in order to properly estimate deamination damage, the mapache pipeline
968 was run twice as described in the next section.

969 3.2.3 Analyses at the individual level

970 Multiple BAM files from the same individual were merged via the SAMtools *merge*
971 function. We did not remove identical sequences at the individual level as these represent
972 original DNA fragments from different cells of the same individual, rather than duplication
973 artifacts from our analysis procedure. Local indel re-alignment was performed at the individual
974 level using the RealignerTargetCreator and IndelRealigner tools of GATK v.3.8 [71] after
975 recomputing the MD tag using the SAMtools *calmd* function. The mean genome depth (as well
976 as that of the X and Y chromosomes and of the human mitogenome) coverage was determined
977 at the individual level using Qualimap v.2.2.2d [72]. Mapping metrics calculated by mapache
978 at the individual level were the same as those mentioned for the library level, as well as the
979 mean depths of coverage. All mapping metrics mentioned above are provided in **Additional**
980 **file 2**. Overall, the total raw sequences per individual ranged from 77232103 to 2379802838,
981 the proportion of fully collapsed reads was between 65.45% and 84.21%, the mapped content
982 varied between 1.27% and 48.42% with a proportion of duplicated reads ranging from 16.57%
983 to 27.80%. The mean coverage depth exceeded $\sim 0.05 \times$ (0.07 - 6.31 \times) for all 26 individuals.

984 Genetic sex inference was performed using two approaches. First, we used the Rx
985 method [73] as implemented in mapache. This method relies on the ratio of the normalized X-
986 chromosome coverage depth to the normalized autosomal depth. Secondly, we manually
987 applied (not in the mapache pipeline) the Ry method [74] using the python script provided by
988 the authors (the input was piped via SAMtools *view*). This method is based on the ratio of the
989 reads mapped exclusively to Y, and to both, X, and Y chromosomes, respectively. The results
990 are provided in **Additional file 3**. Overall, the genetic sex inference analyses confirmed that
991 nine individuals were males and 17 were females. Both methods used mostly agreed with
992 each other (albeit the Ry method failed to assign sex in three cases).

993 As mentioned above, in the mapache pipeline the program bamUtil is executed at the
994 library level *before* mapdamage. Thus, the mapache pipeline was run twice: (a) First, we
995 disabled the bamUtil program in the mapache configuration file. The BAM files of the run
996 containing *post-mortem* damage were not used for downstream analyses, with the exception
997 of a mtDNA-based contamination estimation analysis (see section 4.3). (b) For the second
998 run, we renamed the main output directories of mapache (*0_2_library*, *0_3_sample*), enabled
999 bamUtil, and generated the BAM files at the library and individual level using data without *post-*
1000 *mortem* damage. We used these BAM files for downstream population genomics analyses.

1001 All individuals' genetic data were characterized by an ancient-like DNA signature. More
1002 specifically, in the USER-treated libraries, the C-to-T and G-to-A deamination damage at the
1003 two first bases of the read ends showed a "spike" pattern, with the C-to-T damage at the first
1004 base of the 5' end of the reads (**Additional file 3**) ranging (among the different libraries) from
1005 7.74% to 36.97%. The two non-USER-treated libraries (256_1_B_ly2_ex1_lib2 and
1006 299_B_ly1_ex1_lib1) displayed the classic "smiley" pattern and their 1st-base-5'-end C-to-T
1007 damage was 54.09% and 42.30%, respectively. In conjunction with the deamination damage,
1008 the mean fragment length of the deduplicated mapped reads of each library (**Additional file**
1009 **2**) correspond to the characteristics of degraded DNA, ranging from ~ 39 bp to ~ 80 bp
1010 (collapsed-reads; 150 sequencing chemistry was used). As expected, the damage plots at the

1011 library level did not show the deamination effect for the second run, in which bamUtil was
1012 used.

1013 3.3 Contamination estimation

1014 **Nikolaos Psonis**

1015
1016 Genome authenticity was further verified by using four distinct contamination
1017 estimation approaches, all performed at the individual level. One approach is X-chromosome-
1018 based, one is nuDNA, and two are mtDNA-based. In the analyses below, indexing of BAM
1019 and FastA files was performed with the SAMtools *index* and bwa *index* functions, respectively.

1020 First, we performed an mtDNA-based contamination estimation by using contamMix
1021 v.1.0-10 [76] with a minimum base quality filter of 30 (default value) to only retain bases of
1022 good quality and a set of 311 modern mitochondrial genomes from around the globe [77]
1023 serving as sources of potential contamination. For this method, it is necessary to construct the
1024 consensus mtDNA sequence from the BAM files. To this end, the majority-rule consensus
1025 sequence was computed with ANGSD v.0.941-6-g67b6b3b [78] using the following
1026 parameters: `-doCounts 1 -minMapQ 30 -minQ 30 -doFasta 2`, in order to exclusively
1027 use well-aligned reads. Hence, as input files in contamMix we used: (a) `--samFn` (BAM
1028 format): mitochondrial mapped reads (MT-reads) from the full alignment file with clipped
1029 deaminated bases (second mapache run; see above), extracted using SAMtools *view* and (b)
1030 `--malnFn` (FastA format): a multiple sequence alignment (MSA) containing the consensus
1031 mitogenome above and the aforementioned 311 worldwide modern mitochondrial genomes.
1032 The MSA was computed with the automatic mode of mafft v.7.505 [79].

1033 Secondly, we performed a second, independent mtDNA-based contamination
1034 estimation with schmutzi v.1.5.6 [80]. MT-reads from the full alignment file that contained
1035 deaminated bases (first mapache run; see above), were extracted using SAMtools *view* and
1036 realigned against rCRS only (using bwa and SAMtools; same parameters as in **Section 3.2**)
1037 as proposed by the software developers. Recomputing the MD tag of the mtDNA BAM files
1038 that provides information about the reference base and is used for SNP/indel calling without
1039 taking into account the reference was performed with SAMtools *calmd*. According to the
1040 workflow recommended by the developers for ancient samples, we first applied the *contDeam*
1041 method to estimate initial contamination and endogenous deamination rates. Depending on
1042 the library type, we set the `--library` option to single or double and we also considered
1043 only two bases at both read ends as being deaminated (`--lengthDeam 2`). Following this,
1044 we called the actual schmutzi method (*mtcont*), that is, the iterative procedure without the
1045 prediction of the contaminant (`--notusepred`), but also with contaminant prediction. As
1046 potential contamination sources we used a database of 197 mitochondrial allele frequencies
1047 that are provided with the schmutzi software.

1048 Thirdly, we used an X-chromosome-based contamination estimation on XY samples
1049 by using the contamination function of ANGSD based on haploid X-chromosomal regions
1050 (`x:5000000-154900000`). First, we ran ANGSD with the options `-minMapQ 30`, `-minQ`
1051 `30`, `-doCounts 1`, and `-iCounts 1`, in order to only use well-aligned reads. Then, we
1052 executed contamination providing the publicly available HapMap file *HapMapChrx.gz*
1053 (<https://github.com/ANGSD/angsd/tree/master/RES>).

1054 Finally, we used ContamLD, an autosomal contamination estimation software that
1055 utilizes the fact that contamination breaks down the expected patterns of linkage disequilibrium
1056 in the endogenous genome. As a 1000G panel we used the TSI (Toscany, Italy) one (1240K
1057 panel available here: <https://reichdata.hms.harvard.edu/pub/datasets/release/contamLD/>).

1058 All contamination estimation analyses mostly supported each other (**Additional file 3**)
1059 resulting in >98.49% authenticity levels in ContamMix, <4% contamination estimates in
1060 schmutzi (if analysis applicable; both with and without --notusepred), and <1.62%
1061 contamination estimates based on X-chromosome in XY samples. ContamLD resulted in
1062 negative contamination estimates (damage correction version) and a “Model_Misspecified”
1063 warning, which according to the developer this usually means the coverage is very low and
1064 the estimate might not be reliable. Changing the panel to CEU did not change the end result.

1065 3.4 Uniparental haplogroup estimation

1066 **Nikolaos Psonis**

1067

1068 The classification to mitochondrial and Y-chromosomal haplogroups was performed
1069 using data at the individual level from reads with clipped deaminated bases (second mapache
1070 run; see above).

1071 3.4.1 mtDNA

1072 We generated the mtDNA consensus sequence for each individual by using the MT-
1073 reads from the BAM file after mapping against *hs37d5* (extracted with SAMtools *view*). The
1074 majority-rule consensus sequence in both cases was called with ANGSD using the following
1075 parameters: `-doCounts 1 -minMapQ 30 -minQ 30 -setMinDepth 2 -doFasta 2`,
1076 in order to only use well-aligned reads and avoid misincorporation of sequencing errors. The
1077 classification to haplogroups was performed with the webtools HaploGrep3 v.3.3.2.1 [81] and
1078 HaploCart v.1.0 [82] for the sake of comparison and cross-validation. The results are given in
1079 **Additional file 3**. The mitochondrial haplogroup assignment by the two methods used was
1080 almost identical, albeit in a few cases (10/26), the two methods produced different
1081 assignments to the most external leaf of the mitochondrial tree.

1082 The LBA Ammotopos samples were assigned to the J1c(or 2) and T2b3 haplogroups.
1083 Amvrakia included H15a1b, T1a4, and U5a1g1 during the Archaic period, H, K1a2, N1a1a1(or
1084 b), and T2b(6 or 3c) during the Classical period, and H46, J2b1(or a) and W(+194 or 9) during
1085 the Hellenistic period. An additional individual from the late Classical - Hellenistic times was
1086 assigned to the H5a(3 or 3a) haplogroup. Finally, Tenea included T1a4 during the Archaic
1087 period, T2n and U3a3 during the Hellenistic period, and N1a1a(+152 or 2), U1a1c(or 1), and
1088 U3a3 during the Roman period.

1089 According to the Allen Ancient DNA Resource (Version 8;
1090 [aadr_v.54.1.p1_1240K_public](#); [83]), the aforementioned haplogroups have been observed:
1091 a) J1c in multiple individuals in Neolithic to Medieval Europe and Middle East, including IA
1092 Greece, b) J1c2 only in Neolithic to Medieval Europe, but not in Greece, c) T2b3 in prehistoric
1093 Europe, but not in Greece, d) H15a1b, in only one individual in LBA-EIA Armenia, e) T1a4
1094 only in a couple of Neolithic to Medieval Europe, but not in Greece, f) U5a1g1 in prehistoric
1095 Eurasia, but not in Greece, g) H in individuals in Neolithic to Medieval Europe and Middle East,
1096 including Neolithic, BA, but also Roman Greece, h) K1a2 in individuals in Neolithic to Medieval
1097 Europe and Middle East, including Neolithic and BA Greece, i) N1a1a1 predominantly from
1098 Neolithic Europe, but not in Greece, j) N1a1a1b has not been observed, k) T2b6 has not been
1099 observed, l) T2b3c only in Neolithic Ireland, m) H46 in prehistoric Europe, but not in Greece,
1100 n) J2b1 in prehistoric and historical Europe and Middle East, but not in Greece, o) J2b1a in
1101 Neolithic to Medieval Europe, but not in Greece, p) W194 in prehistoric Europe, but not in
1102 Greece, q) W9 only in one individual from Ottoman Anatolia, r) H5a3 in BA Germany, only, s)
1103 H5a3a in a couple ancient European individuals, but not in Greece, t) T2n has not been
1104 observed, u) U3a3 only in BA Jordan, v) N1a1a+152 in prehistoric Europe and Middle East,
1105 but not in Greece, w) N1a1a2 has not been observed, x) U1a1c in prehistoric and historical
1106 West Asia, and y) U1a1c1 in BA Iran and in Medieval Russia.

1107 3.4.2 Y-chromosome

1108 Classification into Y-chromosomal haplogroups was performed using Yleaf v.3.1 [84]
1109 with a minimum read quality of 30 (-q 30), a minimum percentage of a base result for
1110 acceptance of 90 (-b 90), in order to only use well-aligned reads and avoid misincorporation
1111 of sequencing errors and the *hg19* reference genome (-rg hg19) and its accompanying
1112 *predict_haplogroup.py* python script. The minimum prediction score was 0.95 (set by default).
1113 This version of Yleaf uses YFull (v.10.01) for the underlying haplogroup tree structure.

1114 For the sake of comparison and verification, we also used Yhaplo v.1.1.2 [85]. First,
1115 by piping the BCFtools v.1.15 [86] *mpileup* and *call* modules, we called and filtered SNPs
1116 found at the Y chromosome (-r Y), kept bases with base quality>=30 (-q 30) and reads with
1117 mapping quality>=30 (-Q 30) to ensure that only well-aligned reads were used, and we
1118 downgraded mapping quality for reads containing excessive mismatches (--adjust-MQ 50;
1119 value recommended by the developers) to avoid keeping (small, ancient) reads that originate
1120 from another region or a different species. We also set ploidy to 1 (--ploidy 1; Y-
1121 chromosome is haploid) and selected the multiallelic caller (-m) designed for rare-variant
1122 calling. Then, using the BCFtools *norm* module, we performed normalization (left-alignment
1123 and normalization of indels; check if REF alleles match the reference; split of multiallelic sites
1124 into multiple rows; recovery of multiallelics from multiple rows). Finally, we ran Yhaplo with the
1125 -aao parameter in order to generate all auxiliary outputs. Yhaplo uses the ISOGG Y-DNA
1126 Haplogroup Tree (2016.01.04; <https://isogg.org/tree/>). The results are given in **Additional file**
1127 **3**. The Y-chromosome haplogroup assignment to the major haplogroups by the two methods
1128 used in the present study was identical (9/9). However, due to partial coverage of the Y-
1129 chromosome, the estimated haplogroups may not represent the assignment of the samples to
1130 the most external node of the Y-chromosomal tree.

1131 The male LBA Ammotopos sample was assigned to G2a2b2a1a1c1a, the male
1132 Amvrakia samples were assigned to J2 and T1a2 (Classical period) and E1b1b1 (Hellenistic
1133 period), and the male Tenea samples were assigned to T1a2 (Archaic period), E1b1b1a1b1
1134 (Hellenistic period), and R1b1a2a2a and J2a1b1 (Roman period). The Allen Ancient DNA
1135 Resource (Version 8; aadr_v.54.1.p1_1240K_public; [83]) does not include entries from
1136 prehistoric or historical Greece for any of the aforementioned haplogroups.

1137 3.5 Population Genomics analysis

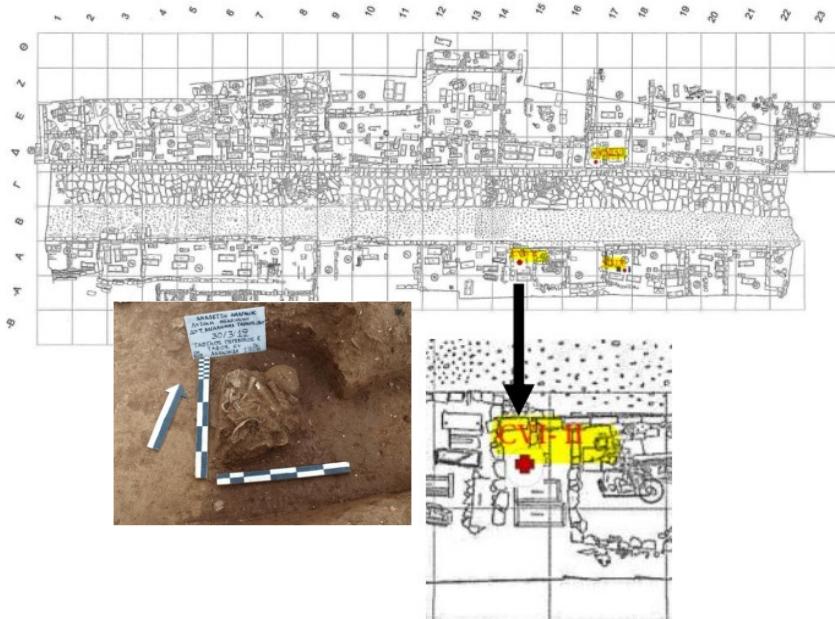
1138 ***Stefanos Papadantonakis, Angelos Souleles, Pavlos Pavlidis, Angeliki Papadopoulou,***
1139 ***and Nikolaos Psonis***

1140 3.5.1 Lists of genomic sites

1141 We used two different lists of genomic sites, one containing ~1.24 million sites, known
1142 as 1240K [87] that is extensively being used in human archaeogenomics research, and
1143 another one containing ~5 million sites (5M_auto; 5M hereinafter) that was recently generated
1144 [88]. The lists are provided at <https://doi.org/10.5281/zenodo.10848927>.

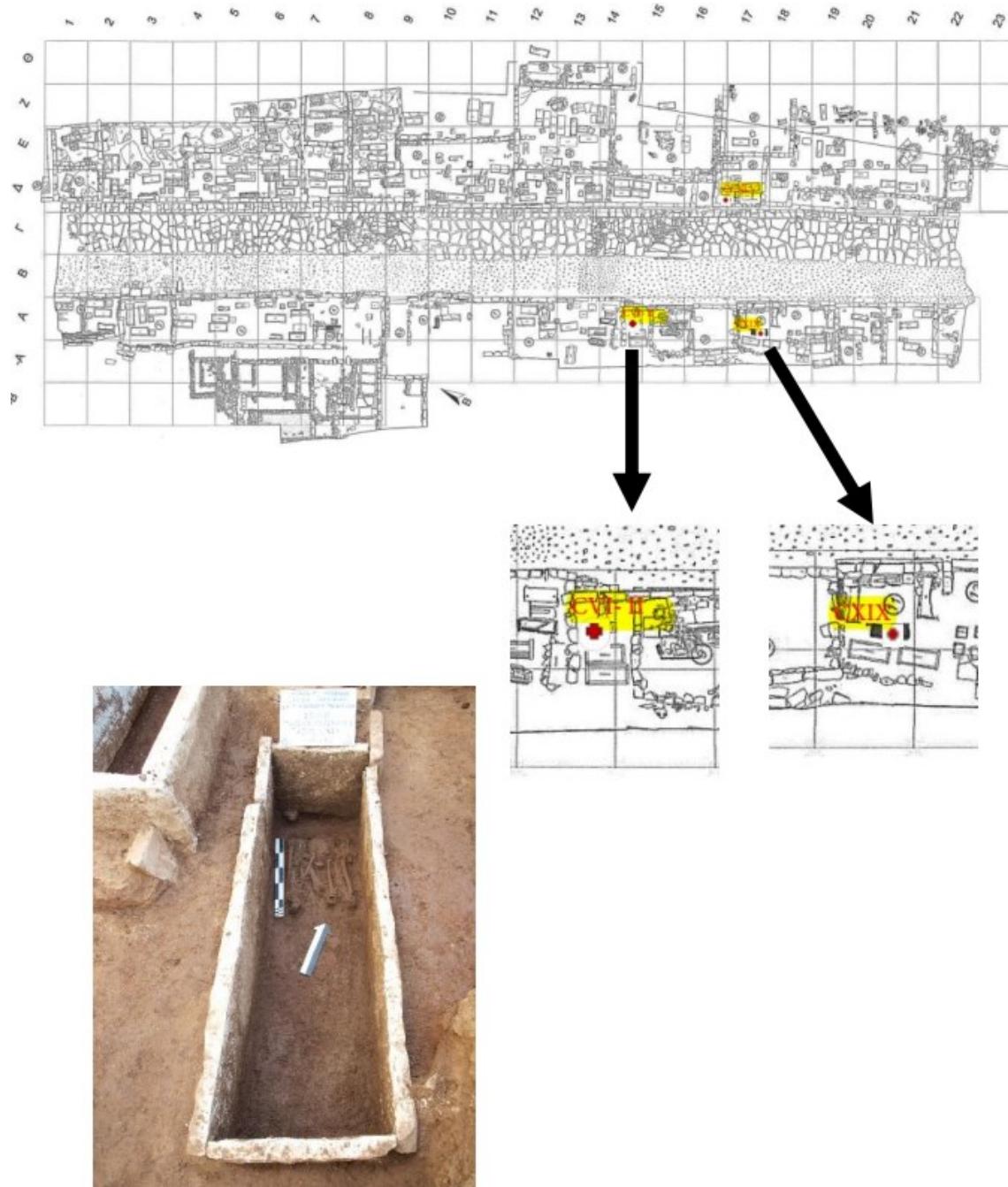
1145 3.5.2 Genotype calling and pseudohaploidization

1146 For each of the aforementioned two lists of genomic sites (see section 4.5.1), SNP
1147 calling (in pileup format) per individual was performed with the SAMtools *mpileup* function by
1148 providing the position of sites in the reference genome, disabling the per-Base Alignment
1149 Quality, known as BAQ (-B) to reduce reference bias, ignoring read groups (RG) tags (one
1150 BAM = one sample), and skipping alignments and bases with mapping and base quality,
1151 respectively, smaller than 30, to only retain the well-aligned reads. Random
1152 pseudohaploidization was performed with the *pileupCaller* module of SequenceTools v.1.5.2
1153 (<https://github.com/stschiff/sequenceTools>) by providing the pileup file and an EIGENSTRAT
1154.snp file with the positions of each list of genomic sites, using the --randomHaploid
1155 parameter, and selecting EIGENSTRAT as output format. The sex field in the output individual
1156 (ind) file was annotated using the result of the genetic sex inference above (see section 4.2).
1157 Calculation of coverage depth for the distinct lists of genomic sites was performed with the
1158 eigenstrat_snp_coverage.py v.1.1.0 python script
1159 (<https://github.com/TCLamnidis/EigenStratDatabaseTools>).


1160 We merged individual EIGENSTRAT files to assemble different datasets (see below)
1161 with the EIGENSOFT v.7.2.1 [89] *mergeit* function and converted them to PACKEDPED (BED)
1162 files with the *convertf* function of the same software package.

1163 3.5.3 Genetic relatedness analysis

1164 To assess genetic relatedness, we used two different approaches developed for aDNA
1165 data, Relationship Estimation from Ancient DNA (READ) [90] and KIN v.3.1.3 [91]. READ can
1166 estimate up to 2nd-degree genetic relationships, whereas KIN identifies up to 3rd-degree
1167 genetic relatives provided at least $0.05\times$ sequence coverage. KIN can also disentangle
1168 siblings from parent-child pairs. As lists of genomic sites we used both, the 1240K, and 5M
1169 lists for the sake of comparison [following the procedure outlined in 92]. For the READ
1170 analysis, we first extracted the 22 autosomal chromosomes (only for the 1240K panel, 5M
1171 includes only autosomal sites) using PLINK v.1.90b6.21 [93] and selected tped as output
1172 format (--recode transpose). Then, we executed READ using the median normalization
1173 method to decrease the influence of outliers. For the KIN analyses, we used the *KIN*garoo
1174 module without contamination correction (-cnt 0) to generate the input files from bamfiles
1175 for the *KIN* module that followed. Although we report all resulting genetic relationships
1176 (<https://doi.org/10.5281/zenodo.10848927>), we considered only those as being valid, which
1177 yielded $|Z|>1$ for READ and $\Delta LL>1$ for KIN, as proposed by the respective tool developers.
1178 We discovered three cases of genetic relatedness, two in Ancient Amvrakia, and one in
1179 ancient Tenea:
1180


1181 Case 1 - Classical Amvrakia

1182 Grave CV (**Supplementary Figure S28**) contained two individuals (Amv_Epi_CI_5
1183 and Amv_Epi_CI_6) dated to the Classical period (375-350 BCE). Both individuals were
1184 anthropologically estimated to be children (2-12 years old), whereas their genetic sex was
1185 inferred as being female for both (XX; **Supplementary Table 3; Additional file 3**). They also
1186 shared the same mt-DNA haplogroup (K1a2; **Supplementary Table 3; Additional file 3**).
1187 These two Individuals were inferred, by both READ and KIN, as 1st-degree genetic relatives,
1188 with KIN identifying them as siblings. Hence, these two individuals can confidently be
1189 recognised as sisters.

1190
1191 **Supplementary Figure S28.** The location of grave CV in the western necropolis of Ancient
1192 Amvrakia and the CV1 burial (retrieval).

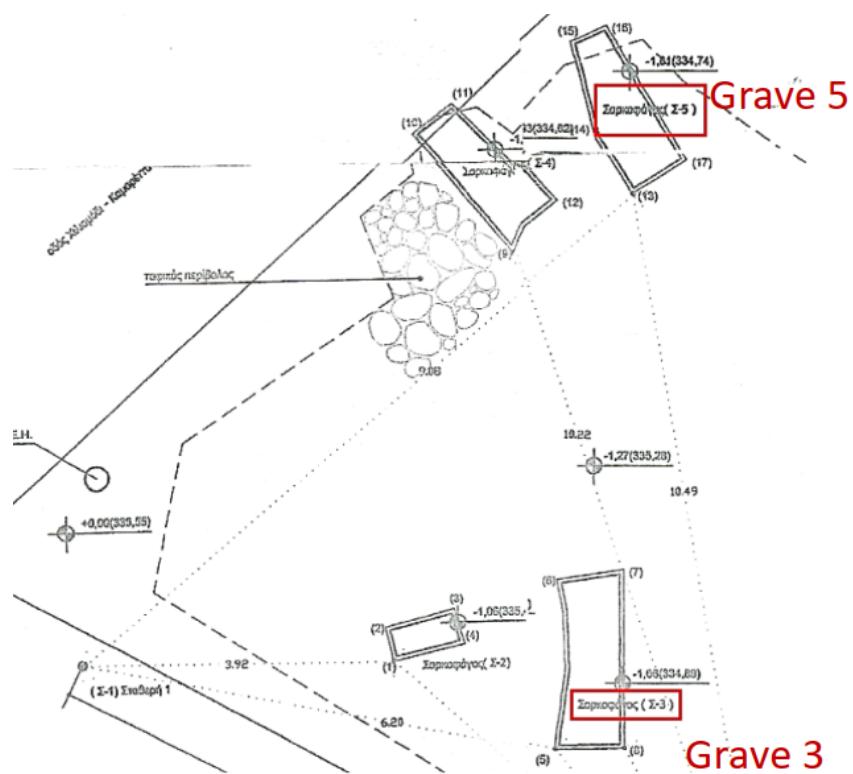
1193 Additionally, these two sisters were inferred (by both READ and KIN) to also have 2nd-
 1194 degree genetic relationships with a third individual (Amv_Epi_CI_1), found in a nearby grave
 1195 (CXIX A; retrieval; **Supplementary Figure S29**) dated to around the same time (375-350
 1196 BCE). Anthropologically, this individual was estimated to be a young (20-34 years old) female
 1197 (confirmed by genetic sex analysis; **Supplementary Table 3**; **Additional file 3**) and it belongs
 1198 to a different mtDNA haplogroup (N1a1a1; **Supplementary Table 3**; **Additional file 3**).
 1199 Hence, this individual could either be an aunt or the grandmother of the sisters (from their
 1200 father's side), or their stepsister from a different mother. Based on the dating of these three
 1201 burials and the age-at-death of Amv_Epi_CI_1, the second scenario (grandmother-
 1202 granddaughters) seems the least possible (although feasible).
 1203

1204
 1205 **Supplementary Figure S29.** The location of grave CXIX in the western necropolis of Ancient
 1206 Amvrakia and the CXIX A burial (retrieval).

1207 Case 2 - Hellenistic Amvrakia

1208 Grave CCXLV (**Supplementary Figure S30**) contained two individuals
1209 (Amv_Epi_Hel_3 and Amv_Epi_Hel_4) dated to the Hellenistic period. They were buried with
1210 a small chronological difference (175-125 BCE), as the burial of Amv_Epi_Hel_3 is a retrieval,
1211 whereas the one of Amv_Epi_Hel_4 is a primary burial. Anthropologically, the first individual
1212 was estimated to be an old (>50 years old) male (possibly), whereas the second individual
1213 was also old (>50 years old), albeit the sex could not be determined. According to our genetic
1214 analyses, both individuals were females and share the same mtDNA haplogroup (W+194)
1215 (**Supplementary Table 3; Additional file 3**). READ and KIN inferred them to have a 1st-
1216 degree genetic relationship, with KIN indicating a parent-child relationship. Based on the fact
1217 that the burial of Amv_Epi_Hel_3 is a retrieval, we consider it most likely that this individual
1218 was the mother and Amv_Epi_Hel_4 the daughter, although the grave dating and the age-at-
1219 death cannot exclude the opposite.

1220



1231
1232 **Supplementary Figure S30.** The location of grave CCXLV in the western necropolis of
1233 Ancient Amvrakia and the two burials (retrieval and primary).

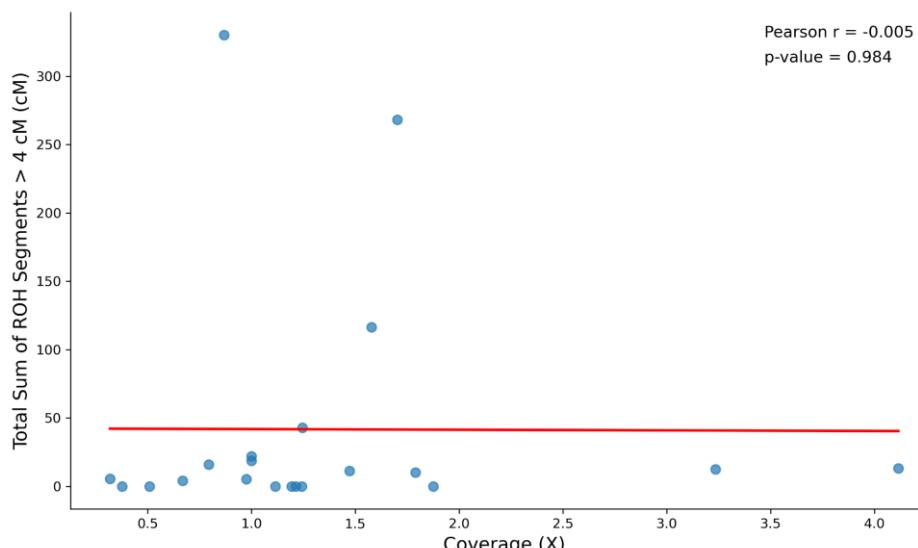
1234 Case 3 - Archaic Tenea

1235 At the Faneromeni-Kamareta site, two related individuals were found in two
 1236 neighboring graves (sarcophagi) dated to the Archaic period (**Supplementary Figure S31**).
 1237 Individual Ten_Pel_Arch_1 was found in grave 5 dated to 500 BCE, whereas individual
 1238 Ten_Pel_Arch_2 was found in grave 3 dated to 550-500 BCE. The first individual was
 1239 anthropologically determined to be an old (>50 years old) male, whereas the second a middle-
 1240 aged (50 years old) female. The genetic analyses confirmed their genetic sex and indicated
 1241 that they belong to the same mtDNA haplogroup (T1a4) (**Supplementary Table 3; Additional**
 1242 **file 3**). READ and KIN inferred their genetic relationship as being of 1st degree, with KIN
 1243 yielding a parent-child relationship. Given that they share the same mtDNA haplogroup, the
 1244 most likely scenario is that they are mother (Ten_Pel_Arch_2) and son (Ten_Pel_Arch_1),
 1245 rather than father and daughter.

1246

1247

1248 **Supplementary Figure S31.** The location of graves 3 and 5 in the Faneromeni-Kamareta site
 1249 of Ancient Tenea. Image(s) source: Archive of the Ephorate of Antiquities of Corinth, Ministry
 1250 of Culture, Greece.


1251 3.5.4 Runs of homozygosity

1252 Analyses of per individual Runs Of Homozygosity (ROH) levels were performed using
1253 the hapROH v.64 [94] software on the 1240K pseudo-haploid data in EIGENSTRAT format.
1254 We applied this method to individuals covering more than 300000 [95,96] sites on the 1240K
1255 panel (21/26). We followed the proposed pipeline presented in the Jupyter Notebook file called
1256 callROH_vignette.ipynb

1257 (<https://www.dropbox.com/sh/eq4drs62tu6wuob/AABM41qAErmI2S3iypAV-j2da?dl=0>), using
1258 the 1000 Genomes Project as a reference panel (in hdf5 format). The output of HapROH, as
1259 well as the script are available at <https://doi.org/10.5281/zenodo.10848927>.

1260 **Figure 5** displays the total length of ROH segments exceeding 4 cM that were detected
1261 in all the individuals analyzed here. The segments are categorized into four bins based on
1262 their length: 4-8 cM, 8-12 cM, 12-20 cM, and >20 cM. Shorter ROH segments in the 4-8 cM
1263 bin indicate a small population size, while longer segments in the >20 cM category suggest
1264 an isolated population and/or consanguinity practices. Individuals with a total of more than 50
1265 cM of ROHs in the >20 cM category are considered possible offsprings of close kin [94].
1266 **Supplementary Figure S32** presents a linear regression scatterplot showing the relationship
1267 between the total sum of ROHs and the genomic coverage of each individual, along with
1268 Pearson's r correlation coefficient. The p-value > 0.01 indicates no statistically significant
1269 correlation between detected ROHs and genomic coverage, indicating that the detected ROHs
1270 are not affected by sequencing depth.

1271

1272 **Supplementary Figure S32.** Linear regression scatterplot showing the relationship between
1273 the total sum of ROHs and the genomic coverage of each newly sequenced individual.
1274 Estimated Pearson's r correlation coefficient, as well as p-value shown in top right corner.
1275

1276

1277 3.5.5 Imputation and Identity-by-Descendent segments screening

1278 We imputed the newly produced ancient genomes of this study by using the 1000
1279 Genomes phase 3 [63] dataset as a reference and GLIMPSE v.1.1.1 [97]. We first reduced
1280 the 1kGP sites list by removing singletons (uninformative for imputation), and keeping only
1281 biallelic SNPs with the BCFtools v.1.14 view (-m 2 -M 2 -c 2) module as per [98]. This
1282 resulted in a total of 43285119 sites. Then, to generate genotype likelihoods, we used the

1283 ATLAS pipeline v.0.9 [99], by estimating *post-mortem* damage (`task=PMD`) and calculating
1284 genotype probabilities (`task=call method=MLE`). The *GLIMPSE_chunk* function was used
1285 to create smaller genomic chunks [window size: 2000000 and buffer-size: 200000 [98]] and
1286 *GLIMPSE_phase* to perform imputation for each chunk. For this step, chromosomal VCF files
1287 and a genetic map are required. We used the VCF files produced by ATLAS containing the
1288 ~43 million sites and the HapMap phase II NCBI *b37* genetic map [100]. Finally, the chunks
1289 were ligated and phased with *GLIMPSE_ligate* and *GLIMPSE_sample*, respectively.

1290 To infer shared Identity By Descent (IBD) segments between pairs of individuals in our
1291 dataset, we used the *ancIBD* v.0.5 tool [101], following the recommended by the developers
1292 processing procedure for our newly sequenced WGS data with at least 0.25× coverage (22
1293 out of 26; *Amv_Epi_CI_3*, *Amv_Epi_Hel_2*, *Amv_Epi_Hel_5*, and *Ten_Pel_Rom_4* were
1294 excluded). Firstly, as *ancIBD* parameters are optimized for the 1240K list of genomic sites, the
1295 phased/imputed data were reduced only to those sites. In addition the VCF files were
1296 transformed into hdf5 format. Both of these processes were conducted using the
1297 *ancIBD.IO.prepare_h5.vcf_to_1240K_hdf* function. Then, the IBD segments were called using
1298 the *hapBLOCK_chroms* function with standard parameters used (`l_model='h5'`,
1299 `e_model='haploid_g12'`, `h_model='FiveStateScaled'`, `t_model='standard'`,
1300 `p_col='variants/AF'`, `ibd_in=1`, `ibd_out=10`, `ibd_jump=400`, `min_cm=6`,
1301 `cutoff_post=0.99`, `max_gap=0.0075`), as proposed by the software developers. Finally,
1302 the *create_ind_ibd_df* function was used to create summary data for the pairwise shared IBD
1303 segments and to perform a quality control filtering, by removing IBD segments of low SNP
1304 density (IBD segments with less than 220 SNPs per centiMorgan). The inferred IBD segments
1305 are categorized by length into four groups: 8-12 cM, 12-16 cM, 16-20 cM, and greater than 20
1306 cM. Segments longer than 20 cM indicate closer relatedness, as only a few meiotic events are
1307 required to break up such long segments, whereas the shorter segments represent
1308 genealogical connections that are a few hundred years deep [101]. The output of *ancIBD*, as
1309 well as the script used are provided in <https://doi.org/10.5281/zenodo.10848927>. The number
1310 of shared IBDs within each of the four length bins, in a pairwise fashion, is presented in **Figure
1311 3**.

1312 Shared IBDs segments for the >20 cM bin indicate a) the individuals determined by
1313 READ and KIN (see **Section 3.5.3** above) to have a 1st- (*Amv_Epi_CI_-5* and *-6*;
1314 *Amv_Epi_Hel_-3* and *-4*; *Ten_Pel_Arch_-1* and *-2*) and 2nd-degree (*Amv_Epi_CI_-5* and *-6*
1315 with *Amv_Epi_CI_1*) genetic relationship (yellow and green colors in **Figure 3A; upper-right
1316 plot**) as being closely related, b) a relationship of intermediate genetic kinship (a few
1317 generations apart) among three Roman Tenea individuals (*Ten_Pel_Rom_-1*, *-2*, and *-3*;
1318 petrol colors in **Figure 3A; upper-right plot**), and c) distant kin relationships (several
1319 generations apart) between Archaic and Classical Amvrakia individuals (*Amv_Epi_Arch_3*
1320 with *Amv_Epi_CI_-5* and *-6*; *Amv_Epi_Arch_2* with *Amv_Epi_CI_4*), between Archaic
1321 Amvrakia individuals (*Amv_Epi_Arch_-1* and *-3*), and between Classical Amvrakia individuals
1322 (*Amv_Epi_CI_-4* and *-6*). Shared IBD segments for the 16-20 cM bin (**Figure 3A; bottom-left
1323 plot**), in addition to the above relationships, also indicate some degree of distant genetic
1324 relationship between other pairs of Classical Amvrakia individuals (*Amv_Epi_CI_1* with
1325 *Amv_Epi_CI_-6* and *-5*, respectively). Shared IBD segments in the 12-16 cM and 8-12 cM
1326 bins, also indicate the presence of strong ancestral genetic links (yellow, green, petrol, and
1327 blue colors in **Figure 3B**) a) between Archaic Amvrakia and Archaic Ternea (*Amv_Epi_Arch_-1*,
1328 *-2*, and *-3* with *Tenea_Pel_Arch_-1* and *-2* combination of pairs), b) between Classical
1329 Amvrakia and Archaic Tenea (*Amv_Epi_CI_-2* and *-4* with *Tenea_Pel_Arch_-1* and *-2*

1330 combination of pairs), c) between Classical Amvrakia and Hellenistic Tenea (Amv_Epi_Cl_1
1331 with Tenea_Pel_Hel_1), d) between Archaic Tenea and Hellenistic Tenea
1332 (Tenea_Pel_Arch_2 with Tenea_Pel_Hel_1), e) between Classical Amvrakia and Hellenistic
1333 Amvrakia (Amv_Epi_Cl_-1 and -4 with Amv_Epi_Hel_-3 and -4, respectively), and f) between
1334 Hellenistic Amvrakia and Archaic Amvrakia (Amv_Epi_Cl_4 and Amv_Epi_Arch_1). Notably,
1335 the absence of shared IBD segments is observed a) between LBA Ammotopos and any other
1336 sample and b) between Roman Tenea and any other non-Roman sample from either Tenea,
1337 or Amvrakia.

1338 3.5.6 Merging with public data

1339 The 26 ancient individuals were studied at the population level in the context of
1340 previously published data for modern Western Eurasians individuals and prehistoric as well
1341 as historic (Iron age to Roman times) ancient individuals. The rationale for this sample
1342 selection is a) the inclusion of the spatiotemporally most closely related populations to our
1343 newly sequenced individuals and b) the inclusion of more distantly related populations that are
1344 required for specific, additional analyses (see below for details). Note that, different analysis
1345 types and methods required assembling distinct datasets from this data pool. Details on which
1346 sample was used in each analysis (and under which group label) can be found in
1347 **Supplementary Table 4 (Additional file 4)**. The details of each dataset assembly are
1348 provided in the following:

1349
1350 **“Dataset 1”**: 670 ancient individuals (published)
1351 This dataset included a) 547 ancient individuals [102–131] whose data derive from the
1352 ‘1240K’ (1233013 sites) SNP capture essay [87] downloaded from the Allen Ancient DNA
1353 Resource (Version 8; aadr_v.54.1.p1_1240K_public; [83]) in PACKEDANCESTRYMAP
1354 format, b) 1240K data from 111 ancient individuals [132,133] that at the time of manuscript
1355 preparation had not yet been integrated into the AADR database
1356 (https://reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/Reitsema2022PNAS_Ancient_1240K.zip;
1357
1358 https://figshare.com/projects/Genotype_data_for_103_individuals_from_study_Ancient_DNA_reveals_admixture_history_and_endogamy_in_the_prehistoric_Aegean_156152;
1359
1360 PACKEDANCESTRYMAP format), and c) WGS data from 10 individuals generated by
1361 Koptekin et al. [88] (not in the AADR database, either), which we processed, starting from raw
1362 FastQ data (obtained after personal communication with the authors), using the same pipeline
1363 as the one used for the 26 samples of the present study (the mapache samplelist file for these
1364 10 individuals is available at <https://doi.org/10.5281/zenodo.10848927>). All individuals fulfill
1365 the following selection criteria: a) they were genetically unrelated (above >2nd genetic kinship
1366 degree), b) they covered at least 100000 positions of the 1240K list, and c) their contamination
1367 assessment in AADR was not tagged as “QUESTIONABLE”. We merged data from these
1368 distinct sources into a single PACKEDANCESTRYMAP file using the EIGENSOFT *mergeit*
1369 function. This dataset was used in F-statistics analyses (see below).

1370
1371 **“Dataset 2”**: 664 ancient individuals
1372 This is the same as “Dataset 1” albeit excluding six Upper Paleolithic Iberomaurusian
1373 hunter-gatherers from Tafolrat, Morocco. This dataset was used in the ADMIXTURE analysis
1374 (see below). The samples from Tafolrat were excluded from this analysis as two-thirds of their
1375 ancestry originates from sub-Saharan Africa [125].

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

“Dataset 3”: 670 ancient and 888 modern individuals

This dataset included a) 888 modern West Eurasian individuals genotyped on the Human Origins SNP (HO; 597573 sites) array [87]; most of the HO data were downloaded from the Allen Ancient DNA Resource (Version 8; aadr_v.54.1.p1_HO_public; [83]) and the rest are available in [133], both in the PACKEDANCESTRYMAP format, and b) the data from the ancient individuals of “Dataset 1”, albeit restricted to the HO sites. Individuals that were either tagged as outliers (_o suffix), as being genetically related, as *to-be-ignored*, and as having been obtained via whole genome amplification (_wga suffix) were omitted. This dataset was used in the PCA analysis (see below).

1387 3.5.7 Principal Component Analysis

1388 Principal Component Analysis (PCA) was used to summarize the relationships among
1389 our 26 ancient samples in the context of the previously published ancient and modern
1390 genomes of “Dataset 3”. PCA was performed using the EIGENSOFT *smartpca* function,
1391 default parameters, and the *lsqproject*: YES and *numoutlieriter*: 0 options, in order
1392 to project the data of the ancient samples onto the PCs calculated for the modern samples,
1393 and also, to disable outlier checking and removal, respectively. The stability of the PCA was
1394 assessed using Pandora v.2.0.0 [134] using *n_replicates*: 100 as suggested by the
1395 developers and *kmeans_k*: 4 and supplying the *smartpca_optional_settings* field in the
1396 configuration file with the aforementioned projection-related options above. Note that the
1397 *kmeans_k* setting is of minor importance as we mainly focus on the stability of individuals in
1398 the PCAs conducted on the 100 bootstrap replicates. The Pandora Stability estimate was 0.95
1399 (convergence achieved after 25 pseudo-replicates), with an average \pm standard deviation
1400 support value of 0.89 ± 0.07 , and a median of 0.90. Regarding the newly sequenced
1401 individuals, their support values were ranging between 0.70 and 0.86, with the exception of
1402 the following four individuals: Amv_Epi_CI_3 (0.67), Amv_Epi_Hel_1 (0.65), Amv_Epi_Hel_2
1403 (0.53), and Ten_Pel_Rom_4 (0.67). Their instability in PCA placement is shown in
1404 **Supplementary Figure 33**. Their lack of stability is due to coverage as three out of these four
1405 genomes are among the four least covered ones ($<0.15\times$), whereas all of them are among the
1406 six genomes with the lowest mean depth coverage ($<0.32\times$).
1407

pop other Ten_Pel_Rom_4 Amv_Epi_Hel_2 Amv_Epi_Hel_1 Amv_Epi_CI_3

1408
1409
1410
1411
1412
1413

Supplementary Figure S33. Plot of two bootstrapped PCA replicates created using Pandora showing the variability in placement of the four newly sequenced individuals with a low Pandora Stability estimate (<0.70). For clarity we plot only the individuals of the present study and both of the replicates only for the four focal individuals.

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432

The grouping of samples, which is given in **Supplementary Table 4 (Additional file 4)**, reflects the spatiotemporal and cultural origin of the samples, meaning that each group is a combination of a) present-day countries name (3-digit codes) and b) relative archaeological period (e.g. Neolithic, Late Bronze Age, Archaic, Classical etc). In all cases we have also added the actual temporal range covered. In order to provide clarity to the plot and as we wanted to focus more on the temporal space of the newly sequenced individuals (LBA to Roman times) we merged some earlier (prehistoric) samples into single, genetically homogeneous, groups. As a result of the above, the grouping for the PCA analysis includes groups, such as GRC_Neolithic_6400-3600BCE, GRC_EBA_EMBA_MBA_2900-1700, and GRC_LBA_1700-1050BCE, which all three include, both, mainland and insular populations. However, we kept GRC_Mainland_WMakedonia_MBA_2100-1600BCE as a separate group as its genetic ancestry is quite different from the rest of the Greek MBA individuals [104]. In the cases of other Balkan countries excluding Greece, we merged the prehistoric samples into South_Balkans_EBA_MBA_MLBA_3350-1100BCE (Albania, Bulgaria, North Makedonia) and NW_Balkans_EBA_MBA_MLBA_2000-800BCE (Croatia, Serbia, Montenegro). Historical times were not merged together (see e.g. MKD_IA_900-500BCE and MKD_Classical_Hellenistic_500-50BCE), whatsoever. Other merged groups are Hunter_Gatherers_22600-5500BCE (all Paleolithic and Mesolithic HGs), IRN-IRQ_Neolithic_Chalcolithic_9500-3500BCE (Iran/Iraq Neolithics and Chalcolithics), ISR-

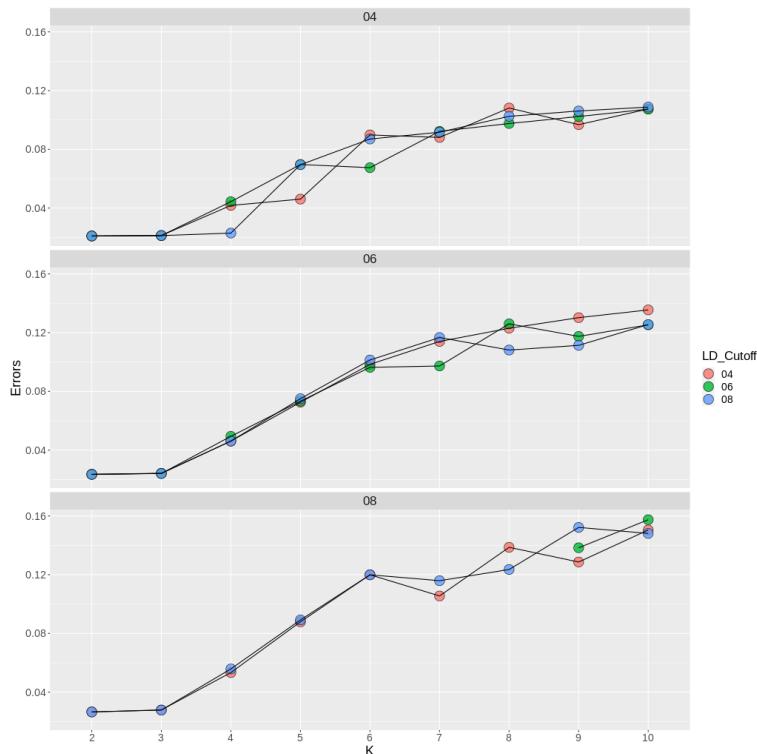
1433 JOR_Epip-Natufian_and_PPN_12000-6200BCE (Natufians and Pre-pottery Neolithics from
1434 the Levant), and RUS-BGR-SER_BA-Yamnaya-like_3500-1600BCE (individuals with
1435 significant Yamnaya-like ancestry). In the case of Italy we divided the groups geographically
1436 in Mainland, Sicily, and Sardinia, whereas we also separated the Etruscans
1437 (ITA_Mainland_Etruscan_800-001BCE) from other mainland contemporary to them
1438 individuals (ITA_Mainland_IA_and_RomanRepublic_760-003BCE). In the case of Türkiye, we
1439 divided the samples temporarily, but in some cases that the samples of a given period do not
1440 cover the entire area of Türkiye we also mention the regions (see e.g. TUR_South-
1441 SouthWest_MBA_MLBA_2000-1200BCE, TUR_West_Archaic_750-480BCE). Note that this
1442 grouping does not affect the results and is used only for better visualization.

1443 The result of the PCA projection for the first two PCs is presented in **Figure 2A**.
1444 According to the results, the newly generated genomes are, in general, clustered together and
1445 overlap with other ancient eastern Mediterranean genomes, albeit they do display
1446 considerable variation. Two main clusters are formed, with three additional samples standing
1447 out.

1448 The first cluster includes the majority of the Amvrakia samples (one of the three
1449 Archaic, all six Classical, and four out of five Hellenistic), the two BA Ammotopos samples and
1450 some of the Tenea samples (both of the two Archaic and two out of three Hellenistic). This
1451 cluster overlaps mostly with LBA (1700-1050 BCE) genomes from the entire present-day area
1452 of Greece, EIA (1100-500 BCE) genomes from present-day area of Bulgaria, as well as with
1453 the local population of the Ancient Greek colony of Himera in Sicily (780-400 BCE). Moreover,
1454 some additional samples are also placed close to this cluster including a Greek EBA_MBA
1455 (2800-1700 BCE) individual and a Greek IA individual from the Peloponnese (1070-800 BCE).
1456 Close, but not overlapping, several other genomes are observed, including most of the Greek
1457 EBA_MBA (2800-1700 BCE) and the rest of the Greek IA (1070-800 BCE and 800-500 BCE,
1458 respectively), a few Roman Imperial individuals from the Italian mainland (1-530 CE), a few
1459 from the South Balkans EBA_MBA_MLBA (3350-1100 BCE), and two more from the IA (900-
1460 500 BCE) and Classical-Hellenistic (500-50 BCE) present-day area of North Makedonia.

1461 The second cluster includes all four Roman Tenea individuals, as well as one of the
1462 three Hellenistic Amvrakia individuals. This cluster, in comparison to the first one, is placed
1463 slightly more towards the bottom left of the PC space and the Iran-Neolithic/CHG - WHG axis.
1464 It mostly overlaps with Archaic (750-480 BCE), Roman (27-476 CE), and other Anatolian
1465 genomes [including a Hellenistic (510-30 BCE) and an EBA (3350-2000 BCE)], a Roman
1466 Imperial (1-530 CE) genome from Italy, as well as a few Greek genomes from the Roman
1467 (250-400 CE), the EBA_MBA (2900-1700 BCE), and the LBA (1700-1050 BCE) times. Close,
1468 but not overlapping, are a few additional Greek EBA_MBA (2900-1700 BCE) and Italian
1469 Roman Imperial (1-530 CE) genomes, as well as some EBA (3350-2000 BCE) and Hellenistic
1470 (510-30 BCE) genomes from the present-day area of Türkiye.

1471 Between these two clusters, the remaining of the two Hellenistic Tenea individuals are
1472 placed, with close affinities to a local individual of the Ancient Greek colony of Himera, Sicily
1473 (780-400 BCE) and an IA individual from the Peloponnese (1070-800 BCE).


1474 Finally, the two remaining Archaic Amvrakia individuals are closer to the first cluster,
1475 but more differentiated towards the upper left of the PC space and the Levant Neolithic - BA-
1476 Yamnaya-like axis. One of them, the closest to the first cluster, entirely overlaps with an
1477 Etruscan individual from Italy (800-001 BCE) and is surrounded by Greek genomes mostly
1478 from the EBA_MBA (2900-1700 BCE), and the LBA (1700-1050 BCE). The other Archaic
1479 Amvrakia individual is placed relatively far away from the first cluster, in close proximity to

1480 EBA_MBA (2900-1700 BCE) Greece and a few Greek Neolithic (6400-3600 BCE) and
1481 Anatolian Neolithic (9000-5600 BCE) individuals.

1482 When performing an additional PCA (only projecting the newly generated genomes
1483 onto modern ones) using only transversions (see plot at Zenodo:
1484 <https://doi.org/10.5281/zenodo.10848927>) and thus removing the effect of possible
1485 deamination and treatment biases, these two Archaic Amvrakia individuals are grouped within
1486 the first cluster that includes the third -UDG-treated- Archaic Amvrakia individual.

1487 3.5.8 Population clustering analysis (ADMIXTURE)

1488 We performed unsupervised ADMIXTURE v.1.3.0 [135] analysis using “Dataset 2” in
1489 order to examine the broader patterns of ancestry of our newly generated genomes in
1490 comparison to other ancient individuals. In preparation for this analysis, we used Plink v.1.9
1491 [136] for dataset manipulations and pruned the dataset based on three different linkage
1492 disequilibrium r^2 thresholds (0.40, 0.60, and 0.80) on a sliding window of 200 kbp with a step
1493 of 25 variant counts (--indep-pairwise 200 25 0.4/0.6/0.8), as well as three allele
1494 missingness (--geno) thresholds (40%, 60%, and 80%), resulting in distinct final SNP counts
1495 per dataset (**Additional Table A1**). Before LD pruning and allele missingness filtering, we
1496 removed the newly sequenced samples *Amv_Epi_Cl_5*, *Amv_Epi_Cl_4*, *Amv_Epi_Hel_3*, and
1497 *Ten_Pel_Arch_1* as they have a 1st-/2nd-degree genetic kinship with individuals that exhibit
1498 higher coverage in the dataset. We performed the analysis for K=2-10, using the --
1499 haploid="*" flag given that our data are pseudohaploidized and we determined the best K
1500 value and LD and allele missingness thresholds by using ADMIXTURE’s internal block
1501 jackknife routine to estimate cross validation errors (**Supplementary Figure S34**). The script
1502 is provided in <https://doi.org/10.5281/zenodo.10848927> and includes the following R
1503 packages: argparse v.2.2.3 [137], doMC v.1.3.8 [138], foreach v.1.5.2 [139], ggh4x v.0.2.8
1504 [140], ggthemes v.5.0.0 [141], gridExtra v.2.3 [142], reshape [143], and stringr v.1.5.1 [144].
1505 Note that for datasets filtered by linkage disequilibrium threshold 0.6 and allele missingness
1506 80% ADMIXTURE ran into segmentation fault for K = 2-8
1507

1508
1509
1510
1511
1512
1513

Supplementary Figure S34. ADMIXTURE block jackknife cross validation errors for K=2-10 and a linkage disequilibrium r^2 threshold (LD_Cutoff) of 0.40, 0.60, and 0.80, respectively. SNPs whose presence was below the respective missingness threshold, as well as SNPs exceeding the LD threshold on a sliding window of 200 kbp with a step of 25 variant counts, were removed.

1514
1515
1516

Additional Table A1. Resulting number of SNPs after filtering the dataset used for ADMIXTURE analysis using distinct linkage disequilibrium (LD) and missingness thresholds.

LD threshold (r^2)	Allele missingness threshold (%)	# SNPs
0.80	80	750465
0.80	60	579477
0.80	40	343068
0.60	80	748320
0.60	60	579025
0.60	40	342986
0.40	80	710219
0.40	60	566062
0.40	40	339786

1517
1518
1519
1520
1521
1522

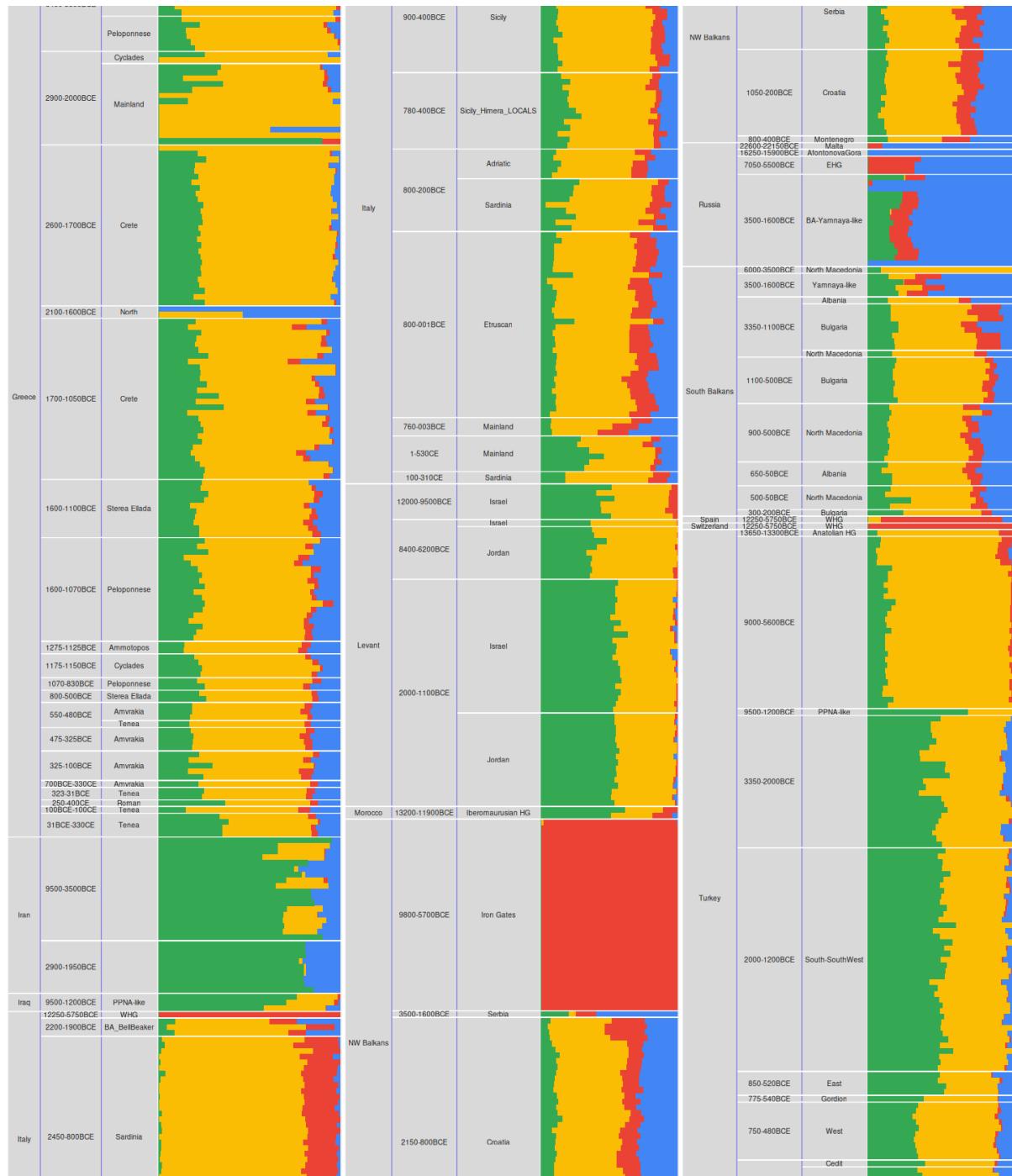
We observed similar results among the pruning/filtering options for K=2-4, albeit the allele missingness threshold of 80% was slightly worse than the 60% and 40%. For higher values, an allele missingness filter of 40% seems to marginally outperform the other two configurations regardless of the selected LD cutoff. The fewest errors were observed for K=2 and K=3. All resulting ADMIXTURE plots are provided in

1523 <https://doi.org/10.5281/zenodo.10848927>. The resulting plots of ADMIXTURE analysis using
1524 an LD threshold of 0.80 and an allele missingness threshold of 40% are presented in **Figure**
1525 **2B** (K=3; only historical individuals plotted) and in **Supplementary Figure S35 (A-I)** (K=2-10;
1526 all individuals plotted). The grouping of samples under the same population label is given in
1527 **Supplementary Table 4 (Additional file 4)**. Here, we applied an analogous grouping
1528 procedure as for the PCA analyses, with the following modifications: a) we further subdivided
1529 LBA to Roman times Greece geographically, in order to separate Crete, the Cyclades, and
1530 the Peloponnese from the mainland, b) we subdivided the Hunter Gatherers (into WHG, CHG,
1531 etc.), and c) we divided the Natufians and the pre-pottery Neolithics of the Levant. Note that
1532 this grouping does not affect the analytical results and is merely used for better visualization.

1533 When focusing on K=3, which is the lowest K that allows to differentiate genetic
1534 clusters associated with three key European ancestral components, namely, Western hunter-
1535 gatherers (WHGs), early European farmers (EEFs), and Caucasus hunter-gatherers (CHGs),
1536 depicted with red, orange, and blue color, respectively in **Figure 2B** and **Supplementary**
1537 **Figure S35B**, our samples appear to comprise all three of the above ancestral components.
1538 Most of our samples (excluding the Roman Tenea ones), have ancestry proportions that
1539 resemble those of previously published LBA and IA genomes from mainland Greece: a high
1540 EEFs proportion, followed by a lower CHGs proportion, and a small WHGs proportion. The
1541 Roman Tenea genomes display a higher CHGs proportion than the rest of our samples, a
1542 reduced EEFs proportion, and an analogous WHGs proportion, thus resembling other
1543 published Roman genomes from Greece and Italy.

1544
1545
1546
1547
1548

1549 A. K=2


1550

1551 B. K=3

1552
1553

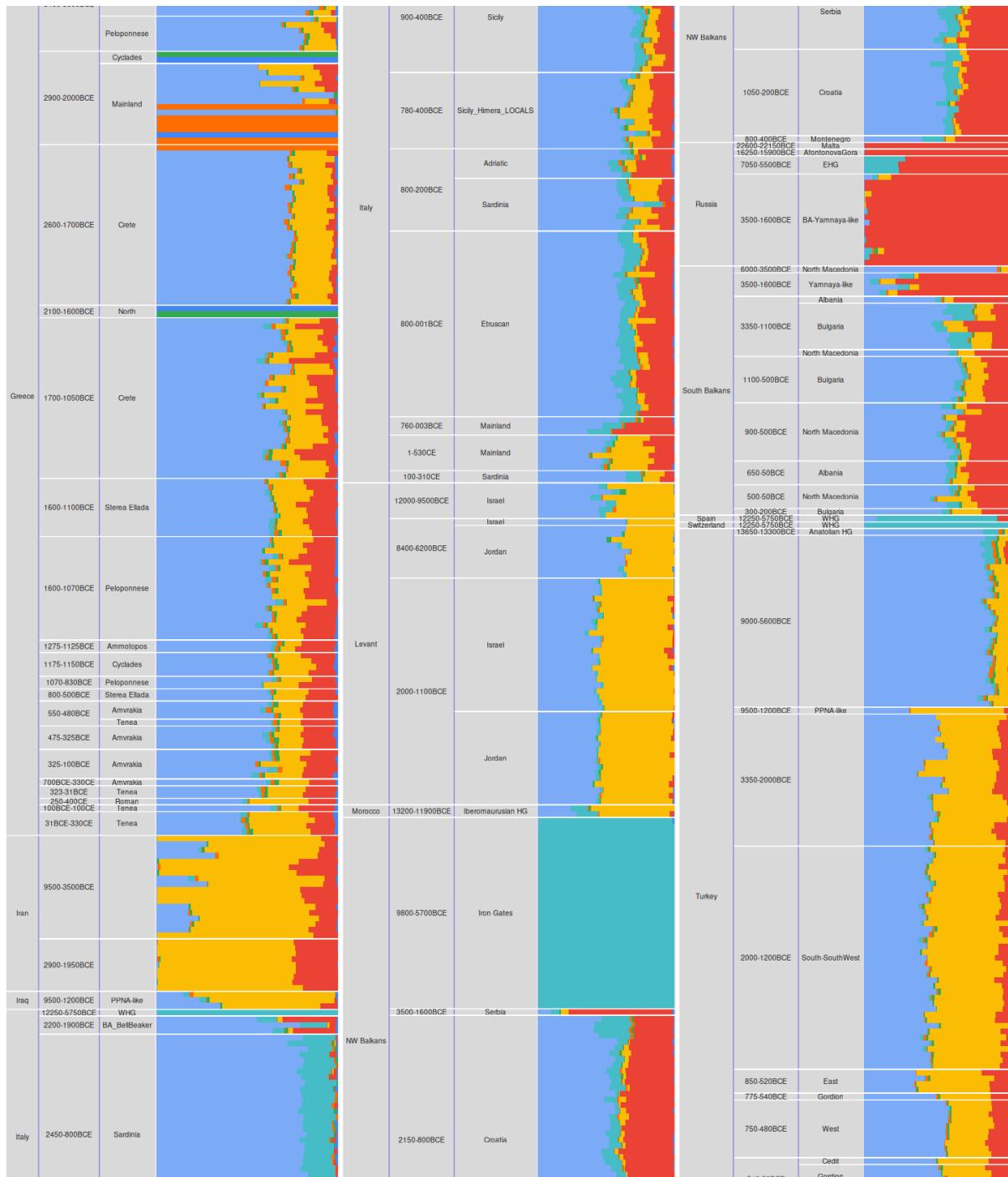
1554 C. K=4

1555
1556

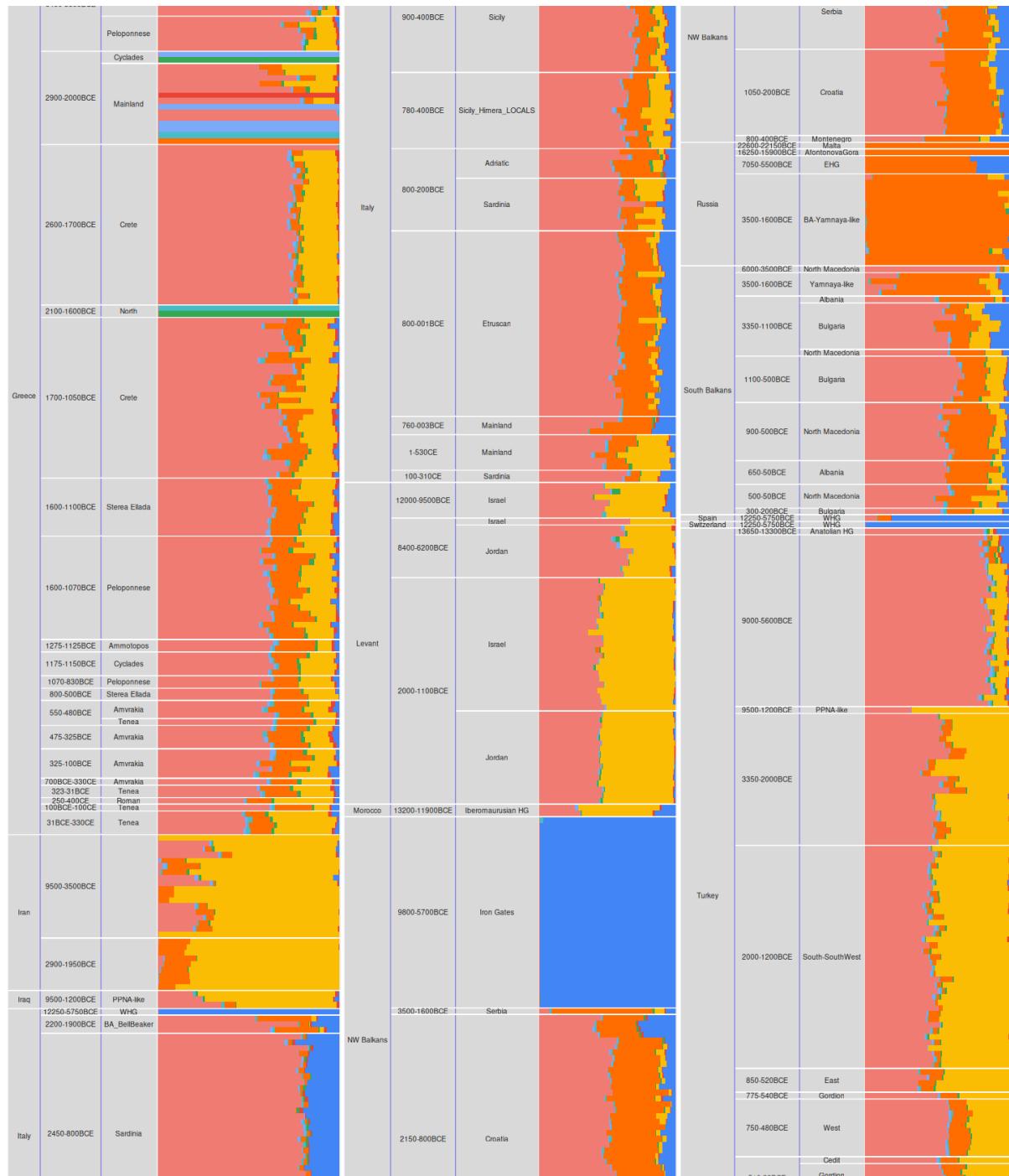
1557

D. K=5

1558
1559


1560

E. K=6

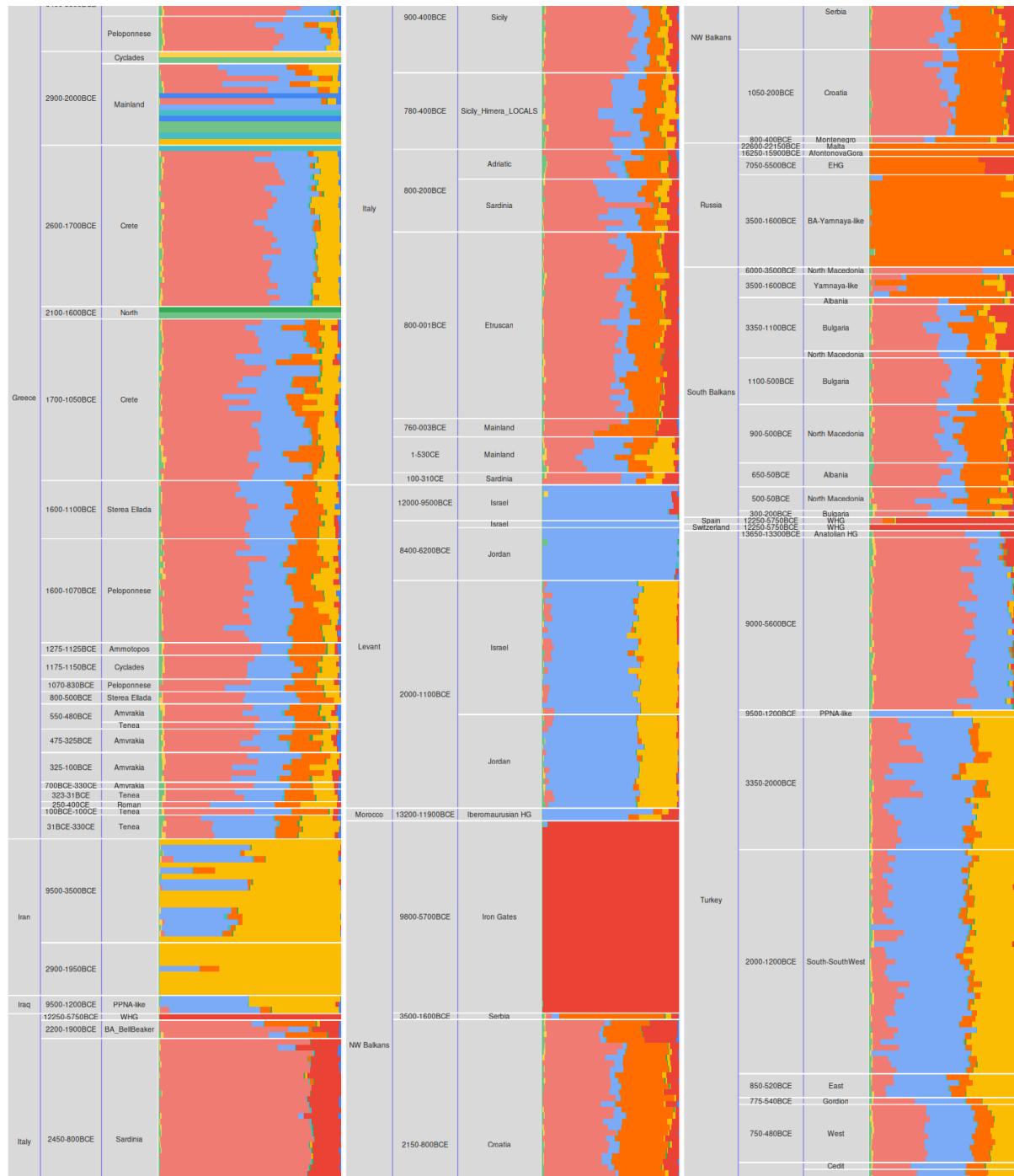

1561
1562

1563 F. K=7

1564
1565

1566 G. K=8

1567
1568


1569 H. K=9

1570
1571

1572

I. K=10

1573

1574

1575

1576

1577

1578

1578

1579

1380

1581

1576 **Supplementary Figure S35.** ADMIXTURE analysis of 22 newly generated ancient genomes
1577 of the present study (four individuals were excluded due to genetic kinship) and 664 other
1578 ancient published genomes (“Dataset 1”) using K=2-10 (**A-I plots**), an LD r^2 threshold of 0.80
1579 and an allele missingness threshold of 40%. The analysis was based on 343068 genomic
1580 sites of the 1240K list. The plots are available at Zenodo
1581 (<https://doi.org/10.5281/zenodo.10848927>), too.

1582 3.5.9 f3 Statistics and Ancestry Proportion Analysis (qpAdm)

1583

1584

1585

1586 **F-statistics analyses**

1587 For the F-statistics analyses we grouped the ancient individuals (public and newly
1588 sequenced here; “**Dataset 1**”) according to their general genetic ancestry and their
1589 chronological and archaeological contexts, and performed the analysis on a per-group and
1590 per-individual basis. Here, we applied the same grouping approach as for the ADMIXTURE
1591 analyses, albeit different analyses required generating different subdatasets (**Supplementary**
1592 **Table 4; Additional file 4**; see also details below). Samples *Amv_Epi_Cl_5*, *Amv_Epi_Cl_4*,
1593 *Amv_Epi_Hel_3*, and *Ten_Pel_Arch_1* were removed from per-group analyses as they have
1594 a 1st-/2nd-degree genetic kinship relationship with individuals that exhibit higher coverage in
1595 the dataset. They were included, nonetheless, in the per-individual analyses.

1596 **Ancestry modeling was performed with qpAdm using the ‘rotating population’**
1597 **strategy** [145]. This approach begins by identifying a set of “candidate” populations from
1598 which we iteratively select a defined number of “sources” of ancestry for our “target” population
1599 (1-4 populations in our analyses). We performed three sets of rotating qpAdm runs by always
1600 keeping the same targets, but changing the potential sources. As separate targets we used
1601 the focal populations of Ammotopos, Amvrakia, Tenea during different time periods (LBA,
1602 Archaic, Classical, Hellenistic, Roman, etc).

1603 For the first run we used distant genetic sources (henceforth denoted as “Ultimate”
1604 sources) that characterize the general ancestry of ancient Western Europeans following
1605 Lazaridis et al. [147]. The same sources were used for all targets in order to compare their
1606 general genetic ancestry (see **Supplementary Table 4; Additional file 4** for details):

1607 -IRN_HajjiFiruz_N_6050-5700BCE
1608 -IRN_SehGabi_C_4850-3800BCE
1609 -IRN_TepeHissar_C_BA_3700-1950BCE
1610 -RUS_W_Samara_EBA_Yamnaya_3350-2500BCE
1611 -RUS_S_AfontovaGora_UP_HG_16250-15900BCE
1612 -ITA-ESP-CHE_M_WHG_12250-5750BCE
1613 -RUS_M_EHG_7050-5500BCE
1614 -TUR_NW_Barcin_N_6500-5900BCE
1615 -ISR_RaqefetCave_EpiP_Natufian_12000_9500BCE
1616 -ISR-JOR_PPN_Levant_8400-6200BCE
1617 -IRN_GanjDareh_N_8300-7600BCE
1618 -SRB_M_HG_IronGates_9800-5700BCE
1619 -IRQ_TUR_PPNA-like_Mesopotamia_9500-1200BCE
1620 -GEO_M_CHG_11500-7500BCE
1621 -MAR_NorthEast_Taforalt_UP_HG_Iberomaurusian_13200-11900BCE
1622 -TUR_SWC_Pinarbasi_Epipaleolithic_HG_13650-13300BCE
1623 -TUR_SC_BoncukluHoyuk_N_8300-7600BCE
1624 -RUS_S_Malta_UP_HG_22600-22150BCE.

1625 For the second run, we performed the analysis under the same setting, but replaced
1626 the “Ultimate” sources with spatiotemporally more proximate ones (henceforth denoted as
1627 “More_proximate” sources; see **Supplementary Table 4; Additional file 4** for details) in order

1628 to again compare the ancestry modeling of the different targets using alternative sources that
1629 may better represent their common ancestry:

1630 ALB_MBA_1900-1700BCE
1631 BGR-SER_EBA-to-EMBA_Yamnaya-like_2900-2000BCE
1632 BGR_EBA_3400-1600BCE
1633 NW_Balkans_EBA-to-MLBA_2150-1250BCE
1634 GRC_Peloponnese_LBA_1600_1280BCE
1635 GRC_Neolithic_6400-3600BCE
1636 GRC_Crete_LBA_1700-1250BCE
1637 GRC_StereaEllada_LBA_1600-1300BCE
1638 GRC_Crete_EBA_EMBA_MBA_2900-1700
1639 GRC_EBA_2900-2000BCE
1640 GRC_Mainland_North_MBA_2100-1600BCE
1641 ISR-JOR_MLBA-to-LBA_2000-1285BCE
1642 ITA_Sicily_EBA_2300-1650BCE
1643 ITA_Sardinia_MBA_1550-1300BCE
1644 ITA_BA_BellBeaker_2500-1900BCE
1645 TUR_S-SW_MBA-to-MLBA_2000-1300BCE
1646 IRN_TepeHissar_C_BA_3700-1950BCE
1647 RUS_W_Samara_EBA_Yamnaya_3350-2500BCE.

1648 For the third run, the goal was to identify the immediate sources of each target.
1649 Therefore, in this run, each target had a different set of potential sources that was,
1650 spatiotemporally, as close to the target as possible: the temporal range was limited to those
1651 individuals that dated earlier than the target, whereas the spatial range was constrained to the
1652 Eastern Mediterranean and adjacent areas, including Italy, the Balkans and the Middle East
1653 ("Most_proximate" sources, hereinafter; see **Supplementary Table 4**; **Additional file 4** for
1654 details):

1655 Ammotopos

1656 ALB_MBA_1900-1700BCE
1657 BGR_EMBA_Yamnaya-like_1850-1600BCE
1658 GRC_Crete_LBA_1700-1250BCE
1659 GRC_Mainland_North_MBA_2100-1600BCE
1660 GRC_Peloponnese_LBA_1600_1280BCE
1661 GRC_StereaEllada_LBA_1600-1300BCE
1662 HRV-MNE_MBA-to-MLBA_1750-1280BCE
1663 ISR-JOR_MLBA-to-LBA_2000-1285BCE
1664 ITA_BA_BellBeaker_2500-1900BCE
1665 ITA_Sardinia_MBA_1550-1300BCE
1666 TUR_S-SW_MBA-to-MLBA_2000-1300BCE

1667 Archaic Amvrakia and Archaic Tenea

1668 ALB_MBA_1900-1700BCE
1669 BGR_EIA_1100-500BCE
1670 GRC_Ammotopos_LBA_1275-1125BCE
1671 GRC_Crete_LBA_1350-1050BCE
1672 GRC_Cyclades_LBA_1175-1150BCE
1673 GRC_Peloponnese_IA_1070-830BCE
1674 GRC_StereaEllada_LBA_1400-1100BCE
1675 GRC_Tenea_Archaic_550-480BCE

1676	HRV_EIA_1050-550BCE
1677	ISR-JOR_MLBA-to-LBA_1400-1100BCE
1678	ITA_Mainland_IA_and_Etruscan_800-540BCE
1679	ITA_Sardinia_IA_800-550BCE
1680	ITA_Sicily_IA_900-700BCE
1681	MKD_IA_900-550BCE
1682	SRB_LBA_1000_900BCE
1683	TUR_IA_850-750BCE
1684	EGY_IA_800-550BCE
1685	<u>Classical Amvrakia</u>
1686	ALB_MBA_1900-1700BCE
1687	BGR_EIA_1100-500BCE
1688	GRC_Ammotopos_LBA_1275-1125BCE
1689	GRC_Amvrakia_Archaic_550-480BCE
1690	GRC_Crete_LBA_1350-1050BCE
1691	GRC_Cyclades_LBA_1175-1150BCE
1692	GRC_Peloponnese_IA_1070-830BCE
1693	GRC_StereaEllada_IA_800-500BCE
1694	GRC_Tenea_Archaic_550-480BCE
1695	HRV_EIA_1050-550BCE
1696	ISR-JOR_MLBA-to-LBA_1400-1100BCE
1697	ITA_Mainland_IA_and_Etruscan_800-520BCE
1698	ITA_Sardinia_IA_800-550BCE
1699	ITA_Sicily_IA_900-700BCE
1700	MKD_IA_800-500BCE
1701	SRB_LBA_1000_900BCE
1702	TUR_Archaic_780-480BCE
1703	EGY_IA_800-550BCE
1704	ITA_Adriatic_IA_750-400BCE
1705	<u>Hellenistic Amvrakia and HellenisticTenea</u>
1706	ALB_IA_650-400BCE
1707	BGR_EIA_1100-500BCE
1708	GRC_Ammotopos_LBA_1275-1125BCE
1709	GRC_Amvrakia_Archaic_550-480BCE
1710	GRC_Amvrakia_Classical_475-325BCE
1711	GRC_Crete_LBA_1350-1050BCE
1712	GRC_Cyclades_LBA_1175-1150BCE
1713	GRC_Peloponnese_IA_1070-830BCE
1714	GRC_StereaEllada_IA_800-500BCE
1715	GRC_Tenea_Archaic_550-480BCE
1716	GRC_Tenea_Hellenistic_150-100BCE
1717	HRV-MNE_EIA_800-400BCE
1718	ISR-JOR_MLBA-to-LBA_1400-1100BCE
1719	ITA_Mainland_IA_and_Etruscan_800-400BCE
1720	ITA_Sardinia_IA_800-400BCE
1721	ITA_Sicily_Himera_Archaic_Classical_LOCAL_780-400BCE
1722	ITA_Sicily_IA_900-400BCE
1723	MKD_Classical_400-380BCE

1724 SRB_LBA_1000_900BCE
1725 TUR_Archaic-to-Hellenistic_780-390BCE
1726 EGY_IA_800-550BCE
1727 ITA_Adriatic_IA_750-400BCE
1728 Roman Tenea
1729 ALB_IA_650-50BCE
1730 BGR_IA_1100-200BCE
1731 GRC_Ammotopos_LBA_1275-1125BCE
1732 GRC_Amvrakia_Archaic_550-480BCE
1733 GRC_Amvrakia_Classical_475-325BCE
1734 GRC_Amvrakia_Hellenistic_325-100BCE
1735 GRC_Crete_LBA_1350-1050BCE
1736 GRC_Cyclades_LBA_1175-1150BCE
1737 GRC_StereaEllada_IA_800-500BCE
1738 GRC_Peloponnese_IA_1070-830BCE
1739 GRC_Tenea_Archaic_550-480BCE
1740 GRC_Tenea_Hellenistic_150-100BCE
1741 HRV-MNE_EIA_800-200BCE
1742 ISR-JOR_MLBA-to-LBA_1400-1100BCE
1743 ITA_C_IA_Etruscan_RomanRepublic_450-50BCE
1744 ITA_Sardinia_IA_800-200BCE
1745 ITA_Sicily_Himera_Archaic_Classical_LOCAL_780-400BCE
1746 ITA_Sicily_IA_900-400BCE
1747 MKD_Classical_Hellenistic_500-100BCE
1748 SRB_LBA_1000_900BCE
1749 TUR_Hellenistic_510-30BCE
1750 ITA_Adriatic_IA_750-200BCE
1751 EGY_IA_800-550BCE
1752

1753 We performed pairwise qpWave analysis on each group of sources in order to
1754 determine populations suitable to be placed as “right” in qpAdm (referred to as **base** from
1755 hereon). We developed an iterative approach where the population that had the highest
1756 number of cladal relationships compared to all APOIKIA populations, was being removed from
1757 **base**. The process stops when no pairs of populations form a clade. **In case of a tie, the**
1758 **youngest population was removed**. The populations that were removed by this process were
1759 included only as “left” (referred to as **sources** from hereon). qpWave was run with parameters
1760 *maxmiss* = 0.2, *afprod* = *TRUE* and *adjust_pseudohaploid* = *TRUE*. qpWave results are
1761 available at <https://doi.org/10.5281/zenodo.10848927>. Populations from **base** were also
1762 included as potential sources and in those cases they were removed from “right” temporarily.
1763 For a detailed view of all population groups please see the corresponding table provided at
1764 **Supplementary Table 4; Additional file 4**). We then tested all possible models up to 4-way
1765 admixture using the R interface of ADMIXTOOLS2 v.2.0.0 [146] with parameters *allsnps* =
1766 *TRUE* and *adjust_pseudohaploid* = *TRUE*. All analyses included the Yoruba population as the
1767 first “right” (outgroup) in qpAdm. In “More_proximate” and “Most_proximate” groups,
1768 populations “IRN_GanjDareh_N_8300-7600BCE” and “SRB_M_HG_IronGates_9800-
1769 5700BCE” were included as additional “right” (outgroup) in order to satisfy qpAdm’s
1770 prerequisite that “right” populations should be more than the “left”. Additionally, results were
1771 filtered for a) *pvalue*>0.05, b) *pvalue_nested*<0.05 (a high *pvalue_nested* indicates that a

model with fewer sources fits the data better than the current model) and c) all admixture weights being positive. The script is provided at <https://doi.org/10.5281/zenodo.10848927>.

Feasible models (accepted models) with a p-value > 0.05 and positive z-scores (or equivalently all weights being positive) were visualized using horizontal stacked bar charts. The points in this [Horizontal stacked bar chart](#) represent the populations involved, and the color gradient indicates their admixture proportions. The models were sorted based on the number of involved sources (1-4). All the qpAdm [horizontal stacked bar charts](#) are provided at <https://doi.org/10.5281/zenodo.10848927>, along with all the rotating qpAdm analysis outputs (tables).

The results for our newly sequenced genomes using the “Most_proximate” to each target set of sources (**Supplementary Figures S38**), as well as the targeted to Archaic Amvrakia run (**Figure 4**), are presented and discussed in the main text. For the “Ultimate” and the “More_proximate” set of sources the results (**Supplementary Figures S36-S37**) are presented in the following:

- Ammotopos inferred to be in rotating qpAdm using:
 - a) the “Ultimate” set of sources: either a three-way admixture among an Anatolian Epipaleolithic/Neolithic source that contributes the most (~52-83%) and other secondary sources, including Neolithic Iran/CHG (~14-40%), and BalkanHG/WHG (~1-9%) or a four-way admixture that also includes additional minor sources (**Supplementary Figure S36A**),
 - b) the “More_proximate” set of sources: a two-way admixture between a southern Balkan MBA source [MBA mainland Greece (2100-1600 BCE; ~46-59%) or MBA Albania (1900-1700 BCE; ~39%)] and either Neolithic Greece (6400-3600 BCE; ~41%) or EBA Greece (2900-2000 BCE; ~54-61%) or Early-to-Middle BA Crete (2900-1700; 43%). In three-way and four-way admixture models, sources with lower contribution are included (**Supplementary Figure S37A**).
- Archaic Amvrakia inferred to be in rotating qpAdm using:
 - a) the “Ultimate” set of sources: either a three-way admixture among an Anatolian Epipaleolithic/Neolithic source as a major contributor (~54-74%), Neolithic Iran as a secondary source (~24-41%), and BalkanHG/WHG as a minor source (~3-6%) or a four-way admixture that also includes additional minor sources (**Supplementary Figure S36B**).
 - b) the “More_proximate” set of sources: either a two-way admixture between EBA Greece (2900-2000 BCE; ~65%) and MBA mainland Greece (2100-1600 BCE; ~35%) or a three-way admixture among the above two major sources (~38% and 50%, respectively), and Neolithic Greece (6400-3600 BCE; ~12%) as a third minor source (**Supplementary Figure S37B**). Alternatively, a four-way admixture is modelling this target as ~48% MBA mainland Greece (2100-1600 BCE), ~27.5% Early-to-Middle BA Crete (2900-1700), ~21% Neolithic Greece (6400-3600 BCE), and ~3.5% Chalcolithic Iran (3700-1950 BCE).
- Classical Amvrakia inferred to be in rotating qpAdm using:
 - a) the “Ultimate” set of sources: either a three-way admixture among an Anatolian Epipaleolithic/Neolithic source as a major contributor (~55-81%), Neolithic Iran/CHG (~9-31%) or Chalcolithic Iran (~20%) or PPNA-like_Mesopotamia (~26%) as a secondary source, and BalkanHG/RussianUpperPaleolithicHG as a third source (~1-20%) or a four-

1819 way admixture that also includes additional minor sources (**Supplementary**
1820 **Figure S36C**),

- 1821 ○ b) the “More_proximate” set of sources: a two-way admixture between EBA
1822 Greece (2900-2000 BCE) as the main source (~64-88%) and either MBA
1823 mainland Greece (2100-1600 BCE; 37%) or Yamnaya-like BA Balkan/Russia
1824 (~12-15%), or MBA Albania (1900-1700 BCE; ~35%) as the second source: in
1825 the three-way admixture model, additionally to the above, sources with lower
1826 contribution are included (**Supplementary Figure S37C**).

- 1827 • Hellenistic Amvrakia inferred to be in rotating qpAdm using:

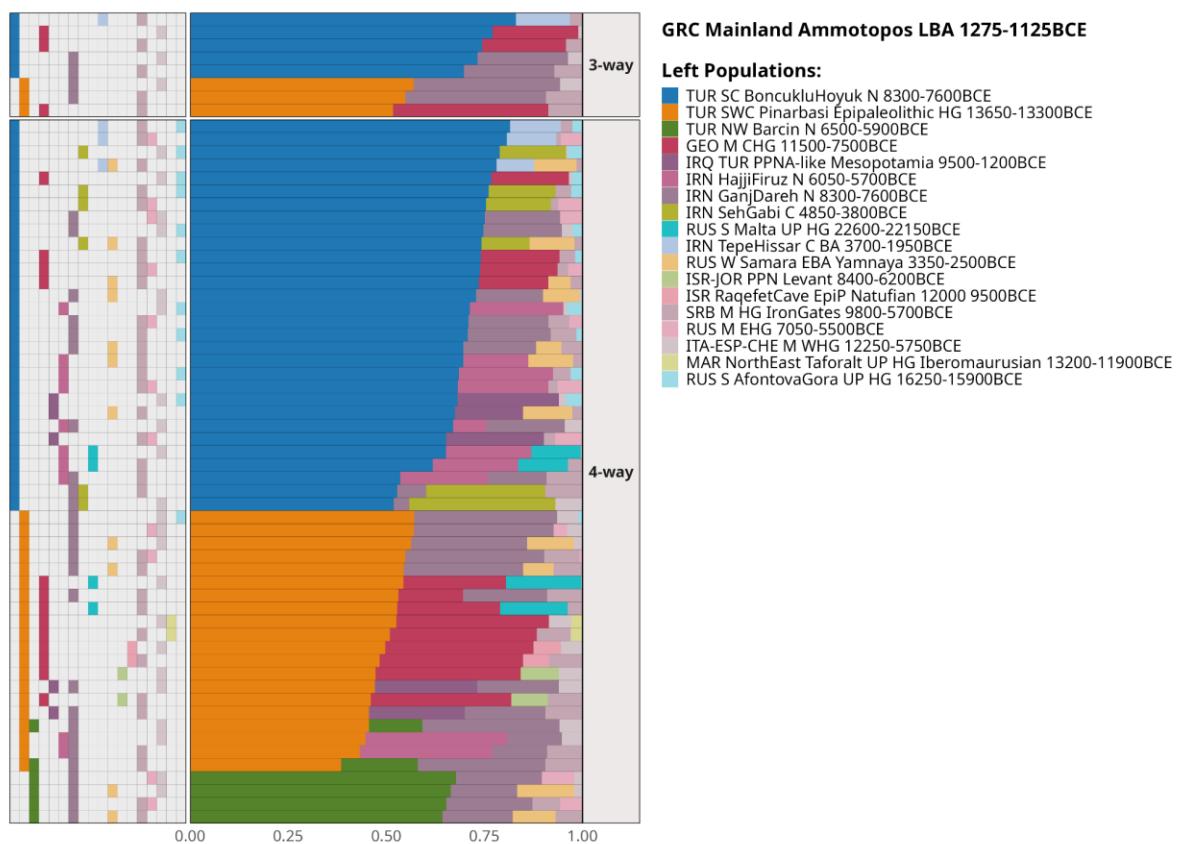
- 1828 ○ a) the “Ultimate” set of sources: either a three-way admixture among an
1829 Anatolian Epipaleolithic/Neolithic major source (~52-79%), Neolithic Iran/CHG
1830 (~10-40%) or Chalcolithic Iran (~19%) or PPNA-like_Mesopotamia (~26-28%)
1831 as a secondary source , and BalkanHG/WHG/RussianUpperPaleolithicHG
1832 (~0.5-25%) as a third source or a four-way admixture that also includes
1833 additional minor sources (**Supplementary Figure S36D**),
- 1834 ○ b) the “More_proximate” set of sources: a two-way admixture of almost equal
1835 contribution between pairs of the following: either Neolithic Greece (6400-3600
1836 BCE), or EBA Greece (2900-2000 BCE), or Early-to-Middle BA Crete (2900-
1837 1700) as one of the mates and either MBA Albania (2100-1600 BCE) or MBA
1838 mainland Greece (2100-1600 BCE) as the other mate; in three-way and four-
1839 way admixture models, several other sources with lower contribution appear.
1840 (**Supplementary Figure S37D**).

- 1841 • Archaic Tenea inferred to be in rotating qpAdm using:

- 1842 ○ a) the “Ultimate” set of sources: either a three--way admixture among an
1843 Anatolian Epipaleolithic/Neolithic major source (~45-77%), Neolithic Iran/CHG
1844 (~8-41%) or Chalcolithic Iran (~9-25%) or PPNA-like_Mesopotamia (~12-33%)
1845 as a secondary source , and BalkanHG/WHG/RussianUpperPaleolithicHG (~5-
1846 28%) as a third source or a four-way admixture that also includes additional
1847 minor sources (**Supplementary Figure S36E**),
- 1848 ○ b) the “More_proximate” set of sources: either a two-way admixture between
1849 EBA Greece (2900-2000 BCE) as main source (~64-88%) and either MBA
1850 mainland Greece (2100-1600 BCE) or MBA Albania (1900-1700 BCE) or EBA-
1851 to-MLBA Balkans or Yamnaya-like Balkans/Russia as a second source (~12-
1852 36%) or a two-way admixture of almost equal contribution between MBA
1853 mainland Greece (2100-1600 BCE) and either Neolithic Greece (6400-3600
1854 BCE) or Early-to-Middle BA Crete (2900-1700); in three-way and four-way
1855 admixture models, sources with lower contribution are included
1856 (**Supplementary Figure S37E**).

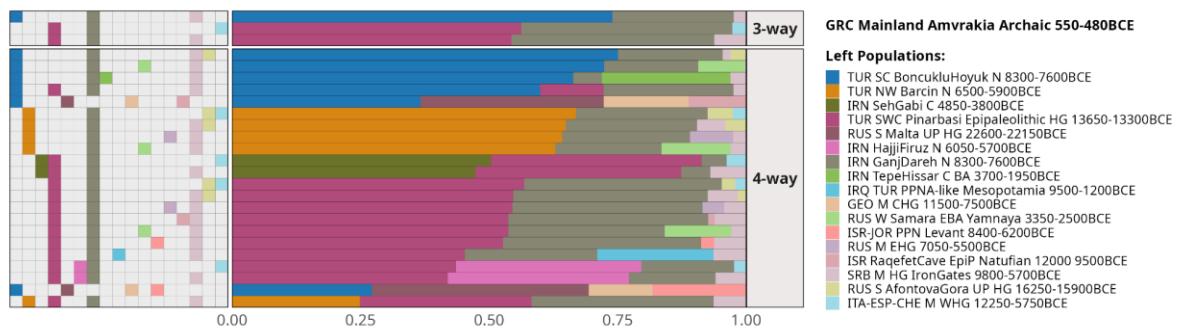
- 1857 • Hellenistic Tenea is inferred to be in rotating qpAdm using:

- 1858 ○ a) the “Ultimate” set of sources: either a two-way admixture between Anatolian
1859 Epipaleolithic as a major source (~68%) and CHG (~32%) as a second source,
1860 or a three-way admixture among an Anatolian Epipaleolithic/Neolithic major
1861 source (~49-70%), Neolithic Iran/CHG as a secondary source (~29-43%), and
1862 BalkanHG/WHG/RussianUpperPaleolithicHG (~0.1-22%) or
1863 IberomaurusianHG (~2%) as a third source or a four-way admixture that also
1864 includes additional minor sources (**Supplementary Figure S36F**),
- 1865 ○ b) the “More_proximate” set of sources: either a two-way admixture between
1866 EBA Greece (2900-2000 BCE) as main source (~79-81%) and a Yamnaya-like

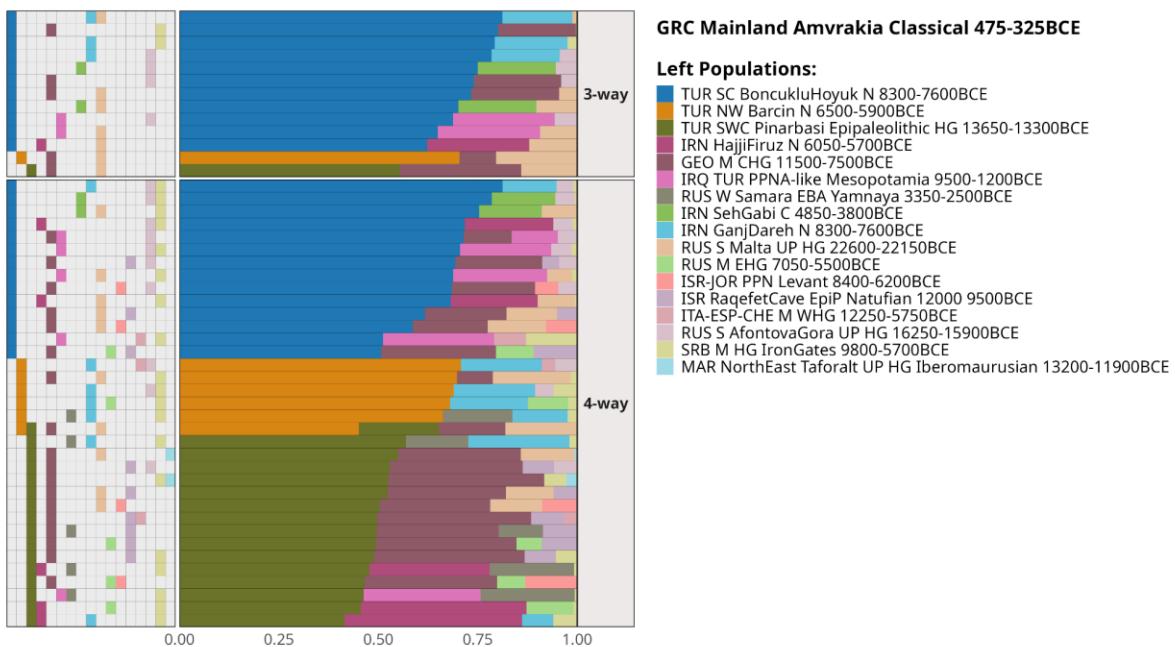

1867 population as the minor source (~19-21%) or a two-way admixture of almost
1868 equal contribution between MBA Albania (1900-1700 BCE) and either Early-to-
1869 Middle BA Crete (2900-1700) or EBA Greece (2900-2000 BCE); in three-way
1870 and four-way admixture models, several other sources with lower contribution
1871 appear, such as LBA Crete, LBA Peloponnese, BA Levant, BA Türkiye etc
1872 (**Supplementary Figure S37F**).

- 1873 • Roman Tenea is inferred to be in rotating qpAdm using:

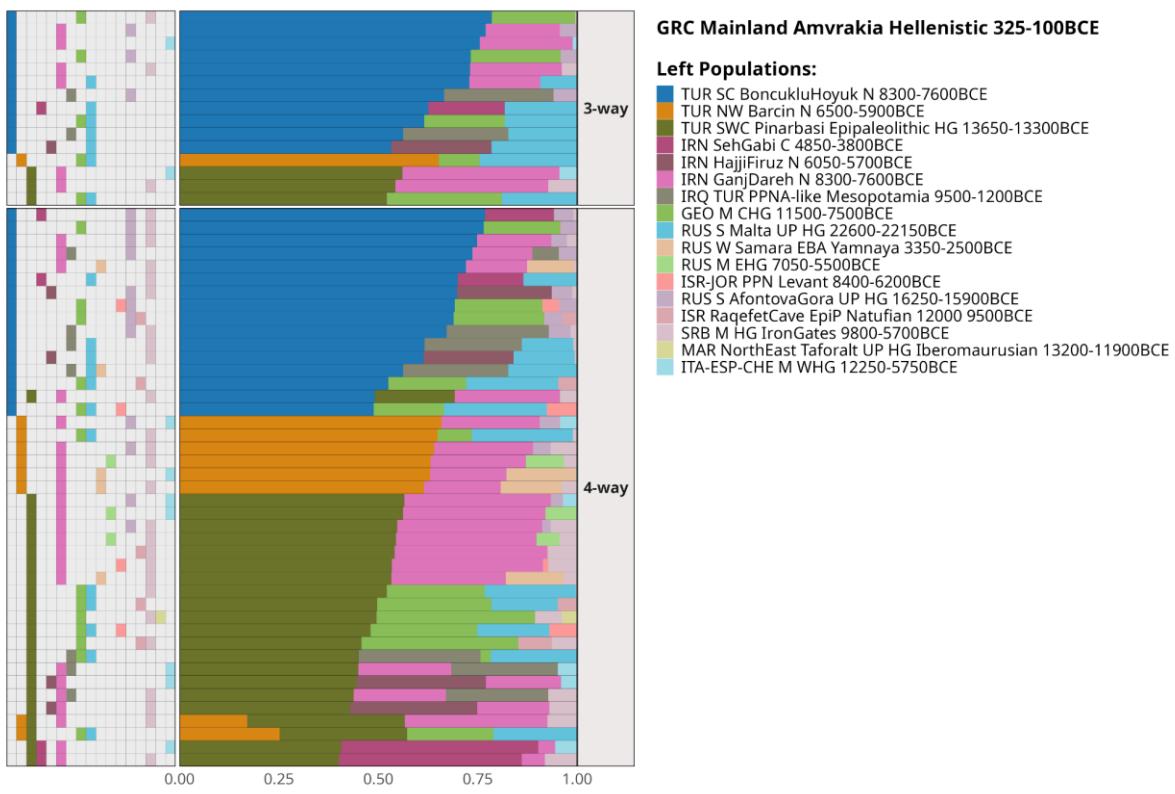
- 1874 ○ a) the “Ultimate” set of sources: either a three-way admixture among two major
1875 sources (~30-54% each), Anatolian Epipaleolithic/Neolithic and CHG , and
1876 Natufian/PPN Levant (~19-35%) or IberomaurusianHG (~4-5%) as a third
1877 source or a four-way admixture that also includes additional minor sources
1878 (**Supplementary Figure S36G**),
1879 ○ b) the “More_proximate” set of sources: no feasible model with a >0.05 (or
1880 >0.01) p-value was supported.


1881
1882

1883

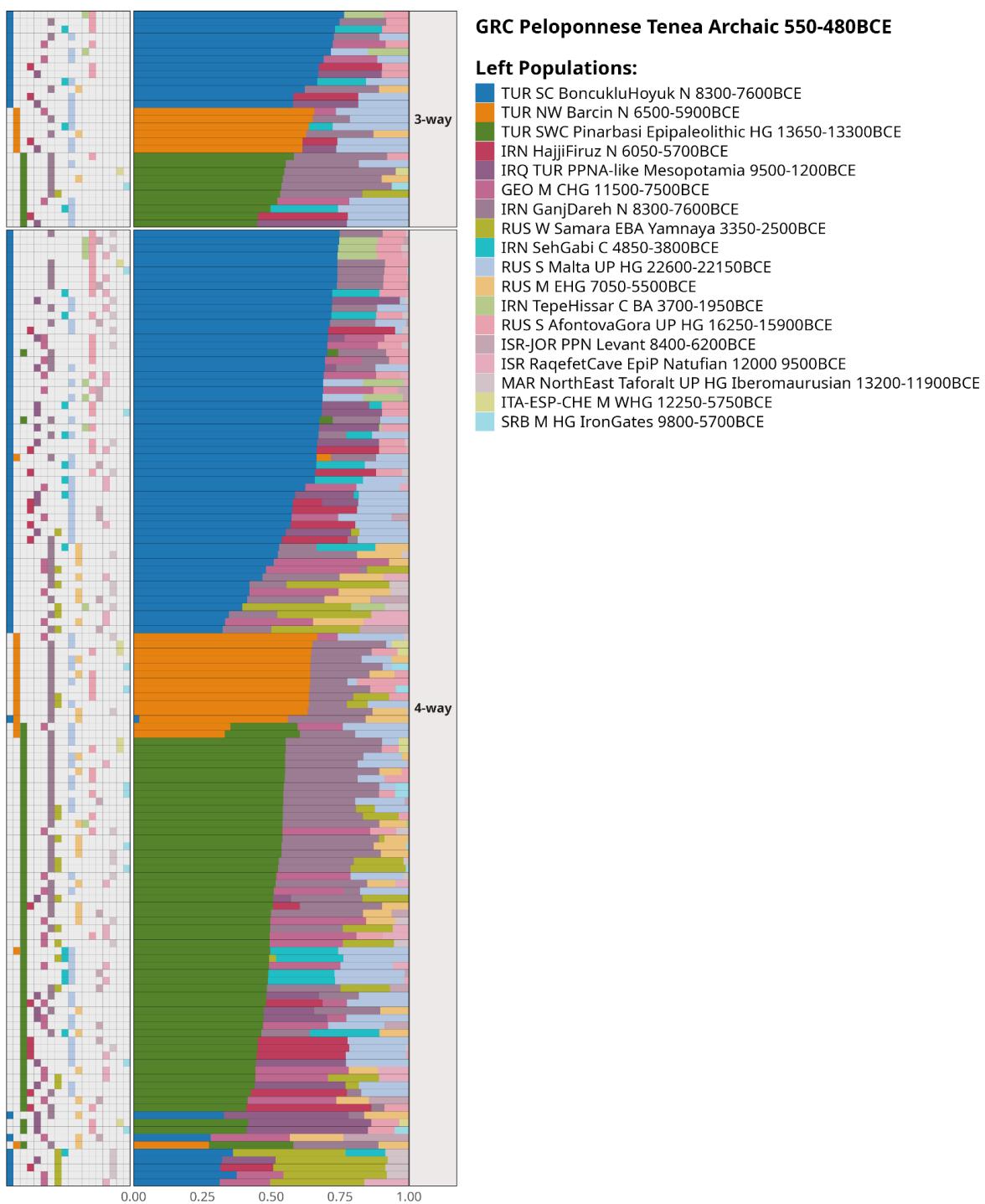

A.

1884

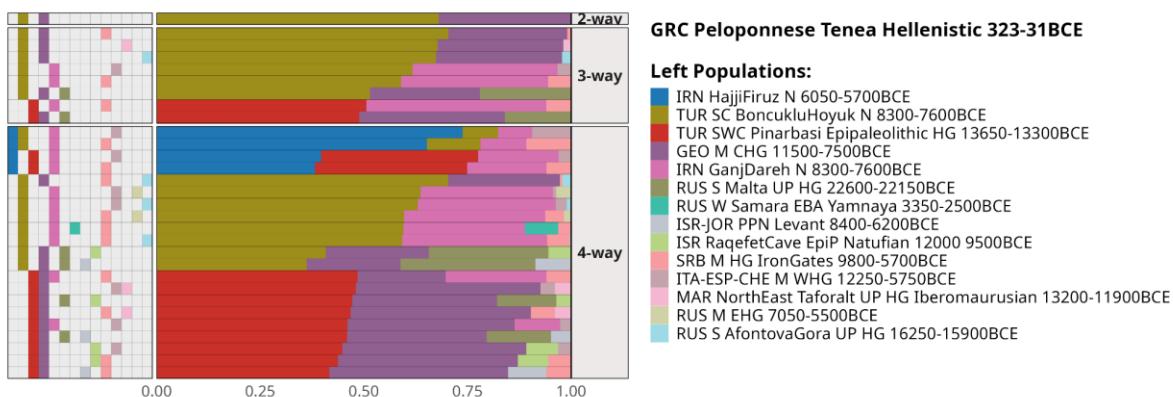

1885

B.

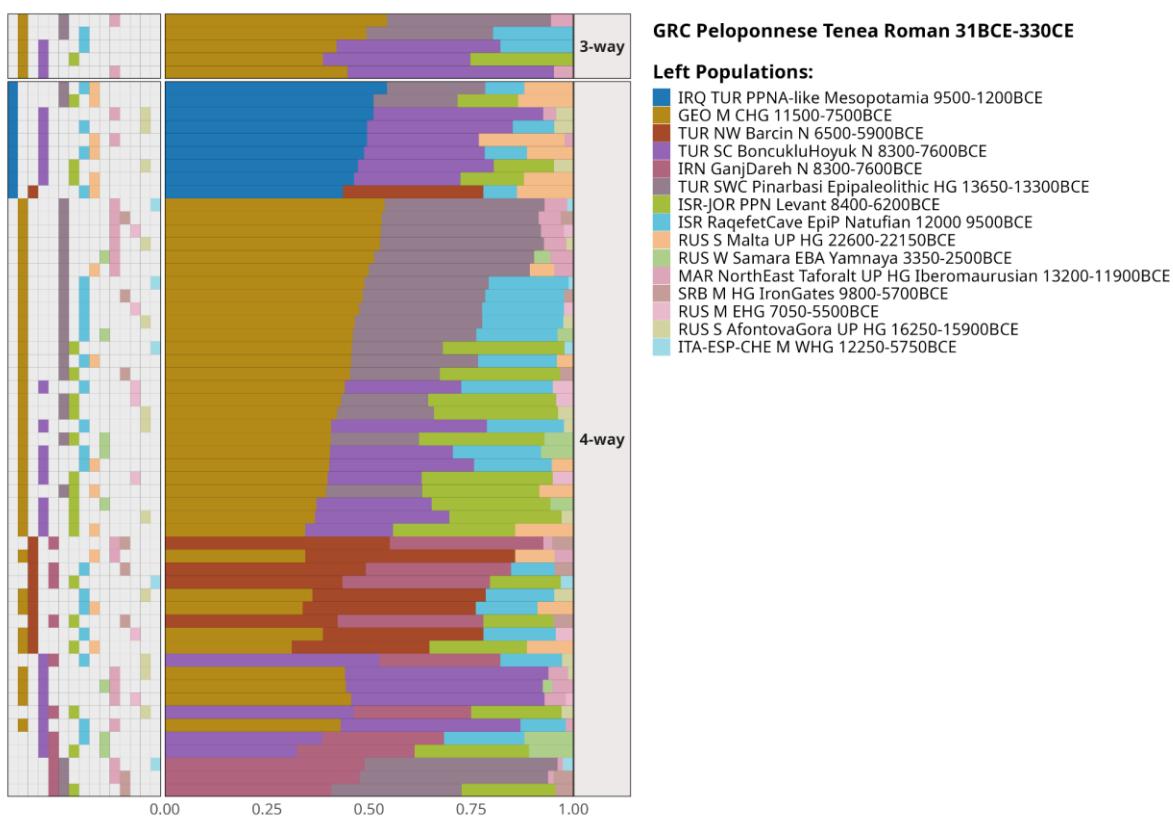
1886


1888
1889

D.


1890

1891 E.



1892

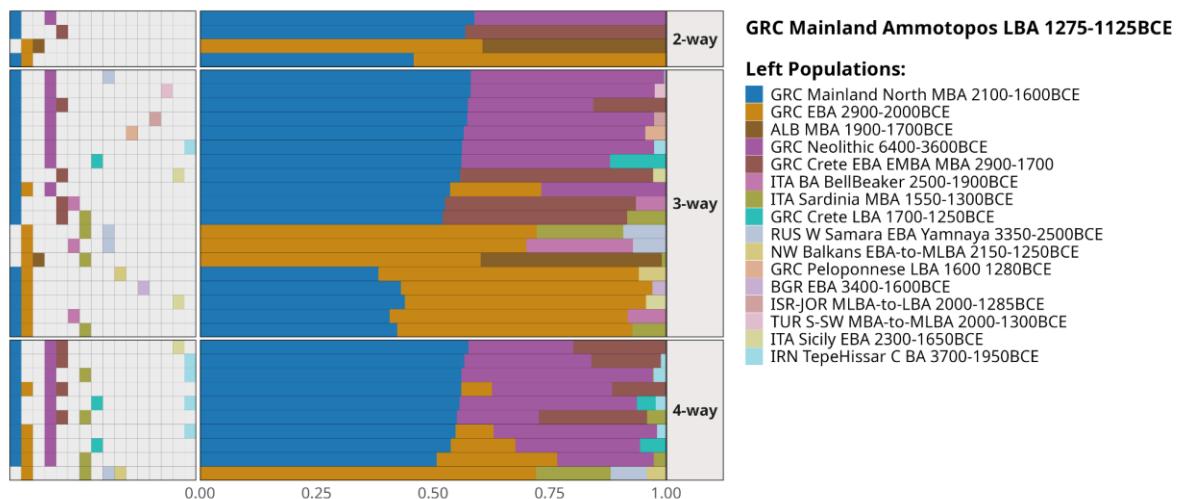
1893

F.

1894

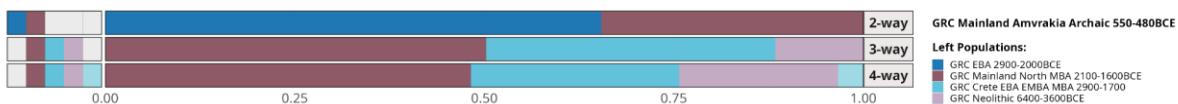
G.

1896


1897

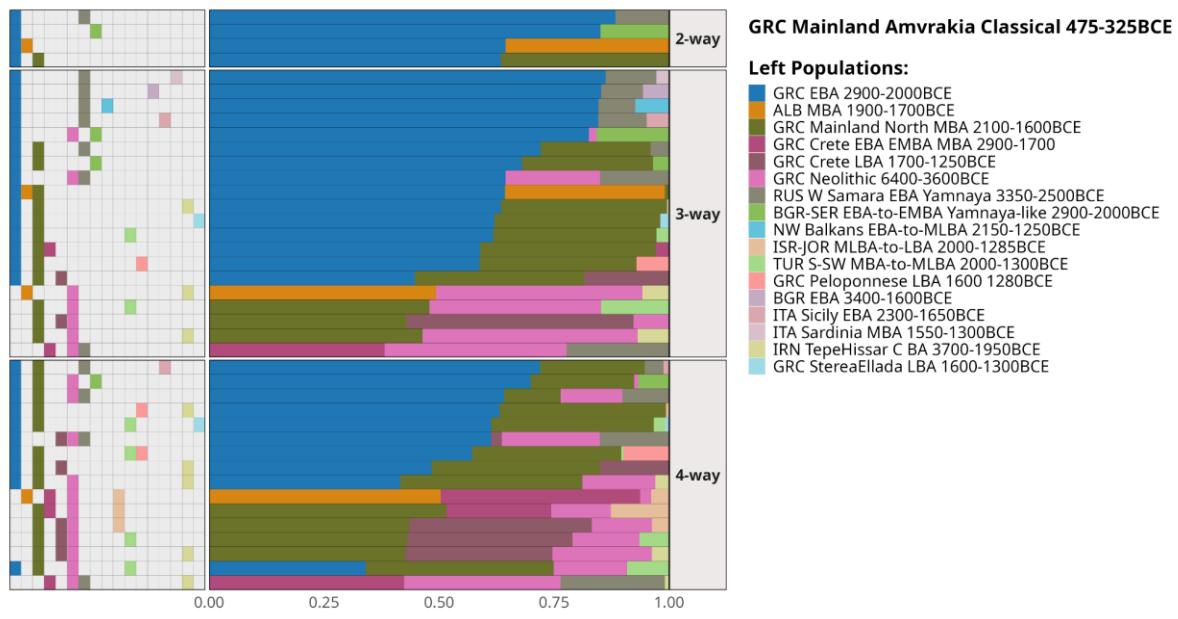
Supplementary Figure S36. Horizontal stacked bar chart of qpAdm analyses results using the “Ultimate” sample-set as putative sources. Only the feasible models with a p-value > 0.05 (accepted models) are shown with the points representing the populations involved and the colors indicating their admixture proportions. The models were sorted based on the number of involved sources (1-4). The tested target population is **A.** LBA Ammotopos **B.** Archaic Amvrakia, **C.** Classical Amvrakia **D.** Hellenistic Amvrakia **E.** Archaic Tenea **F.** Hellenistic Tenea **G.** Roman Tenea. The plots are available at Zenodo (<https://doi.org/10.5281/zenodo.10848927>), too.

1904


1905

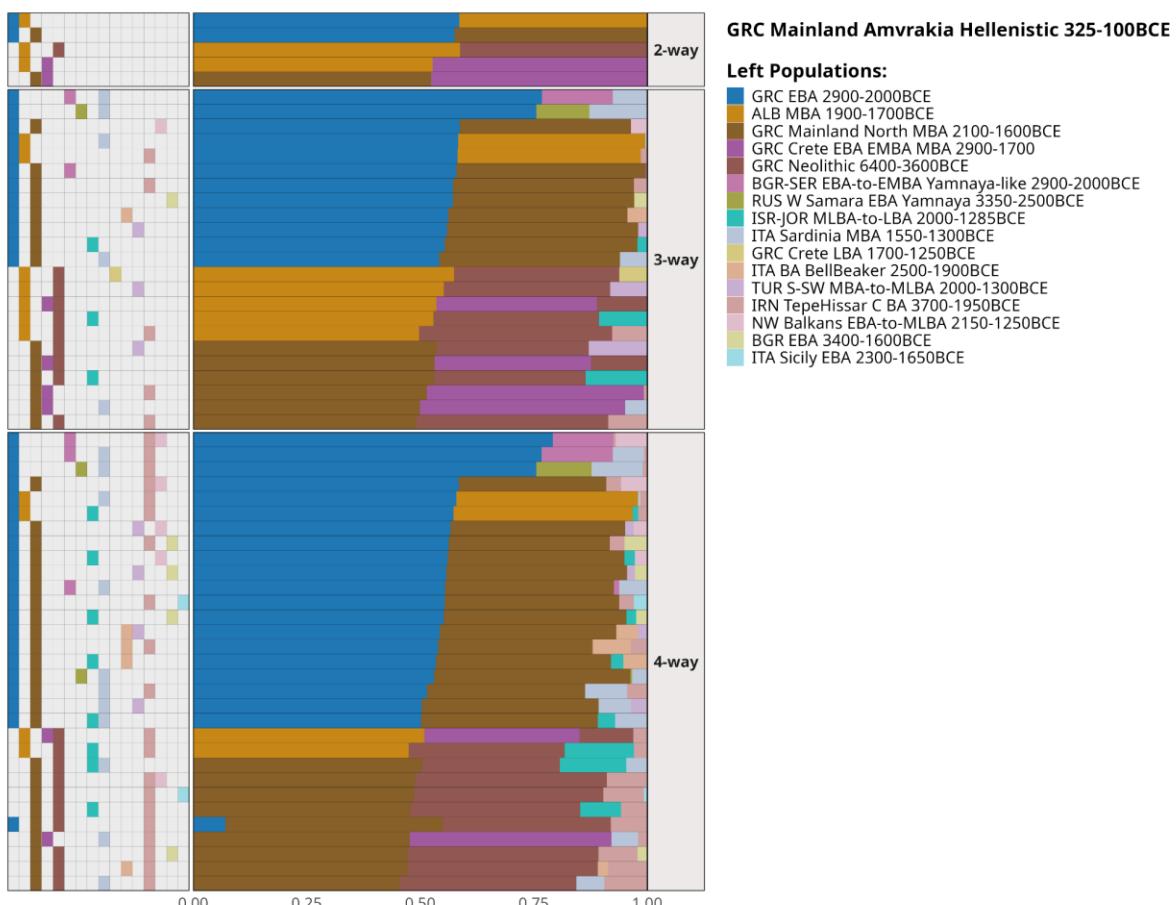
1906

A.


1907

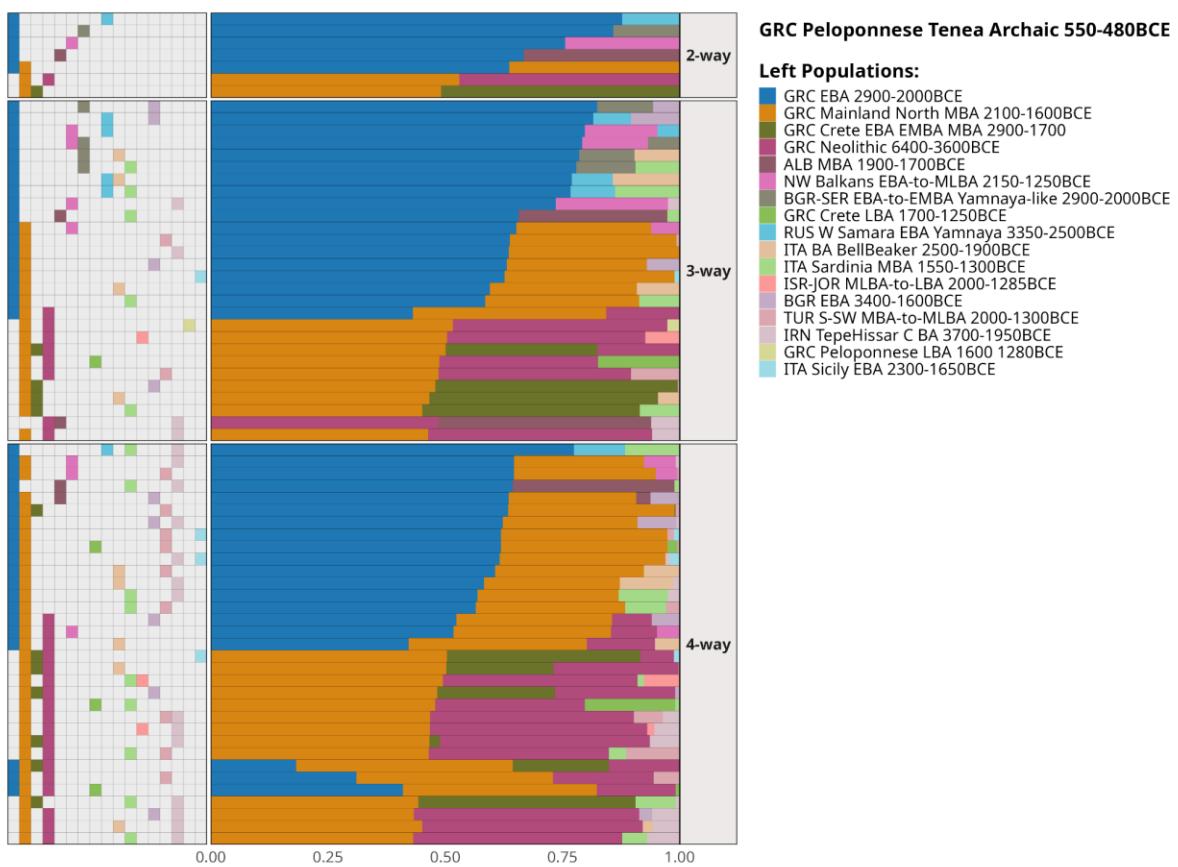
1908

B.


1909

1910

C.


1911

1912 D.

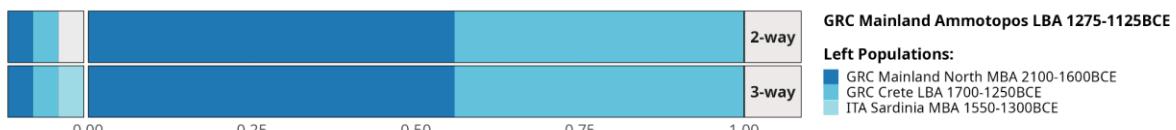

1913

1914 E.

1915

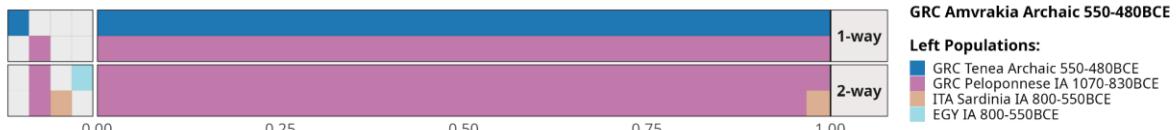
1916

F.


1917

1918 **Supplementary Figure S37.** Horizontal stacked bar chart of qpAdm analysis results using the
 1919 “More_proximate” sample-set as putative sources. Only the feasible models with a p-value >
 1920 0.05 (accepted models) are depicted with the points representing the populations involved,
 1921 and the colors indicating their admixture proportions. The models were sorted based on the
 1922 number of involved sources (1-4). The tested target population is **A.** LBA Ammotopos **B.**
 1923 Archaic Amvrakia, **C.** Classical Amvrakia **D.** Hellenistic Amvrakia **E.** Archaic Tenea **F.**
 1924 Hellenistic Tenea The analyses for Roman Tenea did not produce any feasible model. The
 1925 plots are available at Zenodo (<https://doi.org/10.5281/zenodo.10848927>), too.

1926


1927

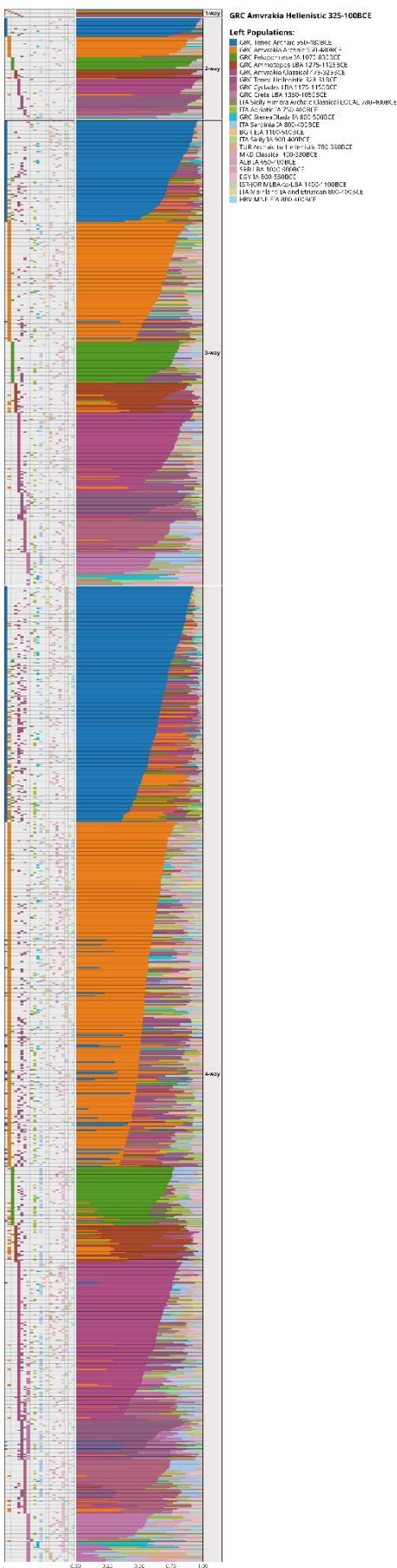
1928

A.

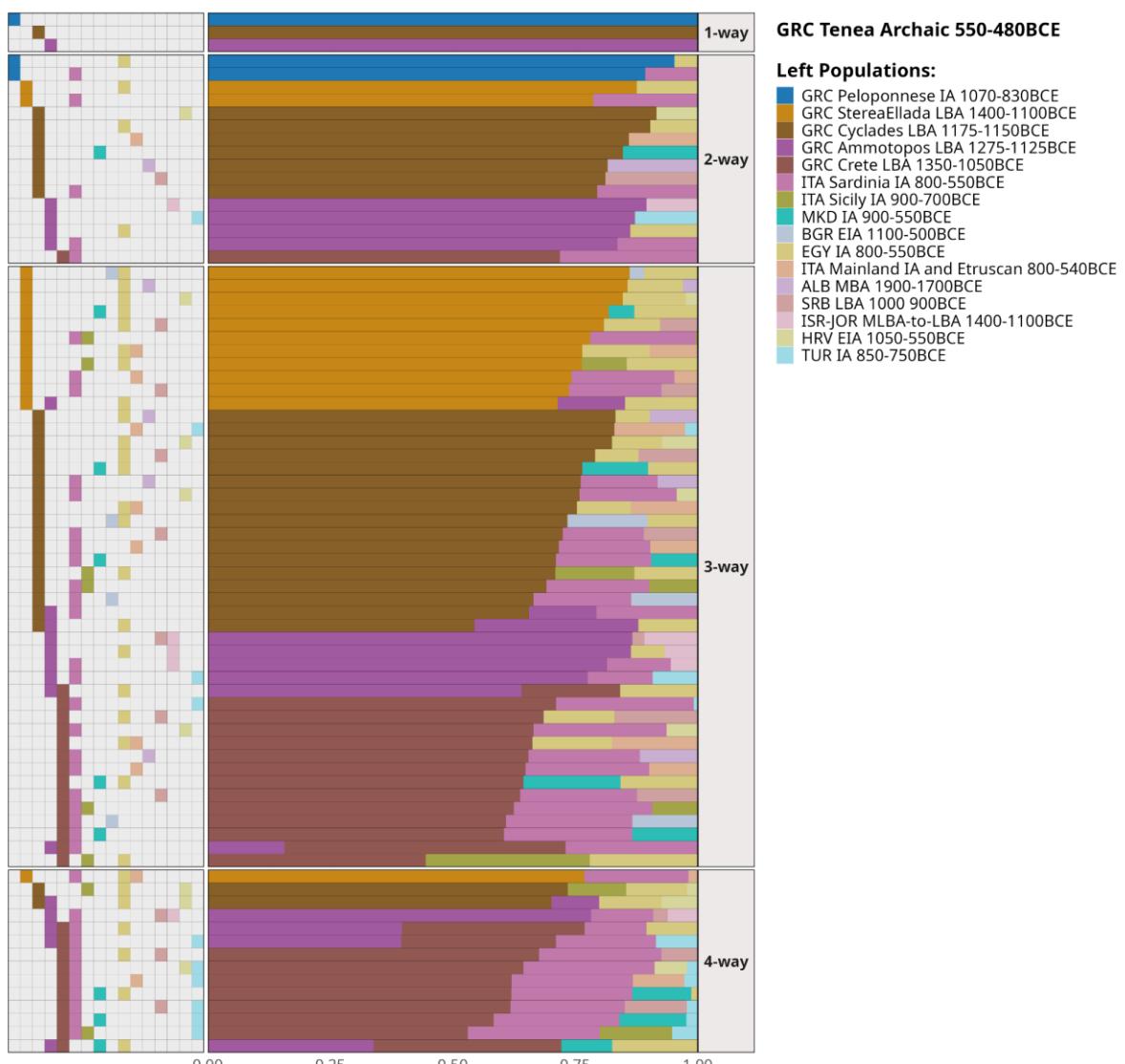
1929

1930

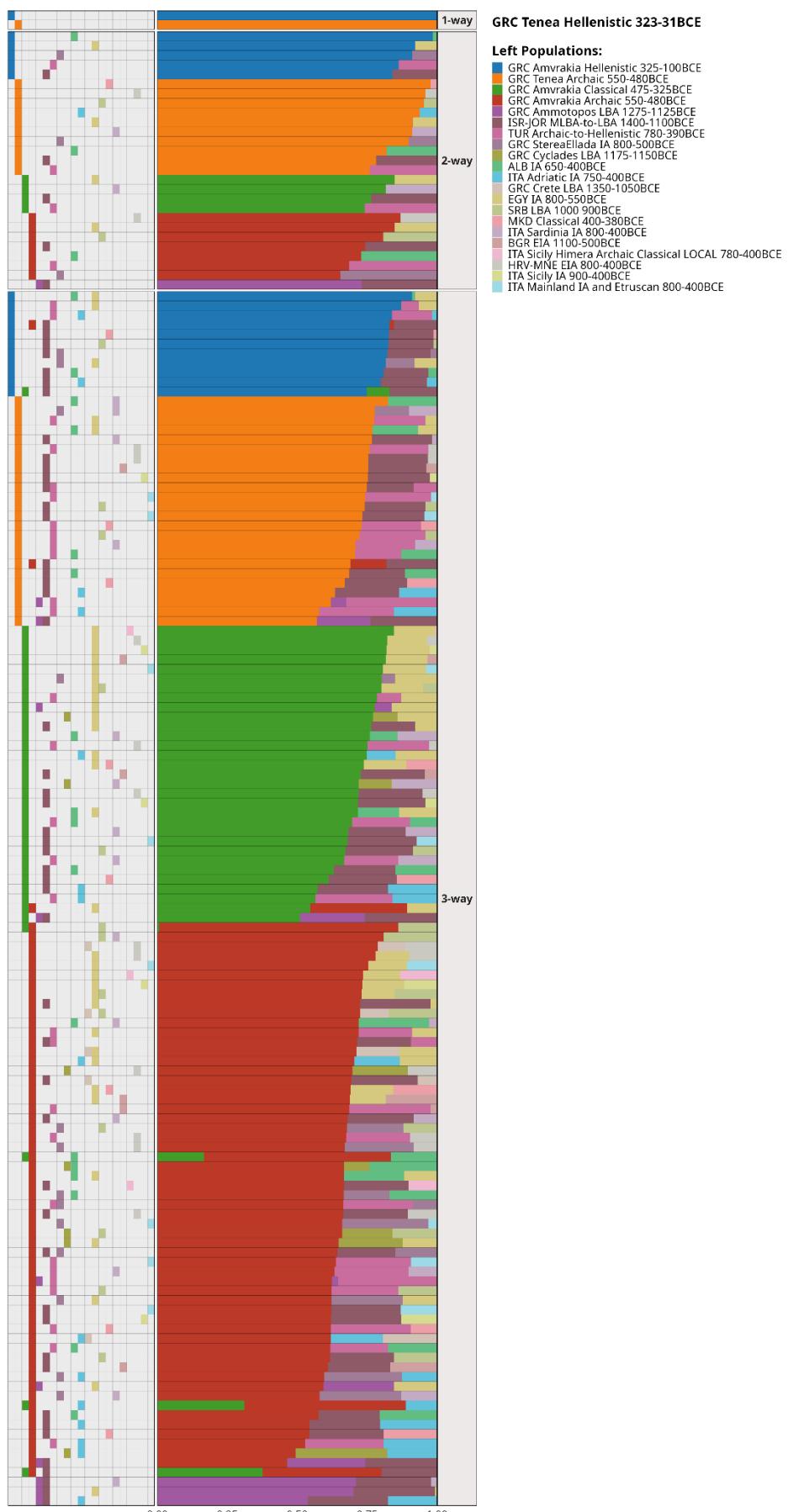
B.

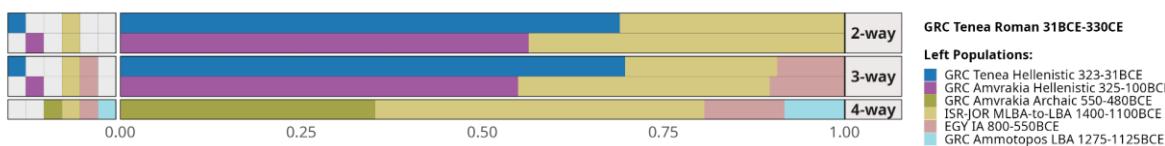

1931

1932


C.

1933


1934

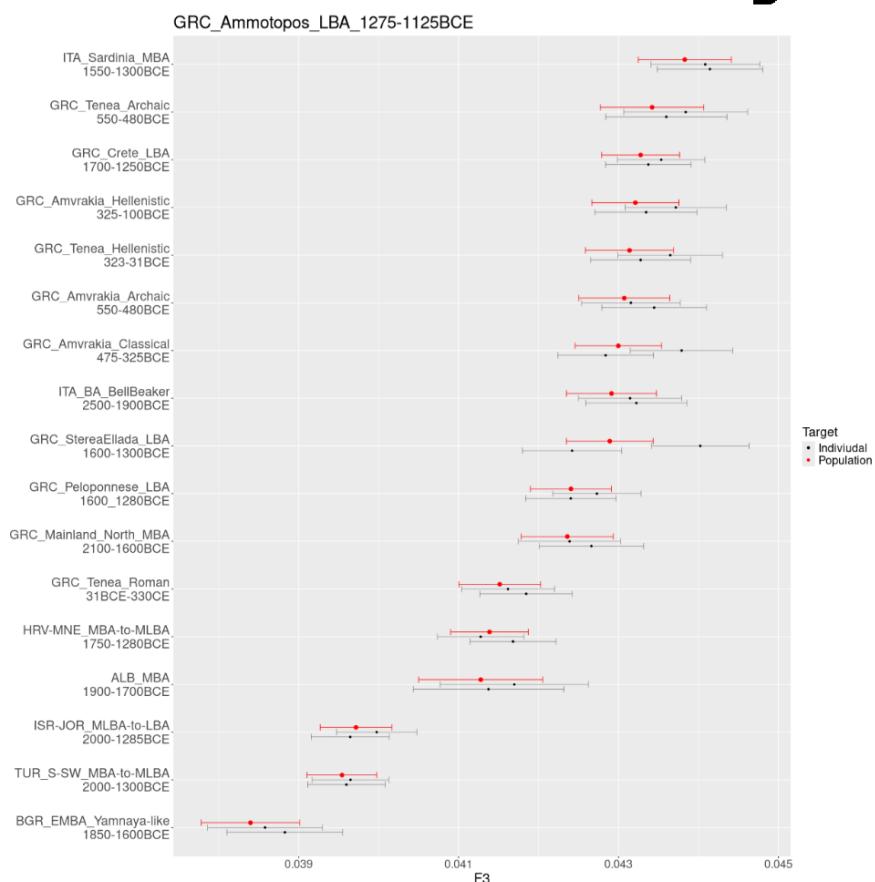

1937 E.

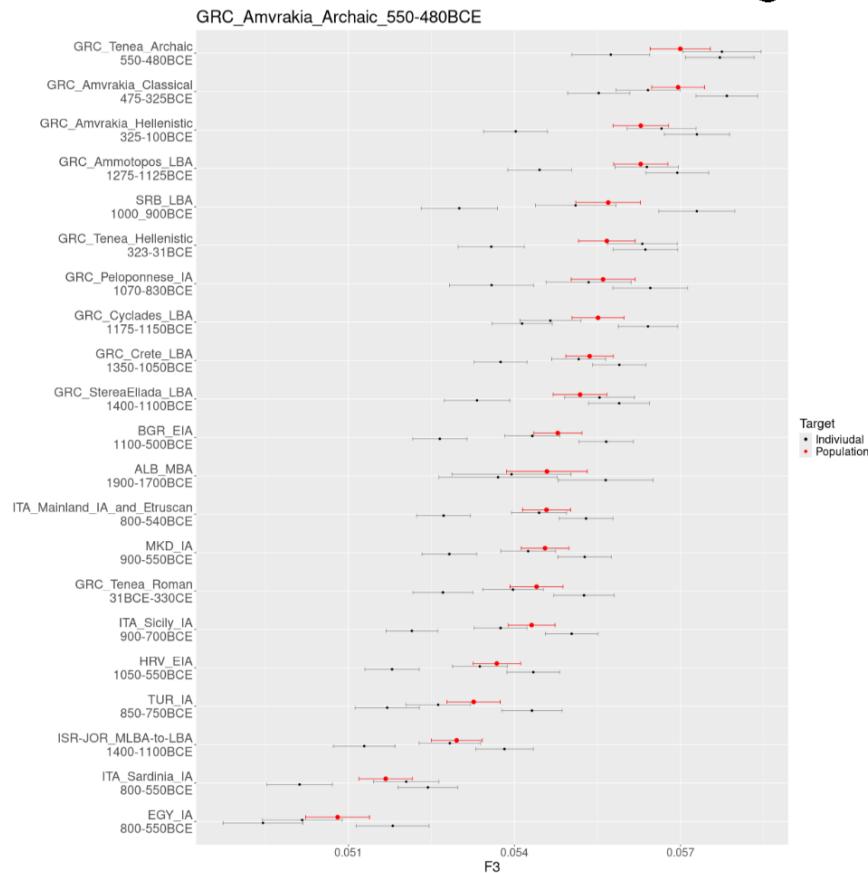
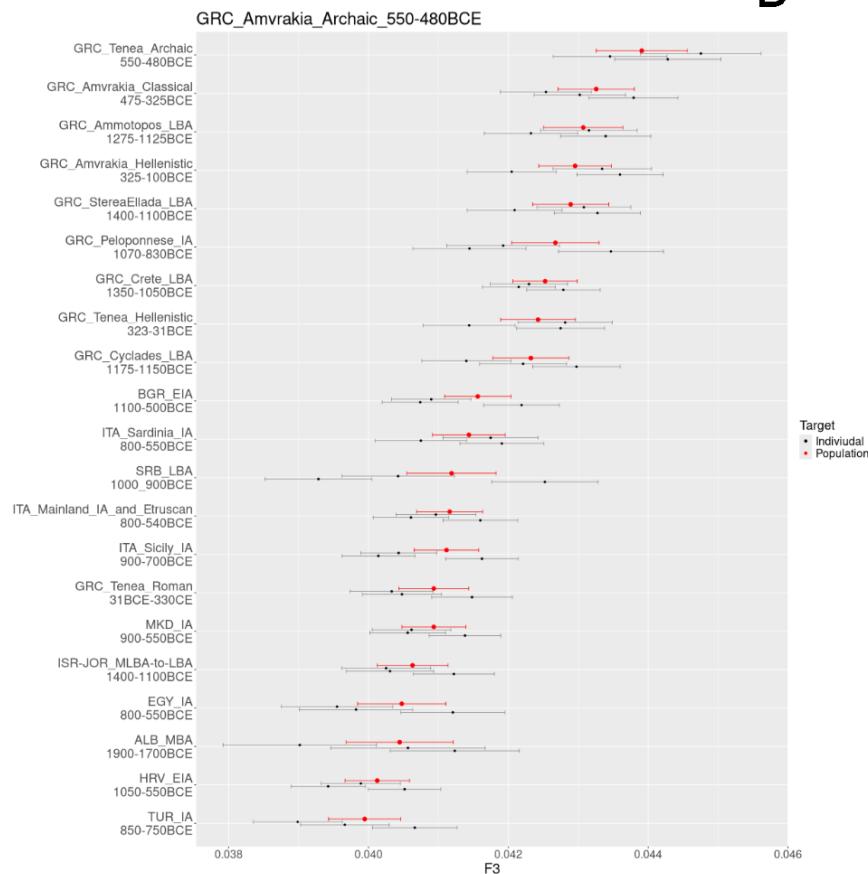
1938
1939

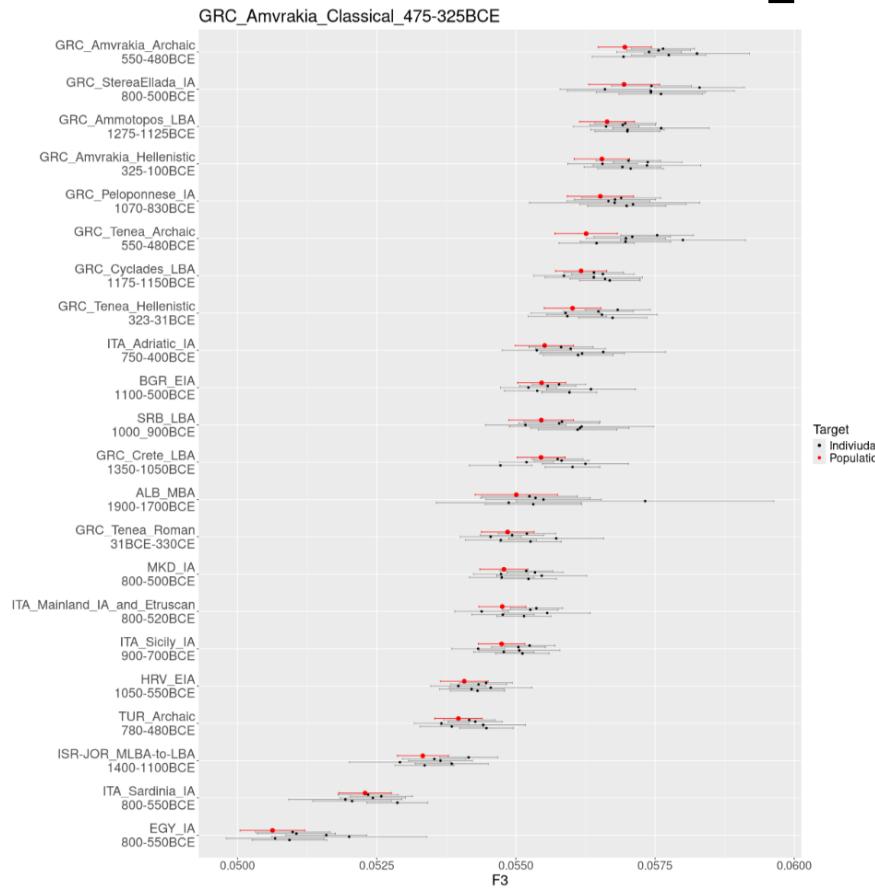
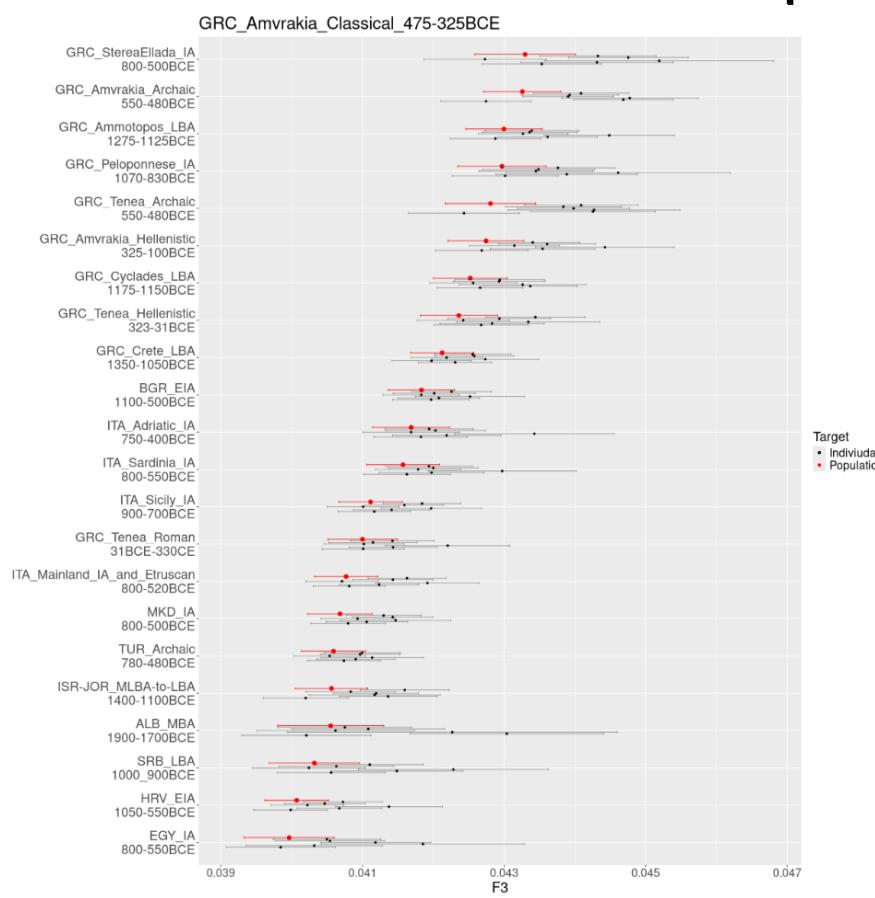
1942 **G.**

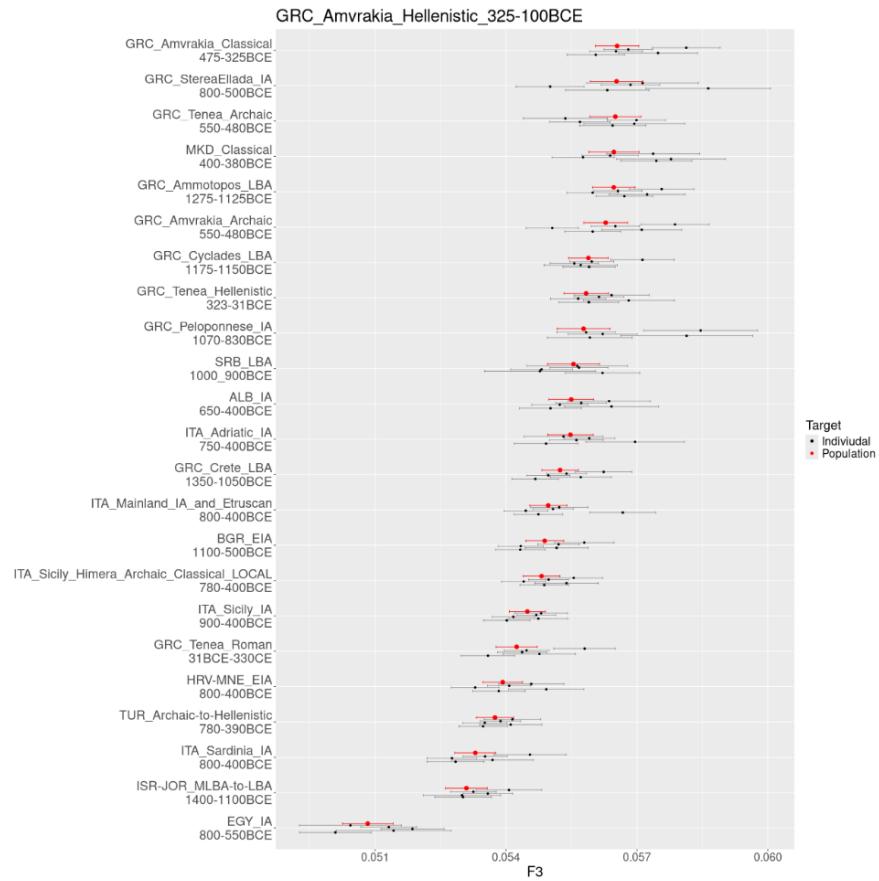
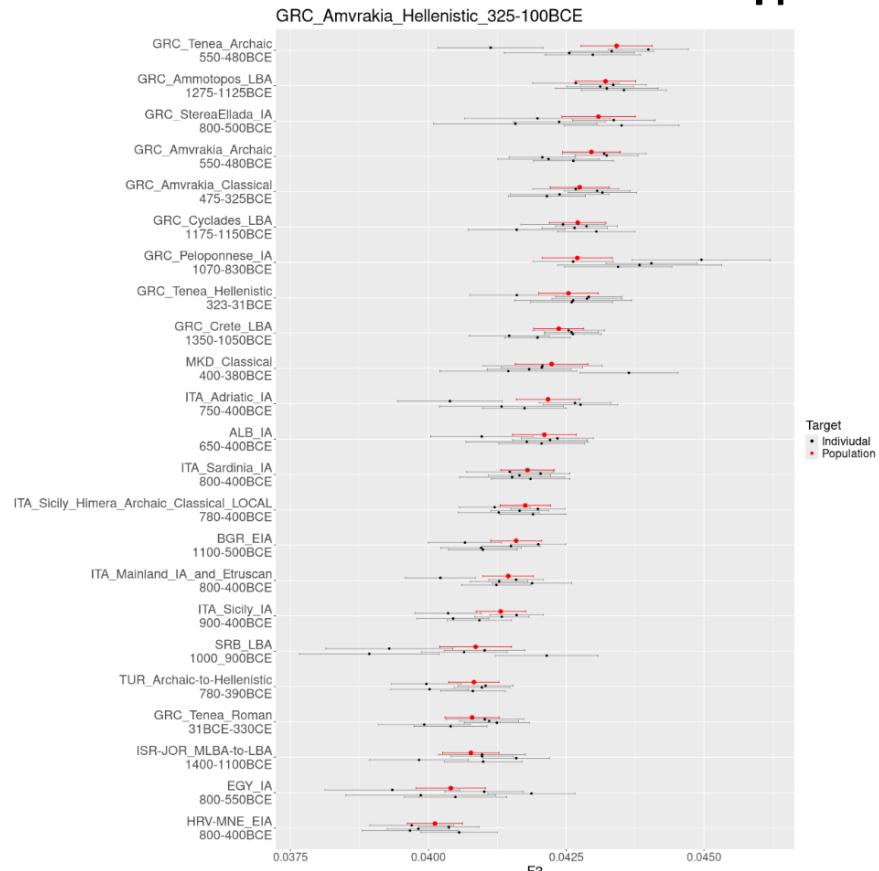
1943

1944 **Supplementary Figure S38.** Horizontal stacked bar chart of qpAdm analyses results using
1945 the “Most_proximate” sample-set as putative sources. Only the feasible models with a p-value
1946 > 0.05 (accepted models) are depicted with the points representing the populations involved
1947 and the colors indicating their admixture proportions. The models were sorted based on the
1948 number of involved sources (1-4). **A.** LBA Ammotopos **B.** Archaic Amvrakia, **C.** Classical
1949 Amvrakia **D.** Hellenistic Amvrakia **E.** Archaic Tenea **F.** Hellenistic Tenea **G.** Roman Tenea.
1950 For better visualization, the plots are available at Zenodo
1951 (<https://doi.org/10.5281/zenodo.10848927>), too.

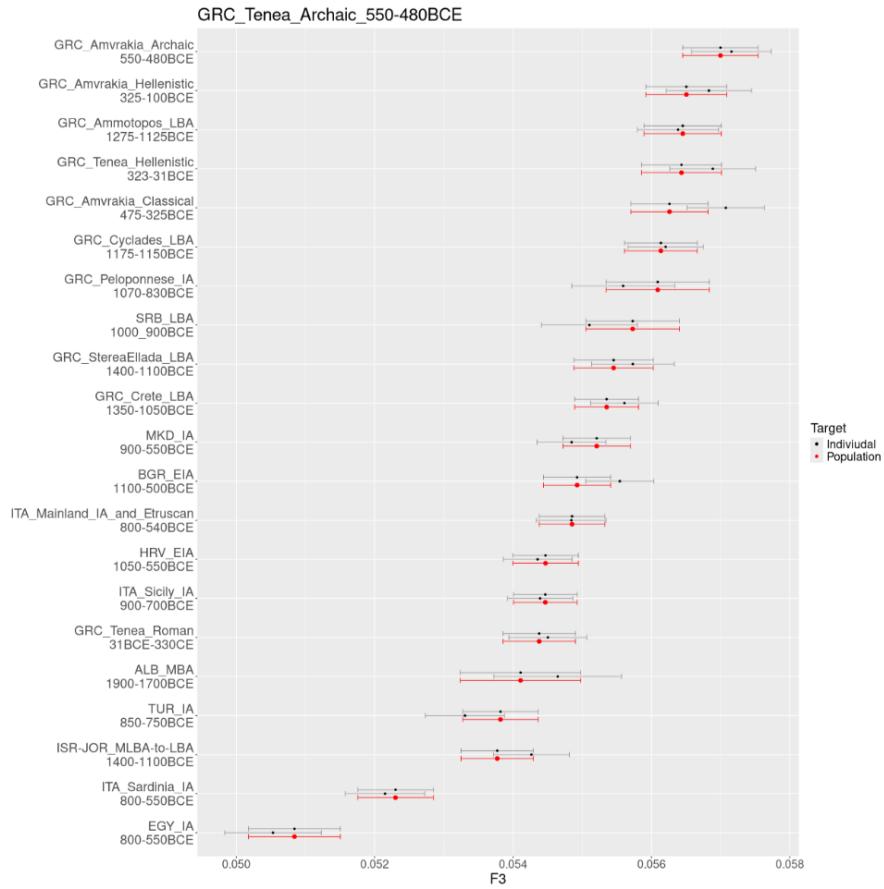

1952



1953 The f3 analyses were performed using the R interface [148] of ADMIXTOOLS2 v.2.0.0,
1954 again deploying, as separate targets, the focal populations (Ammotopos, Amvrakia, Tenea)
1955 during different time periods (LBA, Archaic, Classical, Hellenistic, Roman, etc). The Outgroup
1956 f3 analyses were performed in order to estimate the genetic distance between a given target
1957 and a given set of other populations (members of the “Most-proximate” sources, as well as
1958 contemporary and subsequent populations of each target, i.e., for Classical Amvrakia we
1959 estimated the genetic distance to Archaic Amvrakia, but also to Hellenistic Amvrakia, Roman
1960 Tenea etc; see **Additional file 4** for details). As an outgroup population we used, in separate
1961 runs, the modern African Yoruba population and the modern East Asian Han population.
1962 Additionally, within-population genetic similarity levels were estimated by calculating the pair-
1963 wise Outgroup f3 values within each population and within a given period (**Figure 4B**). In
1964 calculations including outgroups, a higher f3 value indicates that the target is more similar to
1965 other tested population(s). The script is provided at <https://doi.org/10.5281/zenodo.10848927>
1966 and includes the following R packages: Hmisc v.5.1-2 [149] and stringr. The Outgroup f3
1967 results are plotted in **Supplementary Figure S39**, whereas all the Outgroup f3 outputs are
1968 provided at <https://doi.org/10.5281/zenodo.10848927>. All f3 calculations were performed
1969 using f2-block computations (f2_from_geno;
1970 https://uqrmaie1.github.io/admixtools/reference/f2_from_geno.html) and f2-blocks were
1971 calculated distinctly for all population triplets. Parameter maxmiss was set to 0.1 and
1972 adjust_pseudohaploid was set to TRUE as the data are pseudohaploidized. In order to
1973 determine f3 values for the newly sequenced genomes, each individual was singled out and
1974 f3 calculations were repeated for each individual being the only representative of the
1975 population (**Supplementary Figure S39**, gray dots). Hence, individual estimates were
1976 computed for all samples. In the cases of close genetic relatedness (1st and 2nd degrees),
1977 the population estimate (**Supplementary Figure S39**, red dots) was computed by only
1978 retaining the genome with higher coverage.

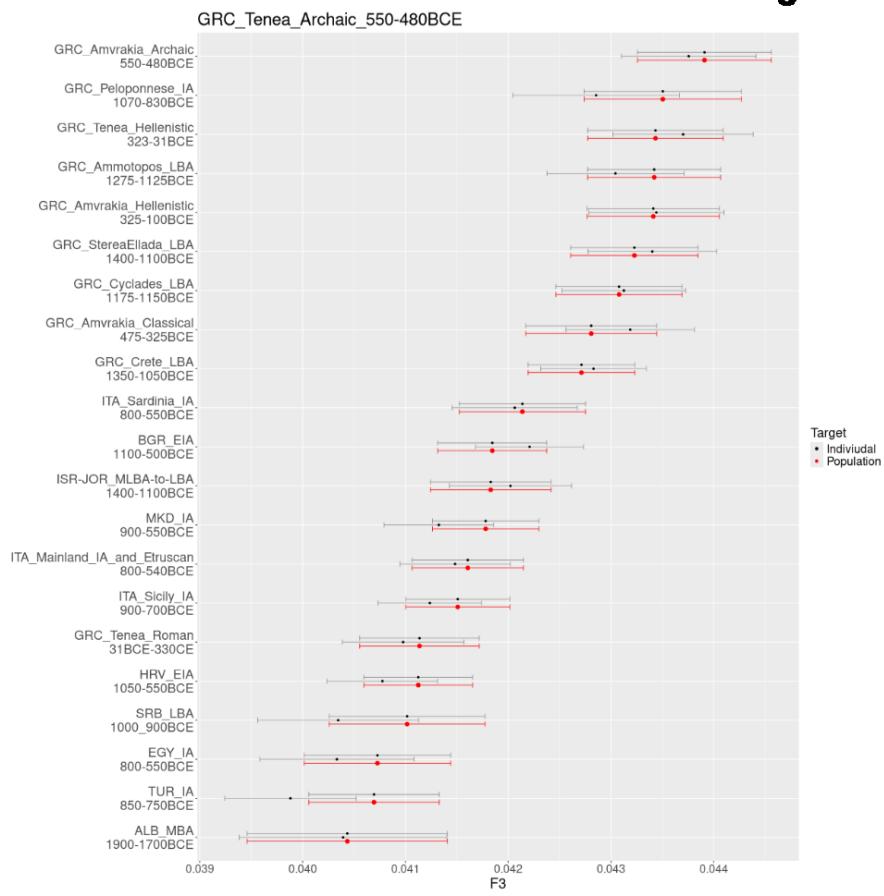


1979

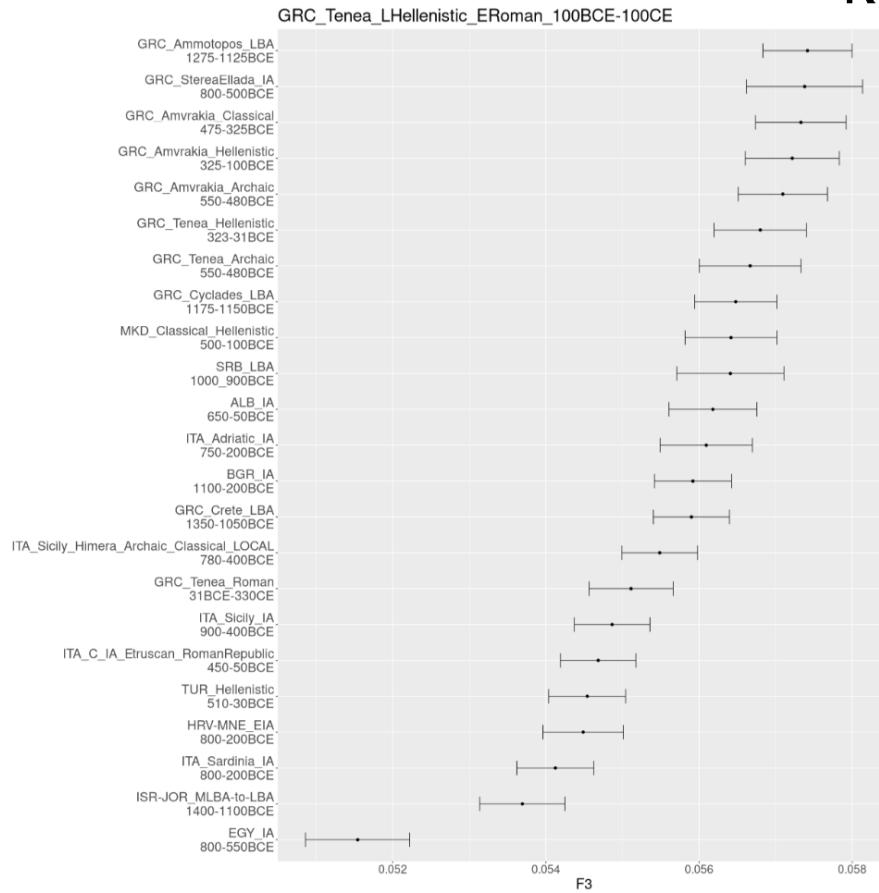
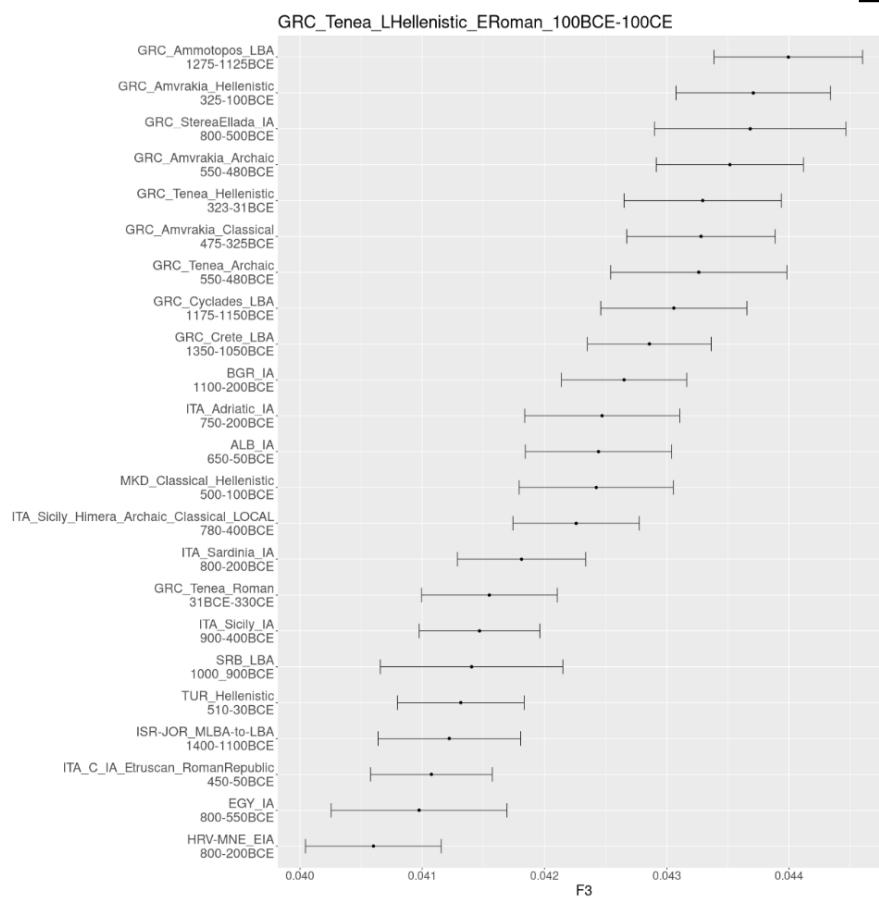


1980 Regarding the Outgroup f3 tests, we observed similar results using either Yoruba or
1981 Han as the outgroup population, with the differences mostly being concentrated in the more
1982 distant populations in relation to each target. Overall, in most cases, the target population had
1983 the highest genetic similarity with populations from the geographic area of present-day
1984 Greece, indicating a general genetic continuity.

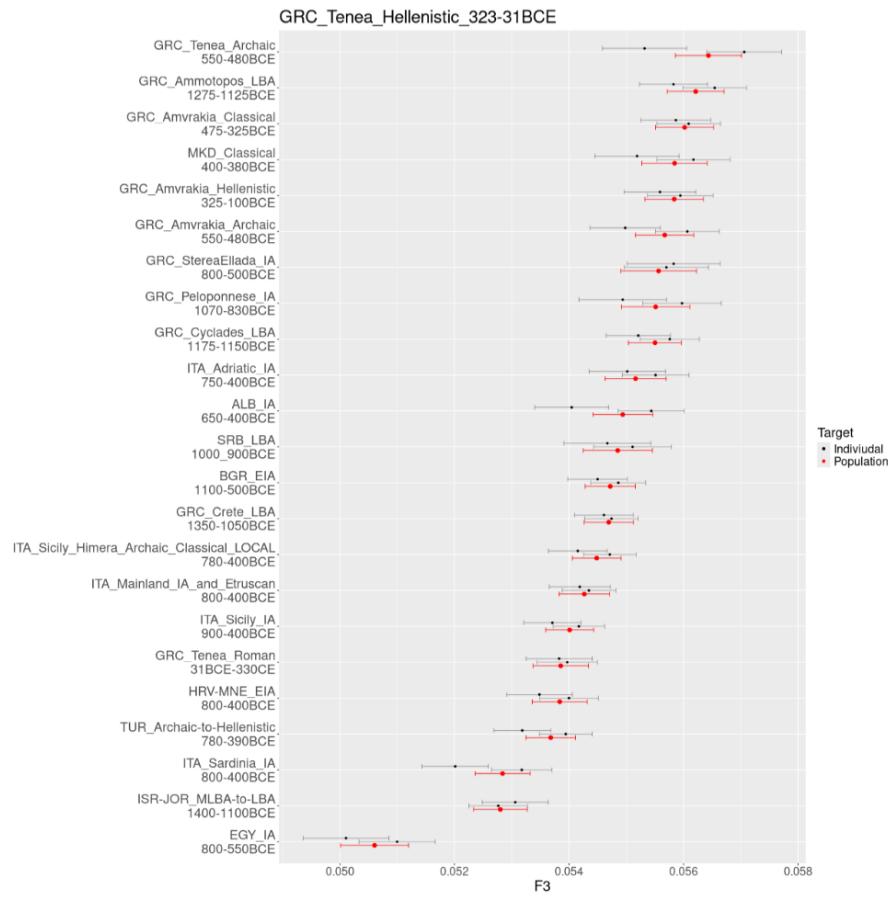
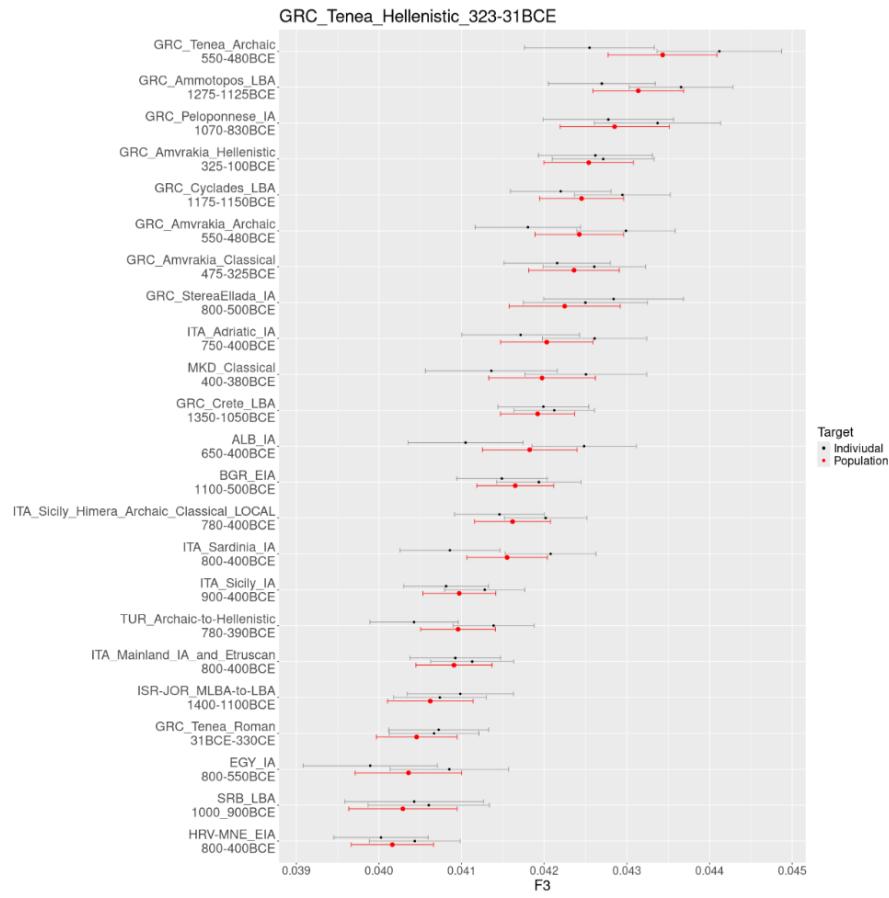
1985


A**B**

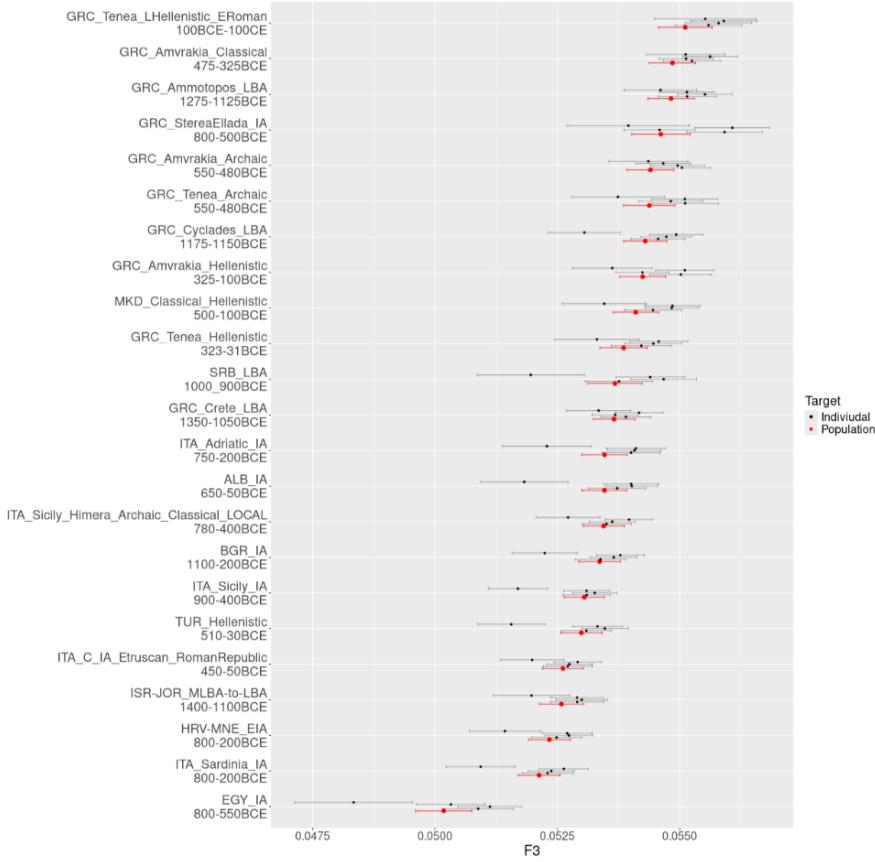
C**D**


E**F**



G**H**



I

J



K**L**

M**N**

O

GRC_Tenea_Roman_31BCE-330CE

P

GRC_Tenea_Roman_31BCE-330CE

1994 **Supplementary Figure S39.** Pairwise outgroup f3 tests between a given target and members
1995 of the “Most-proximate” sources set and contemporary and subsequent populations of each
1996 target, estimating the genetic distance between them (the higher the f3 value the lower the
1997 genetic distance). As outgroups we use the modern African Yoruba population (**upper plots**;
1998 **A, C, E, G, I, K, M, O**) and the modern Eastern Asia Han population (**lower plots**; **B, D, F, H,**
1999 **J, L, N, P**). Targets are **A-B**) LBA Ammotopos, **C-D**) Archaic Amvrakia, **E-F**) Classical
2000 Amvrakia, **G-H**) Hellenistic Amvrakia, **I-J**) Archaic Tenea, **K-L**) Late Hellenistic - Early Roman
2001 Tenea, **M-N**) Hellenistic Tenea, and **O-P**) Roman Tenea. Abbreviations are given in **Figure 2**.
2002 The plots are individually available at Zenodo (<https://doi.org/10.5281/zenodo.10848927>), too.

2003 3.6 Phenotypes

2004 **Angelos Souleles**

2005 3.6.1. Pigmentation

2006 For hair, eye, and skin color prediction, we deployed the widely used HirisPlex-S
2007 [150,151] tool. We employed imputed data (see Section 3.5.5) for the 41 SNPs associated
2008 with HirisPlex-S, as recent studies have demonstrated that imputed data can reliably predict
2009 phenotypes, even for individuals with a coverage as low as 0.10-0.50× [152]. All newly
2010 generated genomes of the present study have >0.1× mean coverage depth. To minimize
2011 errors associated with reference-based imputation, we used BCFtools v.1.15 and its *filter*
2012 function to only retain genotypes from imputed SNPs if they had an INFO score of 0.50 or
2013 higher (-e ‘INFO/INFO<=0.5’). For the remaining HirisPlex-S SNPs with INFO score less
2014 than 0.50, we followed a similar approach as Marchi et al. [113]. We examined the BAM files
2015 directly using SAMtools v.1.15. We then created two HirisPlex-S input files for each individual:
2016 one by replacing missing genotypes with homozygous genotypes for the most abundant allele
2017 in the BAM file (*_main* in **Additional file 5; HirisPlex-S_raw_results sheet**), and another one
2018 by replacing missing genotypes with heterozygous genotypes (*_secondary* in **Additional file**
2019 **5; HirisPlex-S_raw_results sheet**) to account for the uncertainty in heterozygosity
2020 observation associated with low-coverage aDNA data. However, for SNPs rs312262906 and
2021 rs201326893, we did not need to apply the aforementioned approach, because the presence
2022 of an alternative allele at each of the two SNPs sites predicts red hair with a probability of
2023 ~1.00 [151]. For both of these SNPs, we replaced missing genotypes with homozygous
2024 genotypes for the reference allele (0/0) for both main and secondary input files.

2025 The color interpretations are detailed in **Additional file 5 (HirisPlex-**
2026 **S_interpretations sheet**). When both, the main, and the secondary probabilities exceeded
2027 0.70, the predicted phenotype was accepted. In other cases, the phenotype with the highest
2028 and the second highest probability in the main run was accepted. This is based on the
2029 indication that the second most likely category can influence the main category phenotype
2030 [150,153]. Our approach reliably determined eye color, skin color, and hair shade for all
2031 individuals, with hair color results being available for 19 out of the 26 individuals. All individuals
2032 showed the highest probability for brown eyes. Most individuals likely had an intermediate skin
2033 tone, while three of them had a darker skin color (two from Classical Amvrakia and one from
2034 Roman Tenea). Similarly, most individuals likely had brown hair with a dark shade. Notably,
2035 despite our attempts to eliminate false positive results for red hair, the Late Hellenistic - Early
2036 Roman individual from Tenea still exhibited a high probability for this phenotype.

2037 In addition, we examined the TYR variant rs1042602, which has been associated with
2038 the absence of freckles [154,155]. Among the 26 individuals analyzed, eight were homozygous
2039 for the allele linked to absence of freckles, 13 were heterozygous, and five did not carry the
2040 allele.

2041

2042 3.6.2. Monogenic Phenotypes

2043 Genotypes associated with metabolic traits (lactase persistence and sensitivity to fats)
2044 and human muscle strength and composition (muscle contraction type and muscle
2045 performance) were manually examined directly in the BAM files using SAMtools, as described
2046 above. The allele counts from the corresponding reads are provided in **Additional file 5**

2047 (**Monogenic_traits_counts sheet**). For each genotype, the number of individuals covering
2048 the SNP varied (MCM6: n=14; FABP2: 15; ACTN3: 15; ACVR1B: 11). None of these
2049 individuals were found to be lactose tolerant, including the more recent ones. Seven
2050 individuals showed a moderately increased sensitivity to fats; however, four of them only had
2051 one single read at the specific genomic position, yielding these results inconclusive. Regarding
2052 muscle performance, eight individuals had an ACTN3 genotype associated with improved
2053 muscle performance as typically seen in sprinters (three of whom had only one read), whereas
2054 seven individuals likely had impaired muscle performance (three of these only had one read).
2055 Lastly, five individuals had higher muscle strength associated with the ACVR1B gene, with
2056 one individual only having one read. Additionally, we examined 29 SNPs associated with beta
2057 thalassemia (and malaria resistance), as it is the most common genetic disorder in modern
2058 Greece [156,157]. However, no alleles associated with beta thalassemia were found in any of
2059 the newly sequenced ancient Greek individuals.

2060 **3.7 Microbial Metagenomics**

2061 **Nikolaos Psonis**

2062

2063 For the microbial metagenomics analyses, we used the FastQ files with the fully (non-
2064 truncated) collapsed reads as input that were produced by the residual adapter trimming step
2065 of the mapache pipeline (see **section 3.2.1** above). Hence, ancient microbial DNA screening
2066 analyses were performed at the FastQ level and not at the individual level. Due to its large
2067 size, one FastQ file (165_ly2_ex1_L1_fq_collapsed) had to be split into multiple ones of equal
2068 size (four in total), using fastqsplitter v.1.2.0 (<https://github.com/LUMC/fastqsplitter>) in order to
2069 be used in downstream metagenomic analyses. The taxonomic assignment (using a k-mer
2070 based approach) of each sequence was performed with v.1.0.4 KrakenUniq [158], a Lowest
2071 Common Ancestor (LCA) sequence alignment was performed with MALT v.0.61 [159], and
2072 authentication and validation of putative microbial species was conducted with the *MaltExtract*
2073 function of HOPS v.0.35 [160]. All the aforementioned software tools were used as
2074 implemented in the v.1.0.0 aMeta [161] pipeline by using the snakemake v.7.18.2 [60]
2075 workflow manager. As a reference database, we used the pre-built microbial NCBI non-
2076 redundant *nucleotide* (<https://www.ncbi.nlm.nih.gov/nucleotide/>) database (*microbial-NT*)
2077 provided by aMeta. This database contains records until June 2020 and includes all microbial
2078 (archaea, bacteria, fungi, protozoa, parasitic_worms, viruses) organisms, plus the human
2079 reference genome and a few other complete eukaryotic genomes (i.e. *Caenorhabditis*
2080 *elegans*, *Canis lupus*, *Micromonas commoda*, *Chloropicon primus*, *Cyanidioschyzon merolae*,
2081 *Ostreococcus lucimarinus*). All computational analyses were conducted on an AMD EPYC
2082 7452 system with 64 physical cores and 1 TB of RAM running Ubuntu 20.04.6 LTS.

2083 No microbial DNA belonging to ancient systemic pathogens was detected in any of the
2084 samples examined (**Additional file 6**; metagenomic overview heatmap score >8). In dental
2085 samples, however, we did observe DNA traces belonging to ancient human oral bacteria
2086 (and/or are considered common dental pathogens causing diseases, such as gingivitis),
2087 including *Porphyromonas gingivalis*, *Tannerella forsythia*, *Streptococcus gordonii*,
2088 *Streptococcus anginosus*, *Streptococcus intermedius*, *Capnocytophaga sputigena*, *Eikenella*
2089 *corrodens*, *Neisseria elongata*, *Parvimonas micra*, *Streptococcus sanguinis*, *Tannerella* sp.
2090 oral taxon HOT-286, *Campylobacter showae*, *Gemella morbillorum*, *Neisseria mucosa*,
2091 *Aggregatibacter aphrophilus*, *Prevotella intermedia*, *Rothia dentocariosa*, *Streptococcus*
2092 *mutans*, *Aggregatibacter actinomycetemcomitans*, *Campylobacter rectus*, *Corynebacterium*
2093 *matruchotii*, *Fusobacterium nucleatum*, *Leptotrichia trevisanii*.

2094 Of special note, the Human endogenous retrovirus K was detected (score of 8) in a
2095 Classical Amvrakia individual (Amv_Epi_CI_1). HERV-K has been integrated in the human
2096 and cercopithecoid genomes [162].

2097 Moreover, authenticated ancient DNA traces were obtained from environmental taxa,
2098 such as *Ralstonia solanacearum*, *Thermobispora bispora*, *Clostridium tetani*,
2099 *Streptosporangium roseum*, *Clostridium septicum*, *Candidatus Nitrososphaera gargensis*,
2100 *Alcaligenes faecalis*, *Proteus vulgaris*, *Acidipropionibacterium jensenii*, *Acinetobacter*
2101 *calcoaceticus*, *Advenella kashmirensis*, *Serratia rubidaea*, *Thermobispora bispora*,
2102 *Lysobacter gummosus*, *Frankia alni*, *Sanguibacter keddieii*, *Clostridium butyricum*, *Citrobacter*
2103 *freundii*, *Citrobacter braakii*, *Streptomyces malaysiensis*, *Clostridium botulinum* and
2104 *Paeniclostridium sordellii*. Some of the above are considered pathogenic if found in human
2105 tissues, but since they are ubiquitous in soil, it is more parsimonious to assume that they do
2106 not originate from the sampled human individual.

2107 Finally, there was a case that a human pathogen taxon (the tapeworm *Spirometra*
2108 *erinaceieuropaei*) was identified, although it is considered a false positive [163] due to its
2109 increased genetic similarity with specific areas in the human genome, despite showing aDNA

2110 damage signatures. This increased similarity is suspected to be artificial due to the presence
2111 of contaminant (human) sequences in the parasite's reference genome [161].
2112

2113 **3.8 Visualization**

2114 ***Stefanos Papadantonakis, Angelos Souleles, Georgios Kousis Tsampazis, Angeliki
2115 Papadopoulou, Nikolaos Psonis***

2117 The map of **Figure 1A** was created with R v.4.3.0 [164] using the packages
2118 rnaturalearth v.1.0.1.9000 [165], sf v.1.0-16 [166], proj4 v1.0-13 [167], ggplot2 [168] and
2119 ggrepel v.0.9.5 [169]. The mapache rulegraph (**Supplementary Figure S37**) was produced
2120 using snakemake. Plotting of ROHs (**Figure 5** and **Supplementary Figure S32**) and IBD
2121 (**Figure 3**) results was performed in Python v.3.8.1, using the seaborn v.0.12.1 [170] package.
2122 Plotting of PCA results (**Figure 2A**) was performed using R v.4.3.0 and the ggplot2 and
2123 ggmmagnify v.0.4.1.9000 [171] packages. Plotting of Pandora results was performed online
2124 using Flourish (<https://flourish.studio/>). Plotting of ADMIXTURE (**Figure 2B** and
2125 **Supplementary Figures S34-S35**), qpAdm (**Figure 4** and **Supplementary Figures S36-
2126 S38**) and f3 (**Supplementary Figures S39-S40**) results was performed in R v.4.3.2 using the
2127 ggplot2 and ggtext v.0.1.2 [172] package. We merged multiple figures into a single one using
2128 Inkscape v.1.0.2-2 (<https://inkscape.org>).

2129 4. Provenance, mobility and diet analysis using 2130 stable isotopes

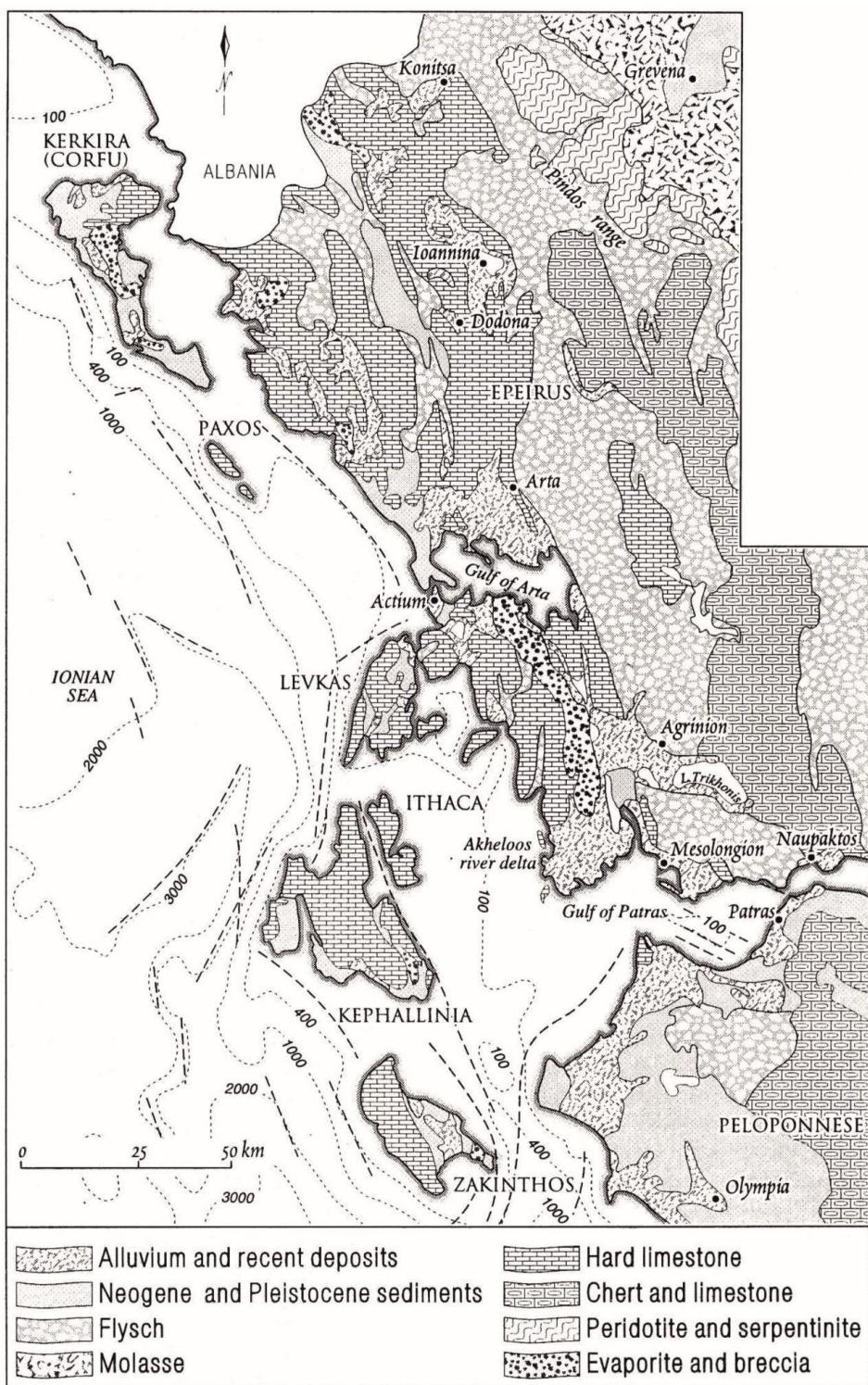
2131 **Argyro Nafplioti**

2132 4.1 Strontium isotope ratio analysis of bioarchaeological 2133 skeletal remains: principles

2134 The strontium isotope ratio ($^{87}\text{Sr}/^{86}\text{Sr}$) largely reflects local geology. As strontium
2135 isotopes in teeth are fixed in enamel biogenic apatite at the time of tooth formation and enamel
2136 undergoes little remodeling thereafter, the strontium isotope ratio values recorded reflect
2137 childhood provenance and provide evidence for geographical origins and potentially also for
2138 mobility [173–175]. Since the principles of $^{87}\text{Sr}/^{86}\text{Sr}$ analysis in research of this kind are well
2139 documented [175–177] and have also been extensively discussed in earlier relevant work of
2140 one of the authors [e.g. 178,179,180], we only provide a summary in the following.

2141 In nature, strontium occurs in the form of four stable isotopes, ^{87}Sr (comprises c. 7.04%
2142 of total strontium), ^{88}Sr (c. 82.53%), ^{86}Sr (c. 9.87%), and ^{84}Sr (c. 0.56%). The strontium isotope
2143 ^{87}Sr is radiogenic and is the product of the radioactive decay of the rubidium isotope ^{87}Rb ,
2144 which has a half-life of approximately 47 billion years. All remaining three strontium isotopes
2145 are non-radiogenic [181]. Therefore, in any geology, the ratio of strontium isotope ^{87}Sr to ^{86}Sr
2146 depends on the relative abundance of rubidium and strontium at the time the rock crystallized
2147 and the age of the rocks [182]. Because rubidium is substantially more abundant in crustal
2148 materials than in the Earth's mantle, old metamorphic rocks of crustal origin have higher
2149 $^{87}\text{Sr}/^{86}\text{Sr}$ values (c. 0.715) than recent volcanic rocks (c. 0.704) [183]. Strontium isotope ratios
2150 in marine sedimentary rocks depend on the $^{87}\text{Sr}/^{86}\text{Sr}$ value of seawater at the time they were
2151 formed and largely vary between 0.707 and 0.710 [184,185].

2152 In essence, the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio largely reflects local geology, and passes from the
2153 bedrock into the soil, the groundwater, and the food chain. Thereby, $^{87}\text{Sr}/^{86}\text{Sr}$ reaches the
2154 human skeletal tissues, where it substitutes for calcium in hydroxyapatite [181], largely from
2155 the food and water consumed with no fractionation related to biological processes [186,187].
2156 Although other factors such as the proximity to marine environments and the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio in
2157 sea spray [188], atmospheric deposition [189] and in modern contexts fertilizers too [177,187],
2158 can also impact local $^{87}\text{Sr}/^{86}\text{Sr}$ signatures, the latter largely reflect bedrock geology and mineral
2159 weathering. Thus, $^{87}\text{Sr}/^{86}\text{Sr}$ signatures in human skeletal tissues match the geochemical
2160 profile of the catchment area of the individuals analyzed.


2161 Because tooth enamel is a cell-free tissue that for most of the permanent dentition
2162 largely forms by the 8th year of life and does not remodel thereafter [174,190], $^{87}\text{Sr}/^{86}\text{Sr}$
2163 signatures from tooth enamel reflect early childhood diet and geographical origins.
2164 Conversely, bone and, to a lesser extent, also dentine, undergo continuous replacement of
2165 their mineral phase in the course of life. In addition, tooth enamel is denser, harder, and more
2166 inert than bone or dentine, and therefore more resistant to post-burial isotopic contamination
2167 than bone or dentine [173,191–194]. Thus, cortical bone $^{87}\text{Sr}/^{86}\text{Sr}$ signatures more closely
2168 reflect the dietary intake of the last 10–20 years of life and human bone $^{87}\text{Sr}/^{86}\text{Sr}$ values can
2169 be used to characterize local bioavailable $^{87}\text{Sr}/^{86}\text{Sr}$ at one's site of residence prior to death
2170 [180,195–199].

2171 Acknowledging the possibility of recent immigrants among the tested individuals,
2172 samples from archaeological animal skeletal tissues offer a more reliable measure of the local
2173 bioavailable $^{87}\text{Sr}/^{86}\text{Sr}$ compared to bone signatures. They provide an average of the
2174 bioavailable $^{87}\text{Sr}/^{86}\text{Sr}$ signatures of the feeding territories that these animals occupied and are
2175 thereby widely accepted as an accurate measure for the local $^{87}\text{Sr}/^{86}\text{Sr}$ value range in soils,
2176 plants, animals, and waters [175,183]. In principle, if an individual was born and raised in the
2177 local area, the $^{87}\text{Sr}/^{86}\text{Sr}$ values measured from his/her tooth enamel should be similar to his/her
2178 bone $^{87}\text{Sr}/^{86}\text{Sr}$ and also to the local bioavailable $^{87}\text{Sr}/^{86}\text{Sr}$ signatures. They will also be in overall
2179 agreement with comparable data from local geological material(s) and archaeological animal
2180 skeletal tissues. Otherwise, if human tooth enamel $^{87}\text{Sr}/^{86}\text{Sr}$ signatures are found to be
2181 statistically significantly different from the local $^{87}\text{Sr}/^{86}\text{Sr}$, we may infer that the respective
2182 people spent their childhood at (a) location(s) that are geologically and isotopically different
2183 from their residence prior to death. For the reasons outlined above, in this paper in addition to
2184 information on the local geology we discuss $^{87}\text{Sr}/^{86}\text{Sr}$ data from archaeological animals and
2185 human $^{87}\text{Sr}/^{86}\text{Sr}$ tooth enamel signatures from Corinth and the region of Corinthia in order to
2186 track potential residential mobility using the $^{87}\text{Sr}/^{86}\text{Sr}$ methodology.

2187 4.2 Geological context of the study area

2188 Epirus comprises most of the mainland of north-west Greece and largely falls within
2189 the Ionian and Gavrovo isotopic/tectonic zones, while its basement comprises nappes that
2190 represent rocks of several different environments, stacked up on top of each other during the
2191 Alpine compression [200]. The Gavrovo zone was a continental fragment for the early part of
2192 its history, where the Mesozoic shallow-water limestones were later almost completely
2193 covered by late Eocene flysch sediments [200]. In Epirus, the Gavrovo zone crops out in a
2194 narrow belt west of the Pindos zone, and its oldest rocks are limestone [200]. Further west,
2195 the Ionian zone, a deep-water trough, crops out throughout much of the western part of this
2196 region and largely consists of deep-water limestones. The site of Amvrakia in particular, is set
2197 on hard limestone, but there also exist outcrops of flysch, as well as alluvium and recent
2198 deposits in the immediate proximity to the site, at a distance below 5 km (**Supplementary**
2199 **Figure S40**).

2200 The archaeological site of Amvrakia on the north-east coast of the Gulf of Arta is set
2201 on a narrow strip of limestone/s [200]. Less than 2 km further west and south of the site extend
2202 alluvial deposits, while for a small part to its east and further south these rocks are interrupted
2203 by outcrops of flysch. The site of Amvrakia and its immediate periphery are thus characterized
2204 by high geological variability.
2205

2206
2207
2208

Supplementary Figure S40. Geological map of Ambrakia (Arta) and the broader region of Epirus. After [201].

2209 4.3 Materials and Methods

2210 4.3.1 Samples

2211 Strontium isotope ratios were measured from tooth enamel samples from 14 human
2212 burials of Amvrakia. Eight of them were dated to the Archaic and the remaining six to the
2213 Classical period. Three of these burials were also analyzed for the corresponding $^{87}\text{Sr}/^{86}\text{Sr}$
2214 signatures in tooth dentine samples. All human teeth sampled had previously been studied
2215 macroscopically. All human teeth were found attached to the associated maxillary/mandibular
2216 bone. There were seven M1s, five M2s, as well as one incisor and one canine. Relevant
2217 information is included in **Additional Table A2**.

2218 4.3.2 Sample preparation and analysis

2219 **Strontium isotope ratio analysis**

2220 The analytical protocol for $^{87}\text{Sr}/^{86}\text{Sr}$ analysis, including sample extraction and
2221 preparation prior to analysis, have been detailed in earlier publications [179,180]. Tooth
2222 enamel samples (> 20mg) were placed in an ultrasonic bath for a total of 30 minutes to remove
2223 surface contamination. The bath was interrupted every 10 minutes and the specimens were
2224 mechanically cleaned using distilled water. In order to remove diagenetic strontium, tooth
2225 enamel samples were leached in 2 ml of 5% acetic acid. All samples were rinsed in ultrapure
2226 water (four times) after the first hour of bathing in acetic acid and then placed back in fresh
2227 5% and 2% acetic acid, respectively, and left overnight.

2228 On the following day, samples were rinsed four times and dried in an oven (≤ 50 °C). All
2229 leachates were retained. Strontium columns were prepared by filling small Teflon columns up
2230 to the neck with cleaned Sr resin. The columns were cleaned with 3 ml H_2O and 3 ml of SB
2231 3M HNO_3 . The matrix and everything except Sr and Rb was eluted with 2.5 ml of SB 3M HNO_3 .
2232 Sr was collected by passing ultrapure water and dried down on a hotplate. The Sr fractions
2233 were loaded onto single tantalum filaments with Ta-activator and the $^{87}\text{Sr}/^{86}\text{Sr}$ values were
2234 measured to the sixth decimal digit with a ThermoFisher TRITON Plus Thermal Ionization
2235 Mass Spectrometer (7 Collectors). Preparation of the samples was carried out at the
2236 Department of Biology, University of Crete, while sample chemical analysis and measurement
2237 of the associated signatures were performed at the National Oceanography Centre in
2238 Southampton (NOCS).

2239 4.4 Results and Discussion

2240 Strontium isotope ratio ($^{87}\text{Sr}/^{86}\text{Sr}$) signatures from human tooth enamel from the 14
2241 burials analyzed follow a broad distribution and range between 0.70808 and 0.70890. The
2242 results are largely consistent with consumption of regional livestock and agricultural products
2243 from the area of influence of the city of Amvrakia. In four of the examined cases, however, the
2244 human tooth enamel $^{87}\text{Sr}/^{86}\text{Sr}$ signatures (0.70859 to 0.70890) are similar to comparable data
2245 from human burials in Ancient Corinth (0.70848 to 0.70882) [202] and also to bioavailable data
2246 from the Corinthia region (0.70865 to 0.70869) [178,179]. These data are thereby compatible
2247 with an origin from Corinth for the respective individuals and add support to the archaeological
2248 theory of the Corinthian colonization of ancient Amvrakia.

2249

2250 **Additional Table A2.** Strontium isotope ratio ($^{87}\text{Sr}/^{86}\text{Sr}$) signatures from human tooth enamel
 2251 from the 14 burials analyzed in the present study and related burial metadata.

Isotope ID	Context	Element and tissue	Date
AN14	LXXXVI B, AMV 30, ID164	Tooth enamel, molar 1, upper right	Classical
AN187	CCCLX, ID142	Tooth enamel, molar 2, lower right	Archaic
AN15	CCLXI, ID210	Tooth enamel, molar 1, lower left	Archaic
AN13	CCLXIV, ID102	Tooth enamel, molar 1, lower right	Classical
AN186	CXI, ID26	Tooth enamel, molar 2, lower	Classical
AN11	CXXVI 2, ID51	Tooth enamel, molar 1, upper left	Archaic
AN189*	CXXVI, ID1	Tooth enamel, molar 1, lower right	Classical
AN178	T9, CCCLXXXVIII, ID13	Tooth enamel, canine	Archaic
AN185**	T9, CCCXXXIX Burial 2, ID11	Tooth enamel, molar 2, upper	Archaic
AN183	T9, CCL Burial 2, ID171	Tooth enamel, molar 2, upper	Classical
AN184	T9, CCXCV, ID24	Tooth enamel, incisor 1	Archaic
AN182	T9, CXXXIV	Tooth enamel, molar 2, upper	Classical
AN180	T9, C	Tooth enamel, molar 1, upper	Archaic
AN181	T9, CVII	Tooth enamel, molar 1, lower	Archaic

2252

2253 5. Supplementary Information References

2254 1. Dillon M, Dillon M, Garland L. *Ancient Greece: Social and Historical Documents from*
2255 *Archaic Times to the Death of Alexander the Great* . Routledge; 2010. Available from:
2256 <https://play.google.com/store/books/details?id=ohYWBAAAQBAJ>

2257 2. Hansen MH, Nielsen TH. *An Inventory of Archaic and Classical Poleis* . OUP Oxford; 2004.
2258 Available from: <https://play.google.com/store/books/details?id=9QZREAAQBAJ>

2259 3. Graham AJ. *Colony and Mother City in Ancient Greece* . Manchester University Press;
2260 Available from:
2261 https://books.google.com/books/about/Colony_and_Mother_City_in_Ancient_Greece.html?hl=&id=z6XnAAAAIAAJ

2263 4. Ridgway D. *The First Western Greeks* . CUP Archive; 1992. Available from:
2264 https://books.google.com/books/about/The_First_Western_Greeks.html?hl=&id=9F44AAAAI AAJ

2266 5. Grammenos DV, Petropoulos EK. *Ancient Greek Colonies in the Black Sea* . Thessaloniki:
2267 Archaeological Institute of Northern Greece; 2003. Available from:
2268 https://books.google.com/books/about/Ancient_Greek_Colonies_in_the_Black_Sea.html?hl=&id=UtdoAAAAMAAJ

2270 6. Tsetskhadze GR. *Greek Colonisation: An Account of Greek Colonies and Other*
2271 *Settlements Overseas* . Leiden, Boston, and Köln: Brill; 2008. Available from:
2272 https://books.google.com/books/about/Greek_Colonisation.html?hl=&id=PIgTAQAAIAAJ

2273 7. Petropoulos EK. *Problems in the history and archaeology of the Greek colonization of the*
2274 *Black Sea*. In: Grammenos DV, Petropoulos EK, editors. *Ancient Greek Colonies in the Black*
2275 *Sea* . 2003 [cited 2024 Jul 18]. p. 17–92. Available from:
2276 https://www.academia.edu/32112108/ANCIENT_GREEK_COLONIES_IN_THE_BLACK_SE A_2_Grammenos_D_V_and_E_K_Petropoulos_eds_British_Archaeological_Reports_International_Series_1679_Oxford_2007

2279 8. Petropoulos EK. *Hellenic Colonization in Euxenos Pontos: Penetration, Early*
2280 *Establishment, and the Problem of the “emporion” Revisited* . British Archaeological Reports
2281 Oxford Limited; 2005. Available from:
2282 https://books.google.com/books/about/Hellenic_Colonization_in_Euxenos_Pontos.html?hl=&id=0jBmAAAAMAAJ

2284 9. van Dommelen P. *Colonialism and Migration in the Ancient Mediterranean*. Annu Rev
2285 *Anthropol* . 2012 [cited 2024 Apr 9];41:393–409. Available from:
2286 <https://www.annualreviews.org/content/journals/10.1146/annurev-anthro-081309-145758>

2287 10. Malkin I. *A Small Greek World: Networks in the Ancient Mediterranean* . OUP USA; 2011.
2288 Available from:
2289 https://books.google.com/books/about/A_Small_Greek_World.html?hl=&id=CKQXm8sNgNkC

2291 11. Osborne R. *Greece in the Making 1200-479 BC* . Routledge; 2009. Available from:
2292 https://books.google.com/books/about/Greece_in_the_Making_1200_479_BC.html?hl=&id=6W07-Goh28IC

2294 12. Malkin I. *Foundations. A Companion to Archaic Greece* . John Wiley & Sons, Ltd; 2009
2295 [cited 2024 Jul 18]. p. 373–94. Available from:

2296 <https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444308761.ch19>

2297 13. Hornblower S. Thucydides and “Chalkidic” Torone (IV.110.1). *Oxford Journal of Archaeology* . 1997 [cited 2024 Jul 18];16:177–86. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0092.00033>

2300 14. Papadopoulos JK. Archaeology, Myth-History and the Tyranny of the Text: Chalidike, Torone and Thucydides. *Oxford Journal of Archaeology* . 1999 [cited 2024 Jul 18];18:377–94. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0092.00091>

2303 15. Graham AJ. COMMERCIAL INTERCHANGES BETWEEN GREEKS AND NATIVES. *Collected Papers on Greek Colonization* . Brill; 2001 [cited 2024 Apr 17]. p. 45–56. Available from: <https://brill.com/display/book/9789004351066/B9789004351066-s004.xml>

2306 16. Boardman J. *The Greeks Overseas: Their Early Colonies and Trade* . Thames and Hudson; 1999. Available from: <https://play.google.com/store/books/details?id=EqHAQgAACAAJ>

2309 17. Reitsema LJ, Kyle B, Vassallo S. Food traditions and colonial interactions in the ancient Mediterranean: Stable isotope evidence from the Greek Sicilian colony Himera. *Journal of Anthropological Archaeology* . 2020;57:101144. Available from: <https://www.sciencedirect.com/science/article/pii/S0278416519301734>

2313 18. Kaponis A. (In Greek) The Corinthian colonies around the Amvrakiko gulf from their foundation to the time of Philip II. 2020 [cited 2024 Jul 18]; Available from: <https://pergamos.lib.uoa.gr/uaa/dl/object/2897438>

2316 19. Keenleyside A. Dental pathology and diet at Apollonia, a Greek colony on the Black Sea. *International Journal of Osteoarchaeology* . 2008 [cited 2024 Jul 18];18:262–79. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1002/oa.934>

2319 20. Hammond N. *The classical age of Greece* . Harper & Row Publishers, Inc. USA; 1975. Available from: <https://cir.nii.ac.jp/crid/1130000797935601664>

2321 21. Graham AJ. Patterns in Early Greek Colonisation. *J Hell Stud* . 1971 [cited 2024 Apr 19];91:35–47. Available from: <https://www.cambridge.org/core/journals/journal-of-hellenic-studies/article/patterns-in-early-greek-colonisation/C5ECC7999BD671BDB82FC553D4DE3AB6>

2325 22. Strabo. *Geography, Volume III: Books 6-7*. Translated by Horace Leonard Jones. Loeb Classical Library 182. Cambridge . Harvard University Press; 1924. Available from: <https://play.google.com/store/books/details?id=n4RiAAAAMAAJ>

2328 23. Wilkes J. *GREEKS AND ILLYRIANS IN THE GREEK-LANGUAGE INSCRIPTIONS FROM EPIDAMNUS-DYRRHACIUM AND FROM APOLLONIA IN ILYRIA-PROCEEDINGS OF THE INTERNATIONAL ROUNDTABLE (CLERMONT-FERRAND, OCTOBER 19-21, 1989)-FRENCH-CABANES, P. SOC PROMOTION HELLENIC STUD 31-34 GORDON SQ, LONDON, UNITED KINGDOM WC1H OPP*; 1995.

2333 24. White ME. Greek Colonization. *J Econ Hist* . 1961;21:443–54. Available from: <http://www.jstor.org/stable/2114410>

2335 25. Zhestokanov SM. The Corinth-Corcyra conflict of the seventh century BC. *Saalburg Jahrb* . 2020;26:15–23. Available from: <http://saa.uaic.ro/the-corinth-corcyra-conflict-of-the-seventh-century-bc/>

2483 50. Korka E. (In Greek) The written early sarcophagus of Faneromenis Chiliomodius of
2484 Corinth. The Corinthia and the Northeast Peloponnese Topography and History from
2485 Prehistoric Times until the end of Antiquity. 2013 [cited 2024 Aug 1]. p. 305–11. Available
2486 from: https://www.aegeussociety.org/new_book/the-corinthia-and-the-northeast-peloponnese-topography-and-history-from-prehistoric-times-until-the-end-of-antiquity/

2488 51. Tenea Project, Evaggeloglou P (vivi), Elena K. Korka, E. & Evaggeloglou, P. (2020) (In
2489 Greek) Ancient Tenea. Systematic archaeological research in Chliomodi, Corinth, 2013-2017.
2490 AEPEL(2). 2020 [cited 2024 Aug 1]; Available from:
2491 https://www.academia.edu/45328998/%CE%9A%CF%8C%CF%81%CE%BA%CE%B1_%C
2492 E%95_and_%CE%95%CF%85%CE%B1%CE%B3%CE%B3%CE%AD%CE%BB%CE%BF
2493 %CE%B3%CE%BB%CE%BF%CF%85_%CE%A0_2020_%CE%91%CF%81%CF%87%CE
2494 %B1%CE%AF%CE%B1_%CE%A4%CE%B5%CE%BD%CE%AD%CE%B1_%CE%A3%CF
2495 %85%CF%83%CF%84%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%A
2496 E_%CE%B1%CF%81%CF%87%CE%B1%CE%B9%CE%BF%CE%BB%CE%BF%CE%B3
2497 %CE%B9%CE%BA%CE%AE_%CE%AD%CF%81%CE%B5%CF%85%CE%BD%CE%B1_
2498 %CF%83%CF%84%CE%BF_%CE%A7%CE%B9%CE%BB%CE%B9%CE%BF%CE%BC%
2499 CF%8C%CE%B4%CE%B9_%CE%9A%CE%BF%CF%81%CE%B9%CE%BD%CE%B8%C
2500 E%AF%CE%B1%CF%82_2013_2017

2501 52. Harney É, Cheronet O, Fernandes DM, Sirak K, Mah M, Bernardos R, et al. A minimally
2502 destructive protocol for DNA extraction from ancient teeth. *Genome Res.* 2021;31:472–83.
2503 Available from: <http://dx.doi.org/10.1101/gr.267534.120>

2504 53. Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from
2505 ancient bones, teeth and sediments for high-throughput sequencing. *Nat Protoc.* 2018;13:2447–61. Available from: <http://dx.doi.org/10.1038/s41596-018-0050-5>

2507 54. Orfanou E, Himmel M, Aron F, Haak W. Minimally-invasive sampling of pars petrosa (os
2508 temporale) for ancient DNA extraction. 2020 [cited 2023 Nov 27]; Available from:
2509 <https://www.protocols.io/view/minimally-invasive-sampling-of-pars-petrosa-os-tem-bqd8ms9w.pdf>

2511 55. Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, Stenderup J, et al. Population
2512 genomics of Bronze Age Eurasia. *Nature* 2015;522:167–72. Available from:
2513 <http://dx.doi.org/10.1038/nature14507>

2514 56. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target
2515 capture and sequencing. *Cold Spring Harb Protoc.* 2010;2010:db.prot5448. Available from:
2516 <http://dx.doi.org/10.1101/pdb.prot5448>

2517 57. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, et al. Complete
2518 mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from
2519 ultrashort DNA fragments. *Proc Natl Acad Sci U S A* 2013;110:15758–63. Available from:
2520 <http://dx.doi.org/10.1073/pnas.1314445110>

2521 58. Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil–DNA–glycosylase
2522 treatment for screening of ancient DNA. *Philos Trans R Soc Lond B Biol Sci.* 2015 [cited 2023
2523 Nov 27];370. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275898/>

2524 59. Neuenschwander S, Cruz Dávalos DI, Anchieri L, Sousa da Mota B, Bozzi D, Rubinacci
2525 S, et al. Mapache: a flexible pipeline to map ancient DNA. *Bioinformatics* 2023 [cited 2023
2526 May 31];39:btad028. Available from: <https://academic.oup.com/bioinformatics/article-pdf/39/2/btad028/50436112/btad028.pdf>

2528 60. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al.

2529 Sustainable data analysis with Snakemake. *F1000Res* . 2021;10:33. Available from:
2530 <http://dx.doi.org/10.12688/f1000research.29032.2>

2531 61. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming,
2532 identification, and read merging. *BMC Res Notes* . 2016;9:88. Available from:
2533 <http://dx.doi.org/10.1186/s13104-016-1900-2>

2534 62. Prüfer K, Stenzel U, Hofreiter M, Pääbo S, Kelso J, Green RE. Computational challenges
2535 in the analysis of ancient DNA. *Genome Biol* . 2010 [cited 2023 Jul 5];11:R47. Available from:
2536 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898072/>

2537 63. A global reference for human genetic variation. *Nature* . 2015 [cited 2023 Jul 12];526:68–
2538 74. Available from: <https://www.nature.com/articles/nature15393>

2539 64. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform.
2540 *Bioinformatics* . 2009 [cited 2023 May 31];25:1754–60. Available from:
2541 https://academic.oup.com/bioinformatics/article-pdf/25/14/1754/48994219/bioinformatics_25_14_1754.pdf

2543 65. Schubert M, Ginolhac A, Lindgreen S, Thompson JF, Al-Rasheid KA, Willerslev E, et al.
2544 Improving ancient DNA read mapping against modern reference genomes. *BMC Genomics* .
2545 2012 [cited 2023 May 31];13. Available from: <https://pubmed.ncbi.nlm.nih.gov/22574660/>

2546 66. Oliva A, Tobler R, Cooper A, Llamas B, Souilmi Y. Systematic benchmark of ancient DNA
2547 read mapping. *Brief Bioinform* . 2021 [cited 2023 May 31];22:bbab076. Available from:
2548 <https://academic.oup.com/bib/article-pdf/22/5/bbab076/40260467/bbab076.pdf>

2549 67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
2550 Alignment/Map format and SAMtools. *Bioinformatics* . 2009 [cited 2023 May 31];25:2078–9.
2551 Available from: https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/48994296/bioinformatics_25_16_2078.pdf

2553 68. Broad Institute. Picard Toolkit. GitHub Repository (<https://broadinstitute.github.io/picard/>).
2554 2019;

2555 69. Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework
2556 for variant extraction and refinement from population-scale DNA sequence data. *Genome Res*
2557 . 2015;25:918–25. Available from: <http://dx.doi.org/10.1101/gr.176552.114>

2558 70. Malaspinas A-S, Tange O, Moreno-Mayar JV, Rasmussen M, DeGiorgio M, Wang Y, et
2559 al. bammds: a tool for assessing the ancestry of low-depth whole-genome data using
2560 multidimensional scaling (MDS). *Bioinformatics* . 2014 [cited 2023 Jun 1];30:2962–4. Available
2561 from: https://academic.oup.com/bioinformatics/article-pdf/30/20/2962/48929902/bioinformatics_30_20_2962.pdf

2563 71. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
2564 Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
2565 sequencing data. *Genome Res* . 2010;20:1297–303. Available from:
2566 <http://dx.doi.org/10.1101/gr.107524.110>

2567 72. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality
2568 control for high-throughput sequencing data. *Bioinformatics* . 2016;32:292–4. Available from:
2569 <http://dx.doi.org/10.1093/bioinformatics/btv566>

2570 73. Mitnik A, Wang C-C, Svoboda J, Krause J. A Molecular Approach to the Sexing of the
2571 Triple Burial at the Upper Paleolithic Site of Dolní Věstonice. *PLoS One* . 2016 [cited 2023 Jun

2572 23];11:e0163019. Available from:
2573 <https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0163019&type=printable>

2575 74. Skoglund P, Storå J, Götherström A, Jakobsson M. Accurate sex identification of ancient
2576 human remains using DNA shotgun sequencing. *J Archaeol Sci* . 2013 [cited 2023 Jun
2577 23];40:4477–82. Available from: <http://dx.doi.org/10.1016/j.jas.2013.07.004>

2578 75. Anastasiadou K, Silva M, Booth T, Speidel L, Audsley T, Barrington C, et al. Detection of
2579 chromosomal aneuploidy in ancient genomes. *Communications Biology* . 2024 [cited 2025 Jul
2580 25];7:1–9. Available from: <https://www.nature.com/articles/s42003-023-05642-z>

2581 76. Fu Q, Mitnik A, Johnson PLF, Bos K, Lari M, Bollongino R, et al. A revised timescale for
2582 human evolution based on ancient mitochondrial genomes. *Curr Biol* . 2013;23:553–9.
2583 Available from: <http://dx.doi.org/10.1016/j.cub.2013.02.044>

2584 77. Green RE, Malaspinas A-S, Krause J, Briggs AW, Johnson PLF, Uhler C, et al. A complete
2585 Neandertal mitochondrial genome sequence determined by high-throughput sequencing. *Cell*
2586 . 2008;134:416–26. Available from: <http://dx.doi.org/10.1016/j.cell.2008.06.021>

2587 78. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation
2588 Sequencing Data. *BMC Bioinformatics* . 2014;15:356. Available from:
2589 <http://dx.doi.org/10.1186/s12859-014-0356-4>

2590 79. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:
2591 Improvements in Performance and Usability. *Mol Biol Evol* . 2013 [cited 2023 Jun 1];30:772.
2592 Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603318/>

2593 80. Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and
2594 endogenous mitochondrial consensus calling for ancient DNA. *Genome Biol* . 2015;16:224.
2595 Available from: <http://dx.doi.org/10.1186/s13059-015-0776-0>

2596 81. Schönherr S, Weissensteiner H, Kronenberg F, Forer L. Haplogrep 3 - an interactive
2597 haplogroup classification and analysis platform. *Nucleic Acids Res* . 2023;51:W263–8.
2598 Available from: <http://dx.doi.org/10.1093/nar/gkad284>

2599 82. Rubin JD, Vogel NA, Gopalakrishnan S, Sackett PW, Renaud G. HaploCart: Human
2600 mtDNA haplogroup classification using a pangenomic reference graph. *PLoS Comput Biol* .
2601 2023;19:e1011148. Available from: <http://dx.doi.org/10.1371/journal.pcbi.1011148>

2602 83. Mallick S, Reich D. The Allen Ancient DNA Resource (AADR): A curated compendium of
2603 ancient human genomes . Harvard Dataverse; 2023 [cited 2024 Jul 29]. Available from:
2604 <https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FFIDCW>

2605 84. Ralf A, Montiel González D, Zhong K, Kayser M. Yleaf: Software for Human Y-
2606 Chromosomal Haplogroup Inference from Next-Generation Sequencing Data. *Mol Biol Evol* .
2607 2018 [cited 2023 Jun 22];35:1291–4. Available from: <https://academic.oup.com/mbe/article-pdf/35/5/1291/24704771/msy032.pdf>

2609 85. David Poznik G. Identifying Y-chromosome haplogroups in arbitrarily large samples of
2610 sequenced or genotyped men . *bioRxiv*. 2016 [cited 2023 Jun 22]. p. 088716. Available from:
2611 <https://www.biorxiv.org/content/10.1101/088716v1.abstract>

2612 86. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
2613 SAMtools and BCFtools. *Gigascience* . 2021;10. Available from:
2614 <http://dx.doi.org/10.1093/gigascience/giab008>

2615 87. Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, et al. The Allen Ancient
2616 DNA Resource (AADR): A curated compendium of ancient human genomes. *bioRxiv* . 2023;
2617 Available from: <http://dx.doi.org/10.1101/2023.04.06.535797>

2618 88. Koptekin D, Yüncü E, Rodríguez-Varela R, Altınışık NE, Psonis N, Kashuba N, et al.
2619 Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia
2620 and the East Mediterranean. *Curr Biol* . 2023;33:41–57.e15. Available from:
2621 <http://dx.doi.org/10.1016/j.cub.2022.11.034>

2622 89. Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. *PLoS Genet* .
2623 2006 [cited 2023 Jun 23];2:e190. Available from:
2624 <https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0020190&type=printable>
2625

2626 90. Kuhn JMM, Jakobsson M, Günther T. Estimating genetic kin relationships in prehistoric
2627 populations. *PLoS One* . 2018 [cited 2023 Jun 22];13:e0195491. Available from:
2628 <https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195491&type=printable>
2629

2630 91. Popli D, Peyrégne S, Peter BM. KIN: a method to infer relatedness from low-coverage
2631 ancient DNA. *Genome Biol* . 2023 [cited 2023 Jun 22];24:1–22. Available from:
2632 <https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02847-7>

2633 92. Psonis N, Vassou D, Nafplioti A, Tabakaki E, Pavlidis P, Stamatakis A, et al. Identification
2634 of the 18 World War II executed citizens of Adele, Rethymnon, Crete using an ancient DNA
2635 approach and low coverage genomes. *Forensic Sci Int Genet* . 2024;71:103060. Available
2636 from: <http://dx.doi.org/10.1016/j.fsigen.2024.103060>

2637 93. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a
2638 tool set for whole-genome association and population-based linkage analyses. *Am J Hum
2639 Genet* . 2007;81:559–75. Available from: <http://dx.doi.org/10.1086/519795>

2640 94. Ringbauer H, Novembre J, Steinrücken M. Parental relatedness through time revealed by
2641 runs of homozygosity in ancient DNA. *Nat Commun* . 2021;12:5425. Available from:
2642 <http://dx.doi.org/10.1038/s41467-021-25289-w>

2643 95. Rivollat M, Rohrlach AB, Ringbauer H, Childebayeva A, Mendisco F, Barquera R, et al.
2644 Extensive pedigrees reveal the social organization of a Neolithic community. *Nature* .
2645 2023;620:600–6. Available from: <http://dx.doi.org/10.1038/s41586-023-06350-8>

2646 96. Gretzinger J, Schmitt F, Mötsch A, Carlhoff S, Lamnidis TC, Huang Y, et al. Evidence for
2647 dynastic succession among early Celtic elites in Central Europe. *Nat Hum Behav* . 2024;
2648 Available from: <http://dx.doi.org/10.1038/s41562-024-01888-7>

2649 97. Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing and imputation of
2650 low-coverage sequencing data using large reference panels. *Nat Genet* . 2021;53:120–6.
2651 Available from: <http://dx.doi.org/10.1038/s41588-020-00756-0>

2652 98. Allentoft ME, Sikora M, Refoyo-Martínez A, Irving-Pease EK, Fischer A, Barrie W, et al.
2653 Population genomics of post-glacial western Eurasia. *Nature* . 2024;625:301–11. Available
2654 from: <http://dx.doi.org/10.1038/s41586-023-06865-0>

2655 99. Link V, Kousathanas A, Veeramah K, Sell C, Scheu A, Wegmann D. ATLAS: Analysis
2656 Tools for Low-depth and Ancient Samples . *bioRxiv* . 2017 [cited 2023 May 20]. p. 105346.
2657 Available from: <https://www.biorxiv.org/content/10.1101/105346v2.abstract>

2658 100. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve
2659 LL, et al. A second generation human haplotype map of over 3.1 million SNPs. *Nature* .
2660 2007;449:851–61. Available from: <http://dx.doi.org/10.1038/nature06258>

2661 101. Ringbauer H, Huang Y, Akbari A, Mallick S, Olalde I, Patterson N, et al. Accurate
2662 detection of identity-by-descent segments in human ancient DNA. *Nat Genet* . 2024;56:143–
2663 51. Available from: <http://dx.doi.org/10.1038/s41588-023-01582-w>

2664 102. Agranat-Tamir L, Waldman S, Martin MAS, Gokhman D, Mishol N, Eshel T, et al. The
2665 Genomic History of the Bronze Age Southern Levant. *Cell* . 2020;181:1146–57.e11. Available
2666 from: <http://dx.doi.org/10.1016/j.cell.2020.04.024>

2667 103. Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, et al. The genetic history of
2668 Ice Age Europe. *Nature* . 2016;534:200–5. Available from:
2669 <http://dx.doi.org/10.1038/nature17993>

2670 104. Clemente F, Unterländer M, Dolgova O, Amorim CEG, Coroado-Santos F,
2671 Neuenschwander S, et al. The genomic history of the Aegean palatial civilizations. *Cell* .
2672 2021;184:2565–86.e21. Available from: <http://dx.doi.org/10.1016/j.cell.2021.03.039>

2673 105. Freilich S, Ringbauer H, Los D, Novak M, Pavičić DT, Schiffels S, et al. Reconstructing
2674 genetic histories and social organisation in Neolithic and Bronze Age Croatia. *Sci Rep* .
2675 2021;11:16729. Available from: <http://dx.doi.org/10.1038/s41598-021-94932-9>

2676 106. Feldman M, Fernández-Domínguez E, Reynolds L, Baird D, Pearson J, Hershkovitz I, et
2677 al. Late Pleistocene human genome suggests a local origin for the first farmers of central
2678 Anatolia. *Nat Commun* . 2019;10:1218. Available from: [http://dx.doi.org/10.1038/s41467-019-09209-7](http://dx.doi.org/10.1038/s41467-019-
2679 09209-7)

2680 107. De Angelis F, Romboni M, Veltre V, Catalano P, Martínez-Labarga C, Gazzaniga V, et
2681 al. First Glimpse into the Genomic Characterization of People from the Imperial Roman
2682 Community of Casal Bertone (Rome, First–Third Centuries AD). *Genes* . 2022 [cited 2024 Mar
2683 22];13:136. Available from: <https://www.mdpi.com/2073-4425/13/1/136>

2684 108. Fernandes DM, Mitnik A, Olalde I, Lazaridis I, Cheronet O, Rohland N, et al. The spread
2685 of steppe and Iranian-related ancestry in the islands of the western Mediterranean. *Nat Ecol
2686 Evol* . 2020;4:334–45. Available from: <http://dx.doi.org/10.1038/s41559-020-1102-0>

2687 109. Hofmanová Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y, Díez-Del-Molino D, et al.
2688 Early farmers from across Europe directly descended from Neolithic Aegeans. *Proc Natl Acad
2689 Sci U S A* . 2016;113:6886–91. Available from: <http://dx.doi.org/10.1073/pnas.1523951113>

2690 110. Jones ER, Gonzalez-Fortes G, Connell S, Siska V, Eriksson A, Martiniano R, et al. Upper
2691 Palaeolithic genomes reveal deep roots of modern Eurasians. *Nat Commun* . 2015;6:8912.
2692 Available from: <http://dx.doi.org/10.1038/ncomms9912>

2693 111. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. Genomic
2694 insights into the origin of farming in the ancient Near East. *Nature* . 2016;536:419–24.
2695 Available from: <http://dx.doi.org/10.1038/nature19310>

2696 112. Lazaridis I, Mitnik A, Patterson N, Mallick S, Rohland N, Pfrengle S, et al. Genetic origins
2697 of the Minoans and Mycenaeans. *Nature* . 2017;548:214–8. Available from:
2698 <http://dx.doi.org/10.1038/nature23310>

2699 113. Marchi N, Winkelbach L, Schulz I, Brami M, Hofmanová Z, Blöcher J, et al. The genomic
2700 origins of the world's first farmers. *Cell* . 2022;185:1842–59.e18. Available from:

2701 <http://dx.doi.org/10.1016/j.cell.2022.04.008>

2702 114. Marcus JH, Posth C, Ringbauer H, Lai L, Skeates R, Sidore C, et al. Genetic history from
2703 the Middle Neolithic to present on the Mediterranean island of Sardinia. *Nat Commun* .
2704 2020;11:939. Available from: <http://dx.doi.org/10.1038/s41467-020-14523-6>

2705 115. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al.
2706 Genome-wide patterns of selection in 230 ancient Eurasians. *Nature* . 2015;528:499–503.
2707 Available from: <http://dx.doi.org/10.1038/nature16152>

2708 116. Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick
2709 S, et al. The genomic history of southeastern Europe. *Nature* . 2018;555:197–203. Available
2710 from: <http://dx.doi.org/10.1038/nature25778>

2711 117. Moots HM, Antonio M, Sawyer S, Spence JP, Oberreiter V, Weiβ CL, et al. A genetic
2712 history of continuity and mobility in the Iron Age central Mediterranean. *Nat Ecol Evol* .
2713 2023;7:1515–24. Available from: <http://dx.doi.org/10.1038/s41559-023-02143-4>

2714 118. Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardo R, Mallick S, et al. The
2715 formation of human populations in South and Central Asia. *Science* . 2019;365. Available from:
2716 <http://dx.doi.org/10.1126/science.aat7487>

2717 119. Olalde I, Allentoft ME, Sánchez-Quinto F, Santpere G, Chiang CWK, DeGiorgio M, et al.
2718 Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.
2719 *Nature* . 2014;507:225–8. Available from: <http://dx.doi.org/10.1038/nature12960>

2720 120. Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, et al. Erratum: The Beaker
2721 phenomenon and the genomic transformation of northwest Europe. *Nature* . 2018;555:543.
2722 Available from: <http://dx.doi.org/10.1038/nature26164>

2723 121. Patterson N, Isakov M, Booth T, Büster L, Fischer C-E, Olalde I, et al. Large-scale
2724 migration into Britain during the Middle to Late Bronze Age. *Nature* . 2022;601:588–94.
2725 Available from: <http://dx.doi.org/10.1038/s41586-021-04287-4>

2726 122. Posth C, Zaro V, Spyrou MA, Vai S, Gnechi-Ruscone GA, Modi A, et al. The origin and
2727 legacy of the Etruscans through a 2000-year archeogenomic time transect. *Sci Adv* .
2728 2021;7:eabi7673. Available from: <http://dx.doi.org/10.1126/sciadv.abi7673>

2729 123. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, et al. Upper
2730 Palaeolithic Siberian genome reveals dual ancestry of Native Americans. *Nature* .
2731 2014;505:87–91. Available from: <http://dx.doi.org/10.1038/nature12736>

2732 124. Skourtanioti E, Erdal YS, Frangipane M, Balossi Restelli F, Yener KA, Pinnock F, et al.
2733 Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern
2734 Caucasus. *Cell* . 2020;181:1158–75.e28. Available from:
2735 <http://dx.doi.org/10.1016/j.cell.2020.04.044>

2736 125. van de Loosdrecht M, Bouzouggar A, Humphrey L, Posth C, Barton N, Aximu-Petri A, et
2737 al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human
2738 populations. *Science* . 2018;360:548–52. Available from:
2739 <http://dx.doi.org/10.1126/science.aar8380>

2740 126. van den Brink ECM, Beeri R, Kirzner D, Bron E, Cohen-Weinberger A, Kamaisky E, et
2741 al. A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel:
2742 context and historical implications. *Levantina* . 2017;49:105–35. Available from:
2743 <https://doi.org/10.1080/00758914.2017.1368204>

2744 127. Wang C-C, Reinhold S, Kalmykov A, Wissgott A, Brandt G, Jeong C, et al. Ancient human
2745 genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-
2746 geographic regions. *Nat Commun* . 2019;10:590. Available from:
2747 <http://dx.doi.org/10.1038/s41467-018-08220-8>

2748 128. Yu H, van de Loosdrecht MS, Mannino MA, Talamo S, Rohrlach AB, Childebayeva A, et
2749 al. Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. *iScience* .
2750 2022;25:104244. Available from: <http://dx.doi.org/10.1016/j.isci.2022.104244>

2751 129. Ingman T, Eisenmann S, Skourtanioti E, Akar M, Ilgner J, Gnechi Ruscone GA, et al.
2752 Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC:
2753 Integration of isotopic and genomic evidence. *PLoS One* . 2021;16:e0241883. Available from:
2754 <http://dx.doi.org/10.1371/journal.pone.0241883>

2755 130. Schuenemann VJ, Peltzer A, Welte B, van Pelt WP, Molak M, Wang C-C, et al. Ancient
2756 Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-
2757 Roman periods. *Nature Communications* . 2017 [cited 2025 Jul 23];8:15694. Available from:
2758 <https://PMC.ncbi.nlm.nih.gov/articles/PMC5459999/>

2759 131. Aneli S, Saupe T, Montinaro F, Solnik A, Molinaro L, Scaggion C, et al. The Genetic
2760 Origin of Daunians and the Pan-Mediterranean Southern Italian Iron Age Context. *Molecular
2761 biology and evolution* . 2022 [cited 2025 Jul 23];39. Available from:
2762 <https://pubmed.ncbi.nlm.nih.gov/35038748/>

2763 132. Skourtanioti E, Ringbauer H, Gnechi Ruscone GA, Bianco RA, Burri M, Freund C, et al.
2764 Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. *Nat Ecol
2765 Evol* . 2023;7:290–303. Available from: <http://dx.doi.org/10.1038/s41559-022-01952-3>

2766 133. Reitsema LJ, Mitnik A, Kyle B, Catalano G, Fabbri PF, Kazmi ACS, et al. The diverse
2767 genetic origins of a Classical period Greek army. *Proc Natl Acad Sci U S A* .
2768 2022;119:e2205272119. Available from: <http://dx.doi.org/10.1073/pnas.2205272119>

2769 134. Haag J, Jordan AI, Stamatakis A. Pandora: A Tool to Estimate Dimensionality Reduction
2770 Stability of Genotype Data . *bioRxiv* . 2024 [cited 2024 Aug 27]. p. 2024.03.14.584962.
2771 Available from: <https://www.biorxiv.org/content/10.1101/2024.03.14.584962v1>

2772 135. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in
2773 unrelated individuals. *Genome Res* . 2009;19:1655–64. Available from:
2774 <http://dx.doi.org/10.1101/gr.094052.109>

2775 136. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
2776 PLINK: rising to the challenge of larger and richer datasets. *Gigascience* . 2015;4:7. Available
2777 from: <http://dx.doi.org/10.1186/s13742-015-0047-8>

2778 137. Davis TL. Command Line Optional and Positional Argument Parser [R package argparse
2779 version 2.2.3]. 2024 [cited 2024 Jul 29]; Available from: <https://CRAN.R-project.org/package=argparse>

2781 138. Analytics R, Weston S. Foreach Parallel Adaptor for “parallel” [R package doMC version
2782 1.3.8]. 2022 [cited 2024 Jul 29]; Available from: <https://CRAN.R-project.org/package=doMC>

2783 139. Microsoft, Weston. Provides Foreach Looping Construct [R package foreach version
2784 1.5.2]. 2022 [cited 2024 Jul 29]; Available from: <https://CRAN.R-project.org/package=foreach>

2785 140. van den Brand T. Hacks for “ggplot2” [R package ggh4x version 0.2.8]. 2024 [cited 2024
2786 Jul 29]; Available from: <https://CRAN.R-project.org/package=ggh4x>

2787 141. Arnold JB. Extra Themes, Scales and Geoms for “ggplot2” [R package ggthemes version
2788 5.0.0]. 2023 [cited 2024 Jul 29]; Available from: [https://CRAN.R-
2789 project.org/package=ggthemes](https://CRAN.R-project.org/package=ggthemes)

2790 142. Auguie B. Miscellaneous Functions for “Grid” Graphics [R package gridExtra version 2.3].
2791 2017 [cited 2024 Jul 29]; Available from: <https://CRAN.R-project.org/package=gridExtra>

2792 143. Wickham H. Reshaping Data with the reshape Package. *J Stat Softw* . 2007 [cited 2024
2793 Jul 8];21:1–20. Available from: <http://www.jstatsoft.org/v21/i12/>.

2794 144. Wickham H. Simple, Consistent Wrappers for Common String Operations [R package
2795 stringr version 1.5.1]. 2023 [cited 2024 Jul 29]; Available from: [https://CRAN.R-project.org/package=stringr](https://CRAN.R-
2796 project.org/package=stringr)

2797 145. Harney É, Patterson N, Reich D, Wakeley J. Assessing the performance of qpAdm: a
2798 statistical tool for studying population admixture. *Genetics* . 2021;217. Available from:
2799 <http://dx.doi.org/10.1093/genetics/iyaa045>

2800 146. Maier R, Flegontov P, Flegontova O, İşıldak U, Changmai P, Reich D. On the limits of
2801 fitting complex models of population history to f-statistics. *Elife* . 2023;12. Available from:
2802 <http://dx.doi.org/10.7554/eLife.85492>

2803 147. Lazaridis I, Alpaslan-Roodenberg S, Acar A, Açıkkol A, Agelarakis A, Aghikyan L, et al.
2804 The genetic history of the Southern Arc: A bridge between West Asia and Europe. *Science* .
2805 2022;377:eabm4247. Available from: <http://dx.doi.org/10.1126/science.abm4247>

2806 148. Maier R, Patterson N. admixtools: Inferring demographic history from genetic data . 2024.
2807 Available from: <https://uqrmaie1.github.io/admixtools/>

2808 149. Harrell FE Jr. Harrell Miscellaneous [R package Hmisc version 5.1-3]. 2024 [cited 2024
2809 Aug 9]; Available from: <https://CRAN.R-project.org/package=Hmisc>

2810 150. Chaitanya L, Breslin K, Zuñiga S, Wirken L, Pośpiech E, Kukla-Bartoszek M, et al. The
2811 HlrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic
2812 developmental validation. *Forensic Sci Int Genet* . 2018;35:123–35. Available from:
2813 <http://dx.doi.org/10.1016/j.fsigen.2018.04.004>

2814 151. Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A, et al. The HlrisPlex
2815 system for simultaneous prediction of hair and eye colour from DNA. *Forensic Sci Int Genet* .
2816 2013;7:98–115. Available from: <http://dx.doi.org/10.1016/j.fsigen.2012.07.005>

2817 152. Maróti Z, Nyerki E, Neparaczki E, Török T, Varga GI, Kalmár T. aHISplex: an imputation
2818 based method for eye, hair and skin colour prediction from low coverage ancient DNA .
2819 *bioRxiv*. 2023 [cited 2024 Jul 8]. p. 2023.11.02.565295. Available from:
2820 <https://www.biorxiv.org/content/10.1101/2023.11.02.565295v1>

2821 153. Brace S, Diekmann Y, Booth TJ, van Dorp L, Faltyskova Z, Rohland N, et al. Ancient
2822 genomes indicate population replacement in Early Neolithic Britain. *Nat Ecol Evol* .
2823 2019;3:765–71. Available from: <http://dx.doi.org/10.1038/s41559-019-0871-9>

2824 154. Galván-Femenía I, Obón-Santacana M, Piñeyro D, Guindo-Martinez M, Duran X,
2825 Carreras A, et al. Multitrait genome association analysis identifies new susceptibility genes for
2826 human anthropometric variation in the GCAT cohort. *Journal of medical genetics* . 2018 [cited
2827 2025 Sep 30];55. Available from: <https://pubmed.ncbi.nlm.nih.gov/30166351/>

2828 155. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al.

2829 2830 Genetic determinants of hair, eye and skin pigmentation in Europeans. *Nature genetics* . 2007 [cited 2025 Sep 30];39. Available from: <https://pubmed.ncbi.nlm.nih.gov/17952075/>

2831 2832 2833 156. Boussiou M, Karababa P, Sinopoulou K, Tsaftaridis P, Plata E, Loutradi-Anagnostou A. The molecular heterogeneity of β -thalassemia in Greece. *Blood Cells Mol Dis* . 2008;40:317–9. Available from: <https://www.sciencedirect.com/science/article/pii/S1079979607002549>

2834 2835 2836 157. Georgiou I, Makis A, Chaidos A, Bouba I, Hatzis E, Kranas V, et al. Distribution and frequency of beta-thalassemia mutations in northwestern and central Greece. *Eur J Haematol* . 2003;70:75–8. Available from: <http://dx.doi.org/10.1034/j.1600-0609.2003.00017.x>

2837 2838 2839 158. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. *Genome Biol* . 2018;19:198. Available from: <http://dx.doi.org/10.1186/s13059-018-1568-0>

2840 2841 2842 2843 159. Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. MALT: Fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman . *bioRxiv* . 2016 [cited 2024 Jul 2]. p. 050559. Available from: <https://www.biorxiv.org/content/10.1101/050559v1>

2844 2845 2846 160. Hübner R, Key FM, Warinner C, Bos KI, Krause J, Herbig A. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. *Genome Biol* . 2019;20:280. Available from: <http://dx.doi.org/10.1186/s13059-019-1903-0>

2847 2848 2849 161. Pochon Z, Bergfeldt N, Kirdök E, Vicente M, Naidoo T, van der Valk T, et al. aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow. *Genome Biol* . 2023;24:242. Available from: <http://dx.doi.org/10.1186/s13059-023-03083-9>

2850 2851 2852 162. Barbulescu M, Turner G, Seaman MI, Deinard AS, Kidd KK, Lenz J. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. *Curr Biol* . 1999;9:861–8. Available from: [http://dx.doi.org/10.1016/s0960-9822\(99\)80390-x](http://dx.doi.org/10.1016/s0960-9822(99)80390-x)

2853 2854 2855 2856 163. Mann AE, Yates JAF, Fagernäs Z, Austin RM, Nelson EA, Hofman CA. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. *Quaternary International* . 2023 [cited 2025 Jul 25];653-654:33–46. Available from: <http://dx.doi.org/10.1016/j.quaint.2020.11.019>

2857 2858 164. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023;

2859 2860 2861 165. Massicotte P, South A. World Map Data from Natural Earth [R package rnaturalearth version 1.0.1]. 2023 [cited 2024 Aug 6]; Available from: <https://CRAN.R-project.org/package=rnaturalearth>

2862 2863 166. Pebesma E. Simple Features for R [R package sf version 1.0-16]. 2024 [cited 2024 Aug 6]; Available from: <https://CRAN.R-project.org/package=sf>

2864 2865 167. Urbanek S. proj4: A simple interface to the PROJ.4 cartographic projections library. [cited 2024 Aug 6]; Available from: <https://CRAN.R-project.org/package=proj4>

2866 2867 168. Wickham H. ggplot2 . Springer International Publishing; [cited 2024 Jul 5]. Available from: <https://link.springer.com/book/10.1007/978-3-319-24277-4>

2868 2869 2870 169. Slowikowski K. Automatically Position Non-Overlapping Text Labels with “ggplot2” [R package ggrepel version 0.9.5]. 2024 [cited 2024 Aug 7]; Available from: <https://CRAN.R-project.org/package=ggrepel>

2871 170. Waskom M. *seaborn: statistical data visualization*. *J Open Source Softw* . 2021;6:3021.
2872 Available from: <https://joss.theoj.org/papers/10.21105/joss.03021>

2873 171. Hugh-Jones D. *ggmagnify: Create a Magnified Inset of Part of a “Ggplot” Object*.
2874 <https://github.com/hughjonesd/ggmagnify>. 2024;

2875 172. Wilke CO, Wiernik BM. Improved Text Rendering Support for “ggplot2” [R package *ggtext*
2876 version 0.1.2]. 2022 [cited 2024 Sep 10]; Available from: <https://CRAN.R-project.org/package=ggtext>

2878 173. Hoppe KA, Koch PL, Furutani TT. Assessing the preservation of biogenic strontium in
2879 fossil bones and tooth enamel. *Int J Osteoarchaeol* . 2003;13:20–8. Available from:
2880 <https://onlinelibrary.wiley.com/doi/10.1002/oa.663>

2881 174. Hillson S. *Dental Anthropology* . Cambridge University Press; 1996. Available from:
2882 <https://play.google.com/store/books/details?id=WlcgAwAAQBAJ>

2883 175. Price TD, Burton JH, Bentley RA. The Characterization of Biologically Available Strontium
2884 Isotope Ratios for the Study of Prehistoric Migration. *Archaeometry* . 2002 [cited 2024 Aug
2885 22];44:117–35. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/1475-4754.00047>

2887 176. Evans J, Montgomery J, Wildman G. Isotope domain mapping of $^{87}\text{Sr}/^{86}\text{Sr}$ biosphere
2888 variation on the Isle of Skye, Scotland. *J Geol Soc London* . 2009 [cited 2024 Aug
2889 22];166:617–31. Available from: <http://nora.nerc.ac.uk/id/eprint/7960/>

2890 177. Alexander Bentley R. Strontium Isotopes from the Earth to the Archaeological Skeleton:
2891 A Review. *Journal of Archaeological Method and Theory* . 2006 [cited 2024 Aug 22];13:135–
2892 87. Available from: <https://link.springer.com/article/10.1007/s10816-006-9009-x>

2893 178. Nafplioti A. Moving Forward: Strontium Isotope Mobility Research in the Aegean.
2894 *Mediterranean Archaeology and Archaeometry* . 2021 [cited 2024 Aug 22];21:165–79.
2895 Available from:
2896 https://www.academia.edu/76198598/%CE%9Coving_Foward_Strontium_Isotope_Mobility_Research_in_the_Aegean

2898 179. Nafplioti A. Tracing population mobility in the Aegean using isotope geochemistry: a first
2899 map of local biologically available $^{87}\text{Sr}/^{86}\text{Sr}$ signatures. *J Archaeol Sci* . 2011 [cited 2024 Aug
2900 22];38:1560–70. Available from: <http://dx.doi.org/10.1016/j.jas.2011.02.021>

2901 180. Nafplioti A. “Mycenaean” political domination of Knossos following the Late Minoan IB
2902 destructions on Crete: negative evidence from strontium isotope ratio analysis ($^{87}\text{Sr}/^{86}\text{Sr}$). *J
2903 Archaeol Sci* . 2008 [cited 2024 Aug 22];35:2307–17. Available from:
2904 <http://dx.doi.org/10.1016/j.jas.2008.03.006>

2905 181. Faure G. *Principles of Isotope Geology* . New York: John Wiley and Sons; 1986. Available
2906 from:
2907 https://books.google.com/books/about/Principles_of_Isotope_Geology.html?hl=&id=xlfwAAA
2908 AMAAJ

2909 182. Graeme R, Christopher JH. A geochemical traverse across the North Chilean Andes:
2910 evidence for crust generation from the mantle wedge. *Earth Planet Sci Lett* . 1989 [cited 2024
2911 Aug 22];91:271–85. Available from: [http://dx.doi.org/10.1016/0012-821X\(89\)90003-4](http://dx.doi.org/10.1016/0012-821X(89)90003-4)

2912 183. Wright LE. Identifying immigrants to Tikal, Guatemala: Defining local variability in
2913 strontium isotope ratios of human tooth enamel. *J Archaeol Sci* . 2005 [cited 2024 Aug

2914 22];32:555–66. Available from: <http://dx.doi.org/10.1016/j.jas.2004.11.011>

2915 184. Palmer MR, Elderfield H. Sr isotope composition of sea water over the past 75 Myr.
2916 *Nature* . 1985 [cited 2024 Aug 22];314:526–8. Available from:
2917 <https://www.nature.com/articles/314526a0>

2918 185. Elderfield H. Strontium isotope stratigraphy. *Palaeogeogr Palaeoclimatol Palaeoecol* .
2919 1986 [cited 2024 Aug 22];57:71–90. Available from: [http://dx.doi.org/10.1016/0031-0182\(86\)90007-6](http://dx.doi.org/10.1016/0031-0182(86)90007-6)

2921 186. Blum JD, Taliaferro EH, Weisse MT, Holmes RT. Changes in Sr/Ca, Ba/Ca and
2922 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern U.S.A.
2923 *Biogeochemistry* . 2000 [cited 2024 Aug 22];49:87–101. Available from:
2924 <https://link.springer.com/article/10.1023/A:1006390707989>

2925 187. Graustein WC. 87Sr/86Sr Ratios Measure the Sources and Flow of Strontium in
2926 Terrestrial Ecosystems. *Stable Isotopes in Ecological Research* . 1989 [cited 2024 Aug
2927 22];491–512. Available from: https://link.springer.com/chapter/10.1007/978-1-4612-3498-2_28

2929 188. Veizer J. Strontium Isotopes in Seawater through Time. *Annu Rev Earth Planet Sci* . 1989
2930 [cited 2024 Aug 29]; Available from: <https://doi.org/10.1146/ANNUREV.EA.17.050189.001041>

2931 189. Miller EK, Panek JA, Friedland AJ, Kadlec J, Mohnen VA. Atmospheric deposition to
2932 a high-elevation forest at Whiteface Mountain, New York, USA. *Tellus B Chem Phys Meteorol*
2933 . 1993 [cited 2024 Aug 29];45:209–27. Available from:
2934 <https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1600-0889.1993.t01-2-00001.x>

2935 190. Ubelaker DH. *Human Skeletal Remains: Excavation, Analysis, Interpretation* .
2936 Washington: Taraxacum Press; 1989. Available from:
2937 https://books.google.com/books/about/Human_Skeletal_Remains.html?hl=&id=5bfczgEACA
2938 AJ

2939 191. Chiaradia M, Gallay A, Todt W. Different contamination styles of prehistoric human teeth
2940 at a Swiss necropolis (Sion, Valais) inferred from lead and strontium isotopes. *Appl Geochem*
2941 . 2003 [cited 2024 Aug 22];18:353–70. Available from: [http://dx.doi.org/10.1016/S0883-2927\(02\)00072-0](http://dx.doi.org/10.1016/S0883-2927(02)00072-0)

2943 192. Lee-Thorp JA, Sponheimer M. Three case studies used to reassess the reliability of fossil
2944 bone and enamel isotope signals for paleodietary studies. *Journal of Anthropological
2945 Archaeology* . 2003 [cited 2024 Aug 22];22:208–16. Available from:
2946 [http://dx.doi.org/10.1016/S0278-4165\(03\)00035-7](http://dx.doi.org/10.1016/S0278-4165(03)00035-7)

2947 193. Kohn MJ, Schoeninger MJ, Barker WW. Altered states: Effects of diagenesis on fossil
2948 tooth chemistry. *GeCoA* . 1999 [cited 2024 Aug 22];63:2737–47. Available from:
2949 <https://ui.adsabs.harvard.edu/abs/1999GeCoA..63.2737K/abstract>

2950 194. Price TD, Schoeninger MJ, Armelagos GJ. Bone chemistry and past behavior: an
2951 overview. *JHumE* . 1985 [cited 2024 Aug 22];14:419–47. Available from:
2952 <https://ui.adsabs.harvard.edu/abs/1985JHumE..14..419P/abstract>

2953 195. Hedges REM, Clement JG, Thomas CDL, O'Connell TC. Collagen turnover in the adult
2954 femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. *Am J Phys
2955 Anthropol* . 2007 [cited 2024 Aug 22];133:808–16. Available from:
2956 <https://onlinelibrary.wiley.com/doi/abs/10.1002/ajpa.20598>

2957 196. Tafuri MA, Alexander Bentley R, Manzi G, di Lernia S. Mobility and kinship in the
2958 prehistoric Sahara: Strontium isotope analysis of Holocene human skeletons from the Acacus
2959 Mts. (southwestern Libya). *Journal of Anthropological Archaeology* . 2006 [cited 2024 Aug
2960 22];3:390–402. Available from: <https://www.infona.pl/resource/bwmeta1.element.elsevier-feb8936c-ce90-3401-b94d-dfc7249a1351>

2962 197. Manolagas SC. Birth and Death of Bone Cells: Basic Regulatory Mechanisms and
2963 Implications for the Pathogenesis and Treatment of Osteoporosis*. *Endocr Rev* . 2000 [cited
2964 2024 Aug 22];21:115–37. Available from: <https://academic.oup.com/edrv/article-pdf/21/2/115/8859550/edrv0115.pdf>

2966 198. Ezzo J, Price T. Migration, Regional Reorganization, and Spatial Group Composition at
2967 Grasshopper Pueblo, Arizona. *J Archaeol Sci* . 2002 [cited 2024 Aug 22]; Available from:
2968 <https://doi.org/10.1006/JASC.2001.0745>

2969 199. Price TD, Johnson CM, Ezzo JA, Ericson J, Burton JH. Residential Mobility in the
2970 Prehistoric Southwest United States: A Preliminary Study using Strontium Isotope Analysis.
2971 *JArSc* . 1994 [cited 2024 Aug 22];21:315–30. Available from:
2972 <https://ui.adsabs.harvard.edu/abs/1994JArSc..21..315P/abstract>

2973 200. Higgins MD, Higgins RA. A Geological Companion to Greece and the Aegean . Cornell
2974 University Press; 1996. Available from:
2975 https://books.google.com/books/about/A_Geological_Companion_to_Greece_and_the.html?hl=&id=Q-0jraoNqvUC

2977 201. Higgins, Higgins RA. A Geological Companion to Greece and the Aegean . Cornell
2978 University Press / Duckworth Publishers; 1996. Available from:
2979 https://www.researchgate.net/publication/257233658_A_Geological_Companion_to_Greece_and_the_Aegean

2981 202. Nafplioti A. Population movement, biological and cultural interactions in the EBA Aegean:
2982 The case of Manika. Unpublished report submitted to the American School of Classical
2983 Studies at Athens (ASCSA) for research carried out through a J.L. Angel Fellowship in Human
2984 Skeletal Studies . 2008 [cited 2024 Sep 5]. Available from:
2985 <https://www.ascsa.edu.gr/research/wiener-laboratory/research/research-archive>

2986