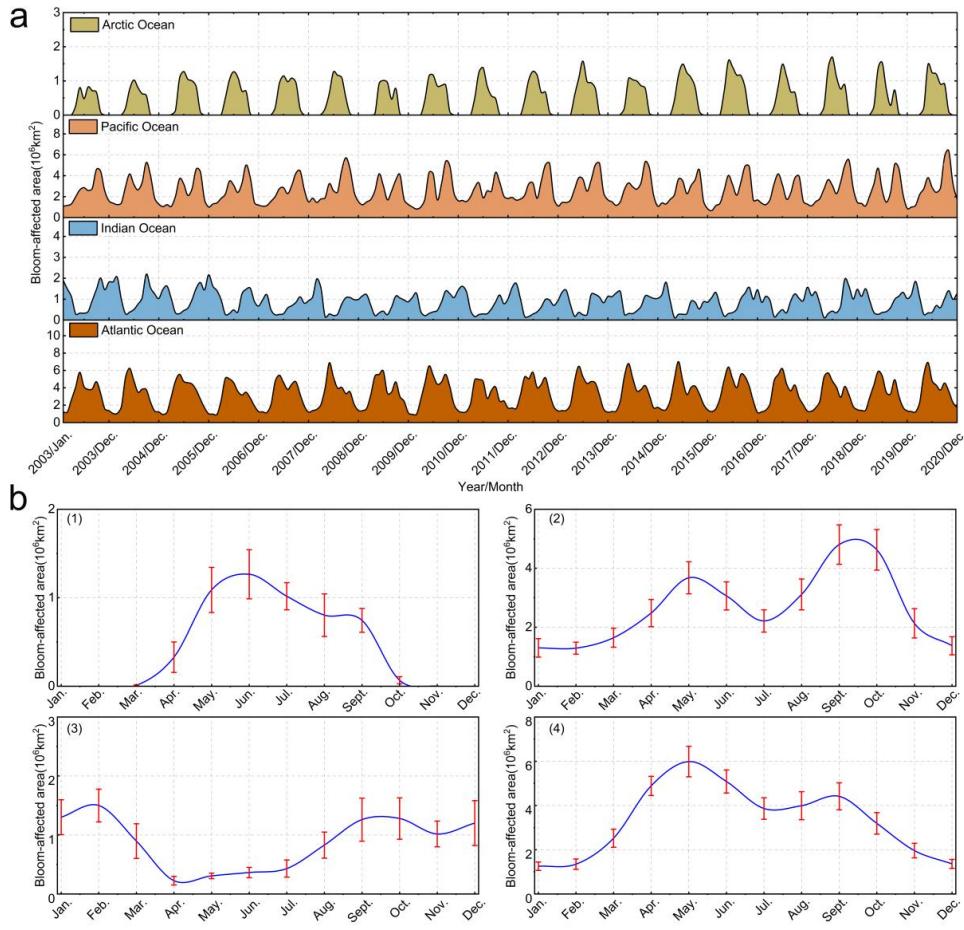
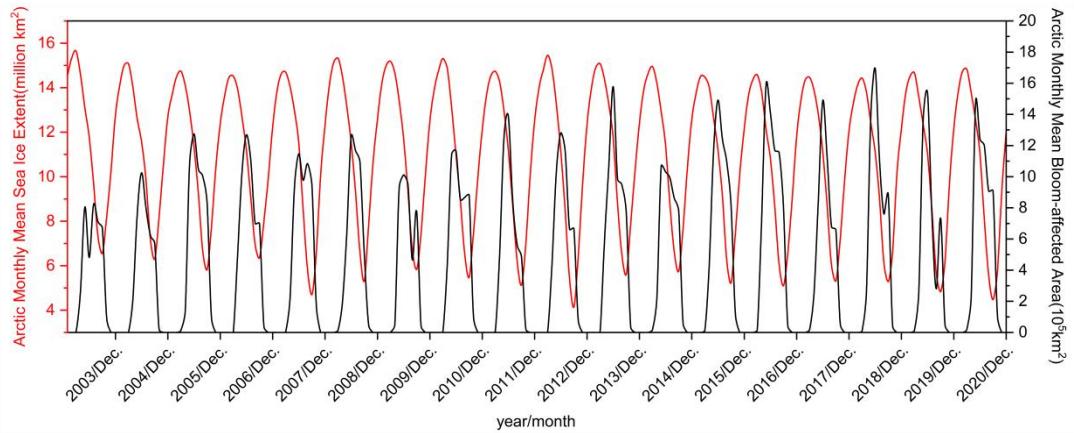


1 **Extended Data**

14

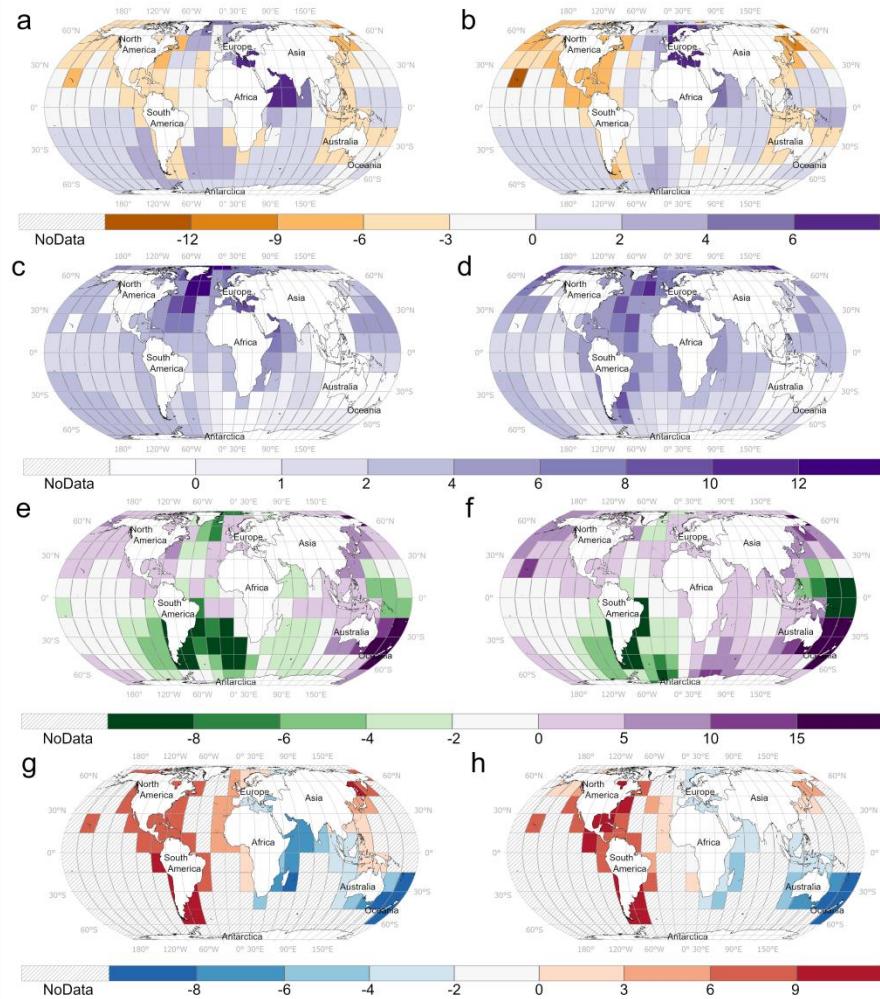
15 **Extended Data Fig. 2 | Monthly Trends of BAA in the Four Major Oceans of the Northern**16 **Hemisphere. a**, The annual changing trend in BAA across the four main seas of the Northern

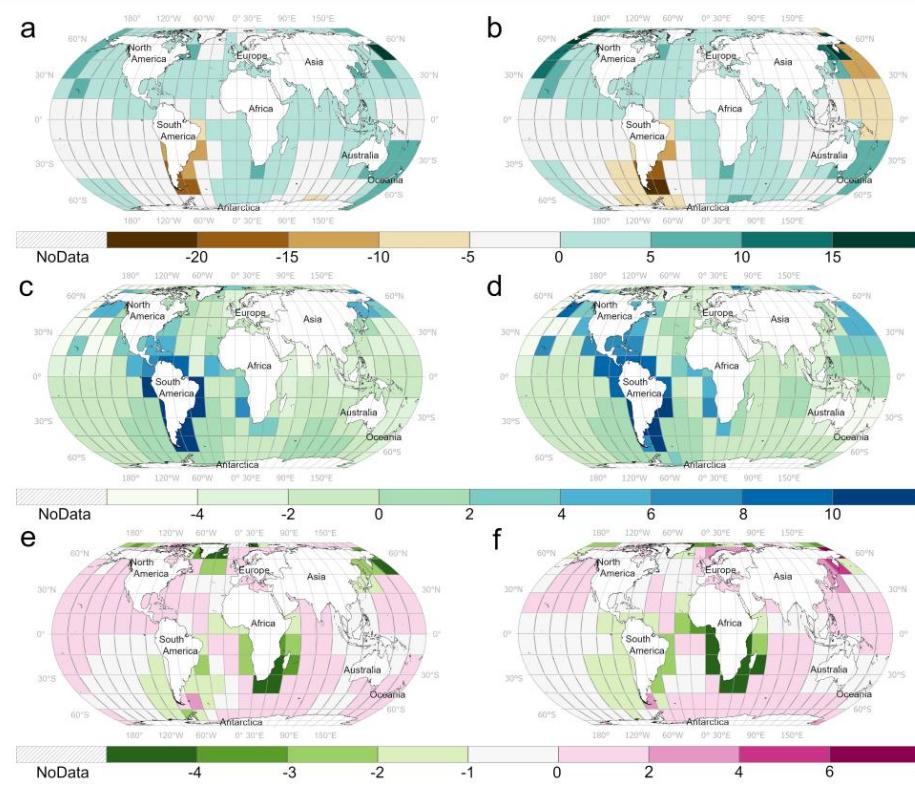

17 Hemisphere. The green area represents the Arctic Ocean bloom, which is absent during certain months.


18 The orange area depicts the North Pacific bloom, which shows a distinct double-peak pattern annually.

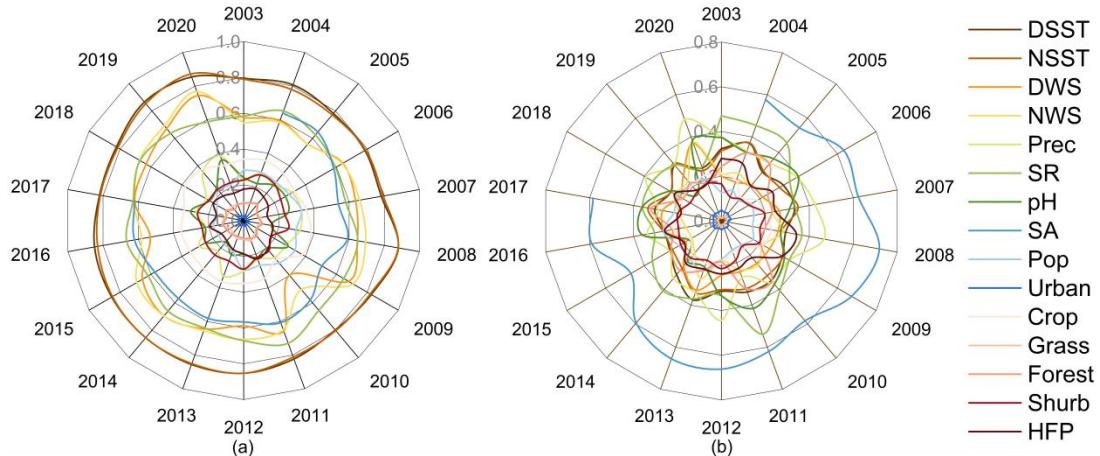
19 The blue area represents the North Indian Ocean bloom, exhibiting a multi-peak pattern each year. The

20 brown area indicates the North Atlantic bloom, which displays a clear double-peak pattern annually. **b**,21 The annual trend of the multi-year average monthly scale of BAA in these oceans. **b (1)**, The Arctic22 Ocean trend. **b (2)**, The North Pacific Ocean trend. **b (3)**, The North Indian Ocean trend. **b (4)**, The23 North Atlantic Ocean trend. The red error bars in **b** indicate the sample standard deviation. The map


24 was created using Origin 2024.

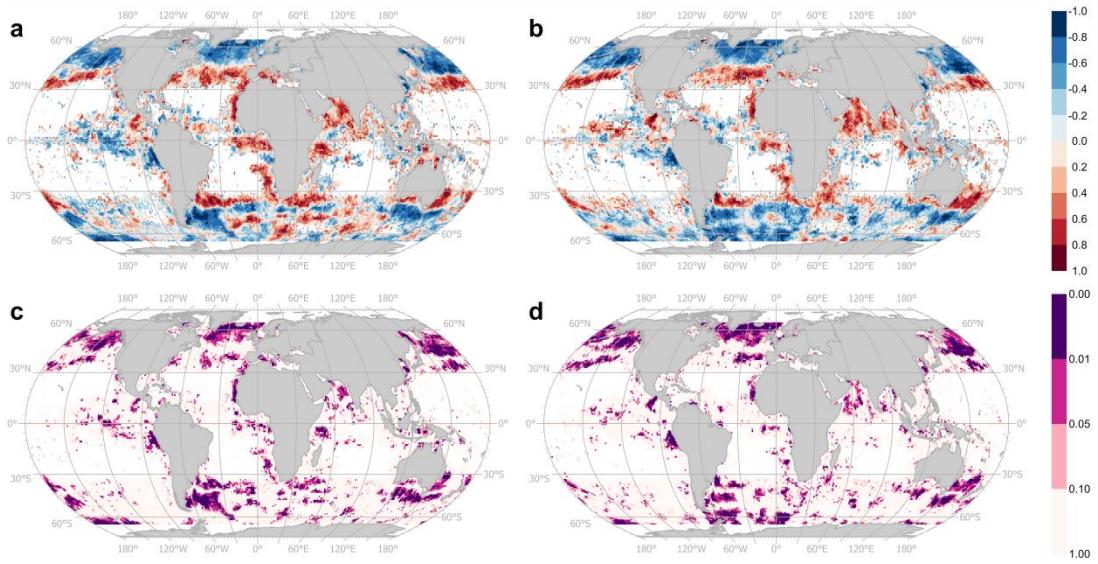

25

26 **Extended Data Fig. 3 | Monthly Trend of the BAA and Sea Ice in the Arctic Ocean.** The monthly
 27 variations in the sea ice extent of the Arctic Ocean are depicted by the red line. The sea ice extent
 28 reaches its maximum in March and then progressively decreases as the temperature rises, reaching its
 29 minimum in September before it begins to grow again. The BAA by Arctic Ocean is represented by a
 30 black line, illustrating monthly variations. The map was created using Origin 2024.


31

32 **Extended Data Fig. 4 | Spatial distribution of regression coefficients for the main influencing**
 33 **factors on phytoplankton bloom-affected areas. a, Regression coefficients for daytime SST in 2003.**
 34 **b, Regression coefficients for daytime SST in 2020. c, Regression coefficients for nighttime wind**
 35 **speed in 2003. d, Regression coefficients for nighttime wind speed in 2020. e, Regression coefficients**
 36 **for salinity in 2003. f, Regression coefficients for salinity in 2020. g, Regression coefficients for solar**
 37 **radiation in 2003. h, Regression coefficients for solar radiation in 2020. The map was created using**
 38 **ArcGIS.**

39
40


41 **Extended Data Fig. 5 | Spatial distribution of regression coefficients for the main influencing**
 42 **factors on cumulative days of phytoplankton bloom. a, Regression coefficients for salinity in 2003.**
 43 **b, Regression coefficients for salinity in 2020. c, Regression coefficients for solar radiation in 2003. d,**
 44 **Regression coefficients for solar radiation in 2020. e, Regression coefficients for precipitation in 2003.**
 45 **f, Regression coefficients for precipitation in 2020. The map was created using ArcGIS.**
 46

47

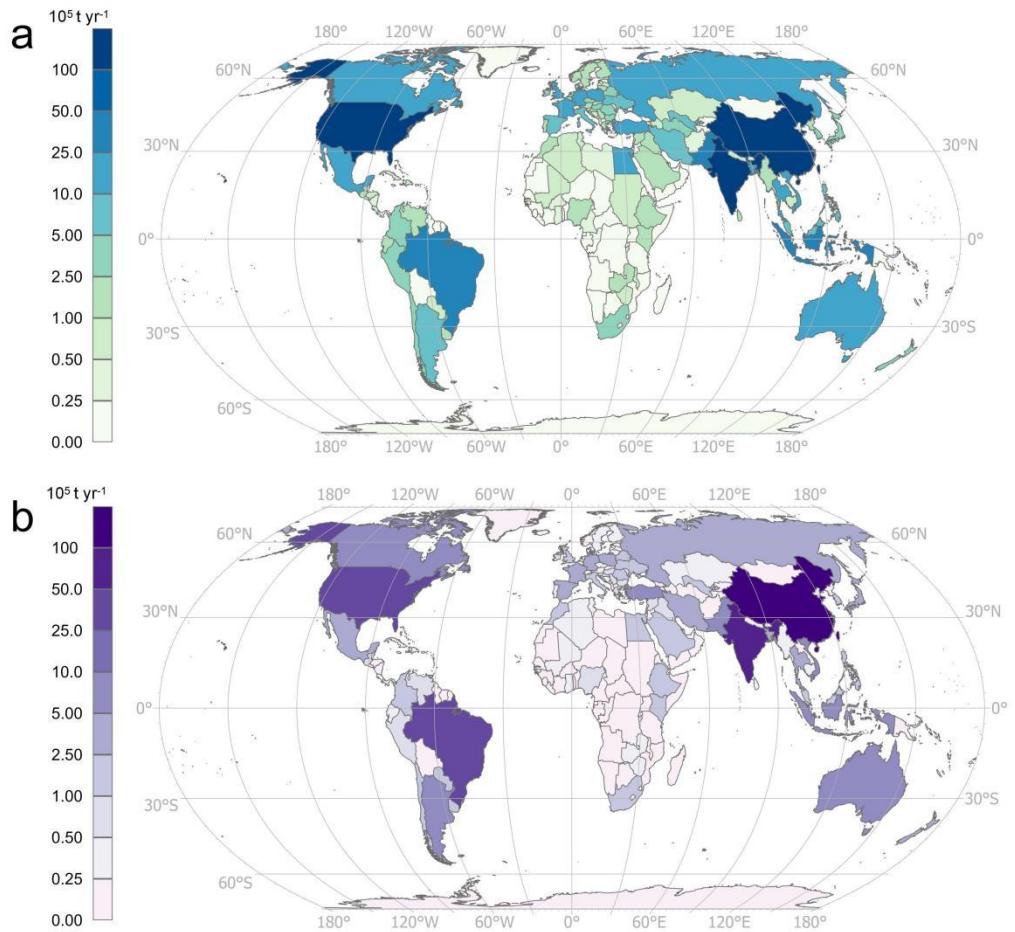
48 **Extended Data Fig. 6 | Contribution Degree of Each Environmental Factor to Algal Blooms.** The
 49 contribution of each environmental element to algal blooms (i.e., the q value result of the factor
 50 detection function of the geographical detector) is analyzed based on units of 0.1° latitude, with
 51 $n=1800$. The factor detection q -value findings for each environmental factor on the BAA are displayed
 52 in **a**, and those for CBD are displayed in **b**. Salinity and sea surface temperature have the most
 53 significant effects on both the CBD and the BAA. The map was created using Origin 2024.

54

55

56 **Extended Data Fig. 7 | Correlation and Significance between Annual Monthly Average**

57 **Bloom-affected areas (BAA) and Marine Nitrogen and Phosphorus Concentrations.** **a,** The


58 correlation (ρ value) between monthly average BAA and marine nitrogen concentration. **b,** The

59 correlation (ρ value) between monthly average BAA and marine phosphorus concentration. **c,** The

60 significance (q value) between monthly average BAA and marine nitrogen concentration. **d,** The

61 significance (q value) between monthly average BAA and marine phosphorus concentration. The

62 parameters are $n = 180 \times 360$ and $t = 12$ months. The map was created using ArcGIS.

63

64 **Extended Data Fig. 8 | Annual Average Nitrogen and Phosphorus Fertilizer Application in**

65 **Agriculture. a,** The annual average application of agricultural nitrogen fertilizer. **b,** The annual average

66 application of agricultural phosphate fertilizer. Higher amounts of fertilizer application are indicated by

67 lighter hues. Countries with the highest fertilizer usage include Brazil, China, India, and the United

68 States. The map was created using ArcGIS.

69

70 **Extended Data Tab. 1 The top 30 algae bloom dominant species and main distribution countries**

71 **in HAEDAT**

Rank	Causative Species Name	Major Country	count	Secondary Country	count	Total
1	<i>Pyrodinium bahamense</i>	Philippines	665	Malaysia	23	730
2	<i>Dinophysis acuminata</i>	Spain	153	Portugal	134	418
3	<i>Dinophysis spp.</i>	France	201	Spain	56	411
4	<i>Pseudo-nitzschia spp.</i>	France	88	United States	60	239
5	<i>Alexandrium spp.</i>	Norway	76	United States	68	235
6	<i>Dinophysis acuta</i>	Norway	62	Portugal	19	103
7	<i>Alexandrium catenella</i>	United States	68	Chile	14	102
8	<i>Cochlodinium polykrikoides</i>	Korea	47	United States	24	99
9	<i>Gymnodinium catenatum</i>	Mexico	26	Portugal	21	68
10	<i>Heterosigma akashiwo</i>	Canada	38	Japan	8	66
11	<i>Alexandrium tamarens</i>	Canada	27	Norway	25	61
12	<i>Pseudo-nitzschia australis</i>	Spain	51	Ireland	5	60
13	<i>Karenia mikimotoi</i>	Japan	41	China	4	54
14	<i>Karenia brevis</i>	United States	41	Mexico	9	50
15	<i>Gymnodinium catenatum</i>	Portugal	15	Spain	13	45
16	<i>Pyrodinium bahamense</i>	Philippines	31	Mexico	12	45
17	<i>Nodularia spumigena</i>	Poland	24	Sweden	9	44
18	<i>Noctiluca scintillans</i>	China	12	Greece	7	39
19	<i>Skeletonema costatum</i>	France	18	China	17	38
20	<i>Alexandrium minutum</i>	Spain	13	Slovenia	8	35
21	<i>Pseudo-nitzschia seriata</i>	Canada	8	United States	7	26
22	<i>Prorocentrum minimum</i>	United States	18	Greece	3	25
23	<i>Alexandrium fundyense</i>	Canada	12	United States	8	23
24	<i>Dinophysis acuminata</i>	Portugal	19	Australia	2	23
25	<i>Dinophysis caudata</i>	Portugal	11	Slovenia	6	22
26	<i>Margalefidinium polykrikoides</i>	Mexico	16	United States	5	21

27	<i>Prorocentrum</i> spp.	China	19	Mexico	1	20
28	<i>Chaetoceros</i> spp.	France	14	Japan	5	19
29	<i>Akashiwo sanguinea</i>	United States	6	Japan	4	18
30	<i>Aureococcus anophagefferens</i>	United States	15	China	2	18

73 **Extended Data Tab. 2 The top 30 countries and their major and secondary causative species of**

74 **blooms in HAEDAT**

Rank	Country	Major Causative Species	Count	Secondary Causative Species	Count	Total
1	Philippines	<i>Pyrodinium bahamense</i>	665	<i>Skeletonema sp.</i>	2	670
2	United States	<i>Alexandrium catenella</i>	68	<i>Pseudo-nitzschia spp.</i>	55	504
3	France	<i>Dinophysis spp.</i>	194	<i>Pseudo-nitzschia spp.</i>	88	419
4	Spain	<i>Dinophysis acuminata</i>	153	<i>Dinophysis spp.</i>	56	402
5	Portugal	<i>Dinophysis acuminata</i>	134	<i>Pseudo-nitzschia spp.</i>	24	311
6	Norway	<i>Alexandrium spp.</i>	68	<i>Dinophysis acuta</i>	62	235
7	Mexico	<i>Gymnodinium catenatum</i>	26	<i>Myrionecta rubra</i>	19	169
8	China	<i>Prorocentrum sp.</i>	19	<i>Skeletonema costatum</i>	17	149
9	Japan	<i>Karenia mikimotoi</i>	41	<i>Chattonella spp.</i>	14	143
10	Canada	<i>Heterosigma akashiwo</i>	38	<i>Alexandrium tamarens</i>	27	142
11	United Kingdom	<i>Dinophysis spp.</i>	52	<i>Alexandrium spp.</i>	37	113
12	Korea	<i>Cochlodinium polykrikoides</i>	47	<i>Gonyaulax polygramma</i>	7	107
13	Slovenia	<i>Dinophysis fortii</i>	15	<i>Lingulodinium polyedra</i>	12	91
14	Sweden	<i>Dinophysis spp.</i>	29	<i>Aphanizomenon flos-aquae</i>	20	86
15	Poland	<i>Nodularia spumigena</i>	35	<i>Cylindrospermopsis raciborskii</i>	6	67
16	Ireland	<i>Dinophysis acuminata</i>	12	<i>Dinophysis acuta</i>	12	62
17	Turkey	<i>Heterosigma akashiwo</i>	5	<i>Emiliania huxleyi</i>	4	58
18	Uruguay	<i>Dinophysis acuminata</i>	8	<i>Dinophysis spp.</i>	5	43
19	Brazil	<i>Pseudo-nitzschia</i>	1	<i>Alexandrium spp.</i>	1	40
		<i>pseudodelicatissima</i>				
20	Malaysia	<i>Pyrodinium bahamense</i>	23	<i>Cochlodinium polykrikoides</i>	5	39
21	Australia	<i>Gambierdiscus spp.</i>	5	<i>Pseudo-nitzschia</i>	4	36
				<i>pseudodelicatissima</i>		
22	Argentina	<i>Alexandrium catenella</i>	9	<i>Gymnodinium catenatum</i>	3	31
23	New Zealand	<i>Alexandrium minutum</i>	2	<i>Alexandrium catenella</i>	2	28
24	Chile	<i>Alexandrium catenella</i>	14	<i>Chattonella verruculosa</i>	3	28

25	Greece	<i>Noctiluca scintillans</i>	7	<i>Prorocentrum minimum</i>	3	25
26	Denmark	<i>Dinophysis acuminata</i>	6	<i>Chattonella spp.</i>	5	23
27	India	<i>Noctiluca scintillans</i>	7	<i>Trichodesmium erythraeum</i>	5	23
28	South Africa	<i>Alexandrium catenella</i>	2	<i>Gonyaulax polygramma</i>	2	23
29	Russian Federation	<i>Heterosigma akashiwo</i>	3	<i>Noctiluca scintillans</i>	3	22
30	Peru	<i>Akashiwo sanguinea</i>	7	<i>Alexandrium ostenfeldii</i>	3	19