

1 ***Supplementary Information for***

2 **Patterns and driving mechanism of global marine phytoplankton blooms**

3

4 **Authors:** Wei Hu^{1,2}, Jian-rong Ma^{1,2,*}, Hans W. Paerl³, Erik Jeppesen^{4,5,6,7,8}, Justin D.

5 Brookes⁹, Jian Wu¹⁰, Bo-qiang Qin^{11,*}

6

7 **Affiliations:**

8 ¹ Chongqing Institute of Green and Intelligent Technology, Chinese Academy of
9 Sciences, Chongqing, China.

10 ² Chongqing College, University of Chinese Academy of Sciences, Chongqing, China.

11 ³ Institute of Marine Sciences, Department of Earth, Marine and Environmental
12 Sciences, UNC Chapel Hill, Morehead City, NC, USA.

13 ⁴ Department of Ecosystem Science, and WATEC, C.F. Møllers Allé 3, Aarhus University,
14 Aarhus, Denmark.

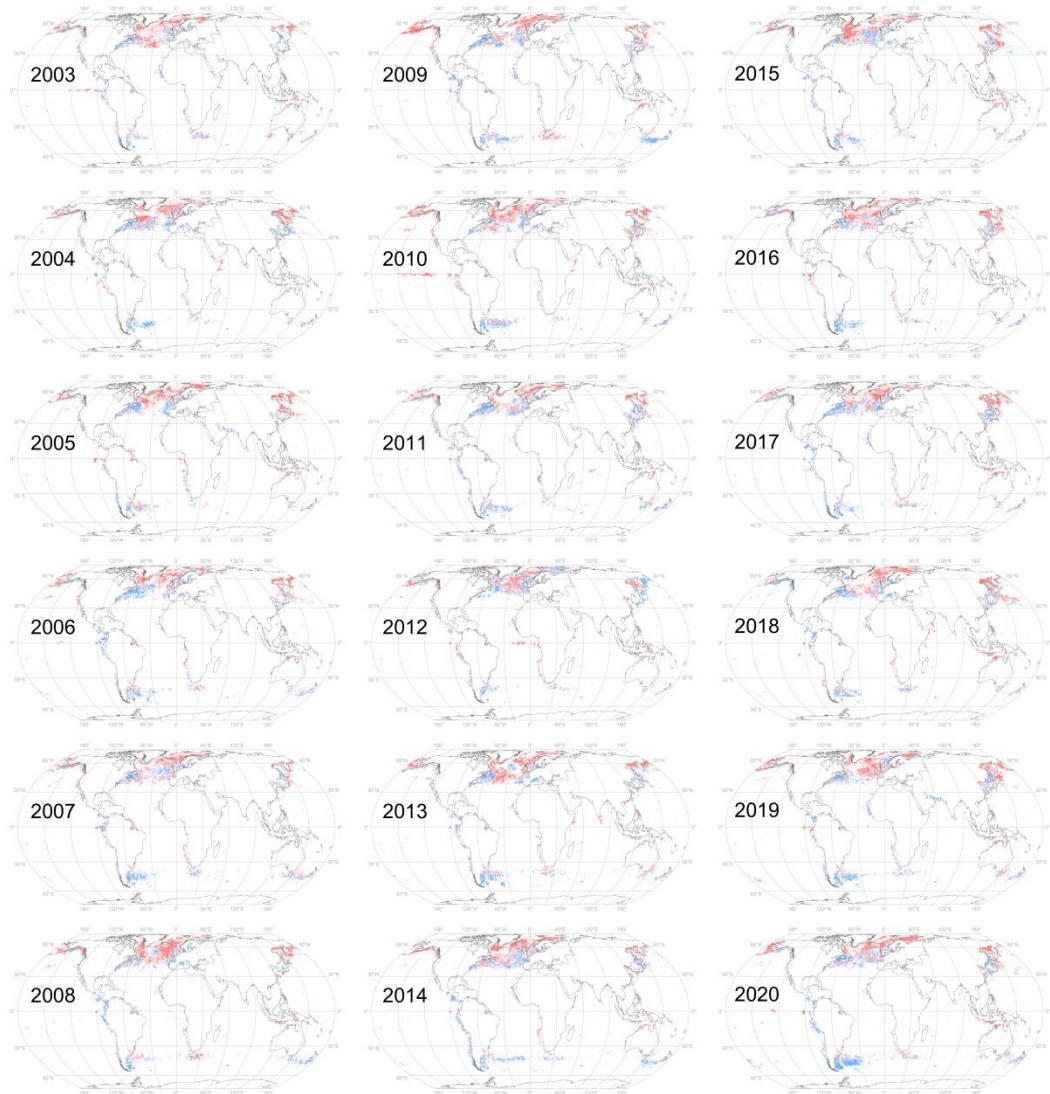
15 ⁵ Sino-Danish Education and Research Centre, Beijing, China.

16 ⁶ Limnology Laboratory, Department of Biological Sciences and Centre for
17 Ecosystem Research and Implementation, Middle East Technical University,
18 Ankara, Turkey.

19 ⁷ Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey.

20 ⁸ Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology
21 and Environmental Science, Yunnan University, Kunming, China.

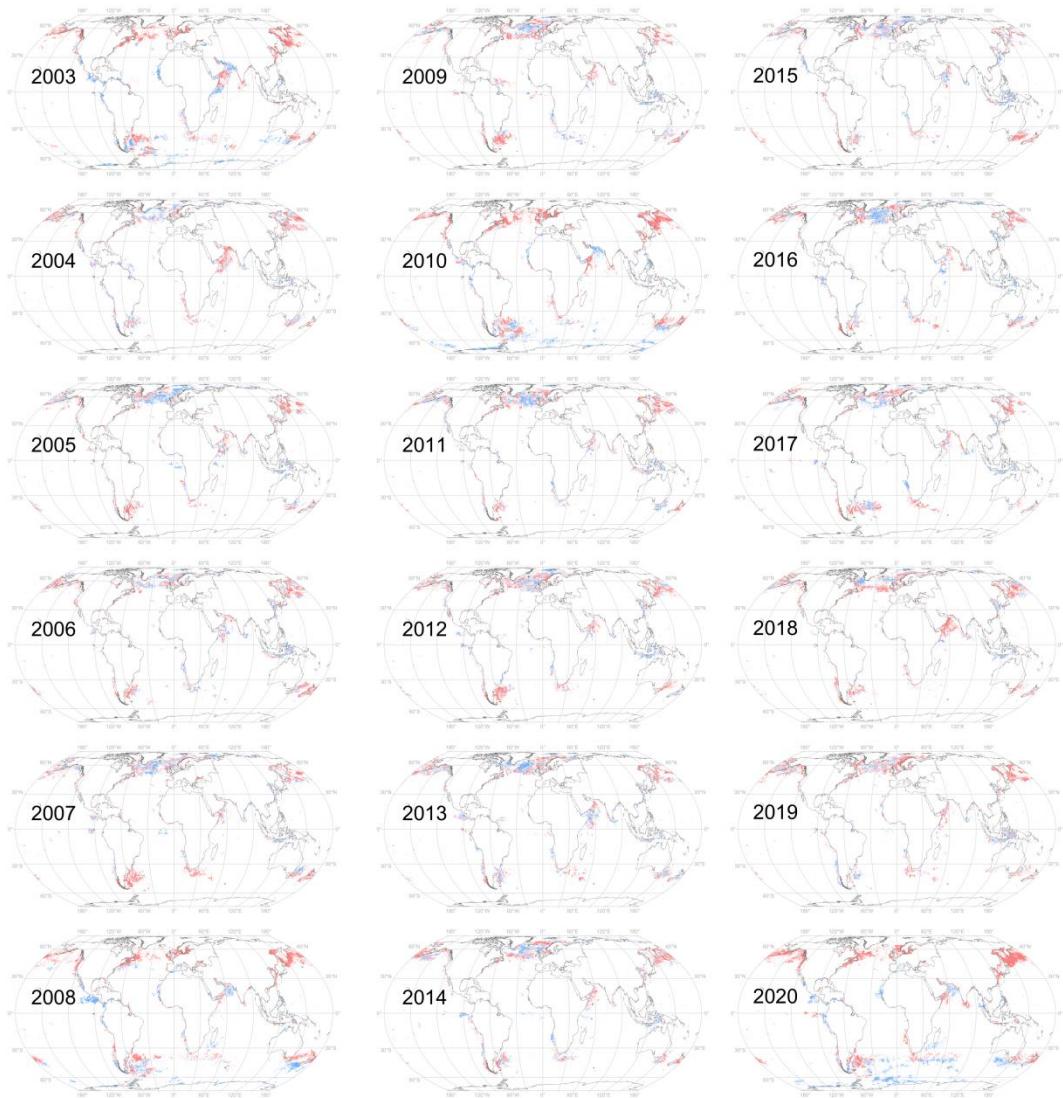
22 ⁹ School of Biological Sciences, University of Adelaide, North Terrace, Adelaide,
23 Australia.


24 ¹⁰ Institute of Geographic Sciences and Natural Resources Research, Chinese
25 Academy of Sciences, Beijing, China.

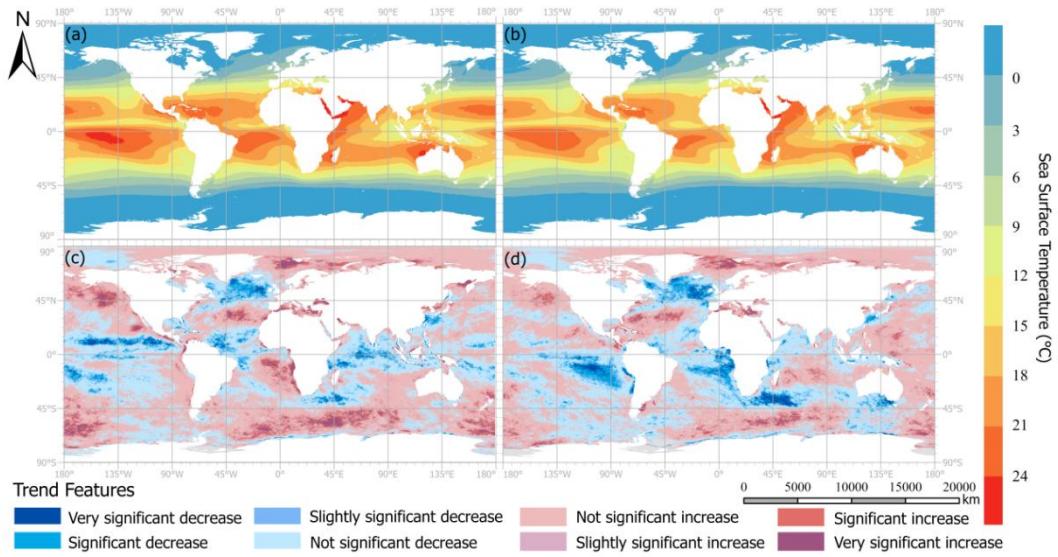
26 ¹¹ Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake
27 Science and Environment, Nanjing Institute of Geography and Limnology, Chinese
28 Academy of Sciences, Nanjing, China.

29 *Correspondence to: majianrong@cigit.ac.cn, qinbq@niglas.ac.cn

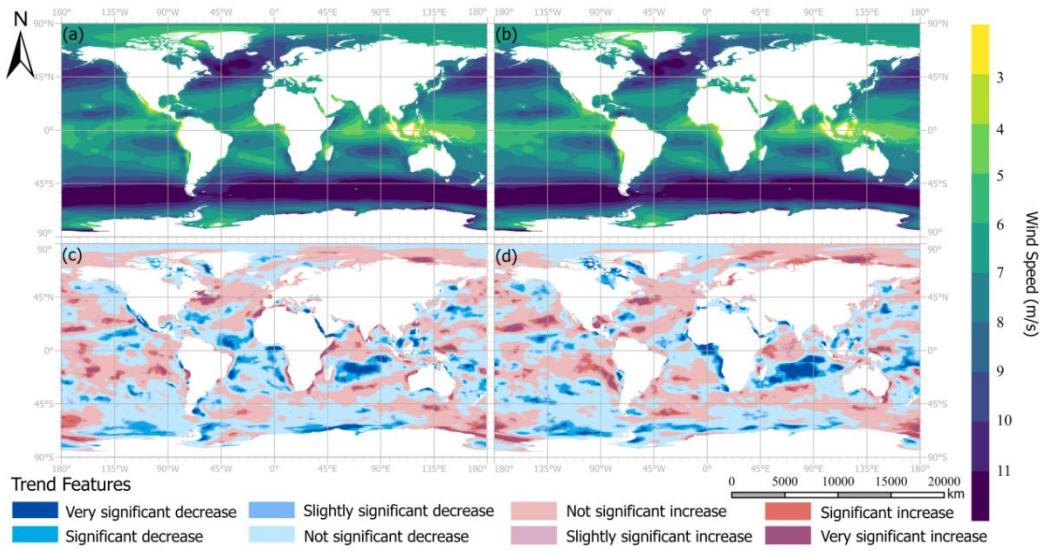
30


31 **Supplementary Figures:**

32

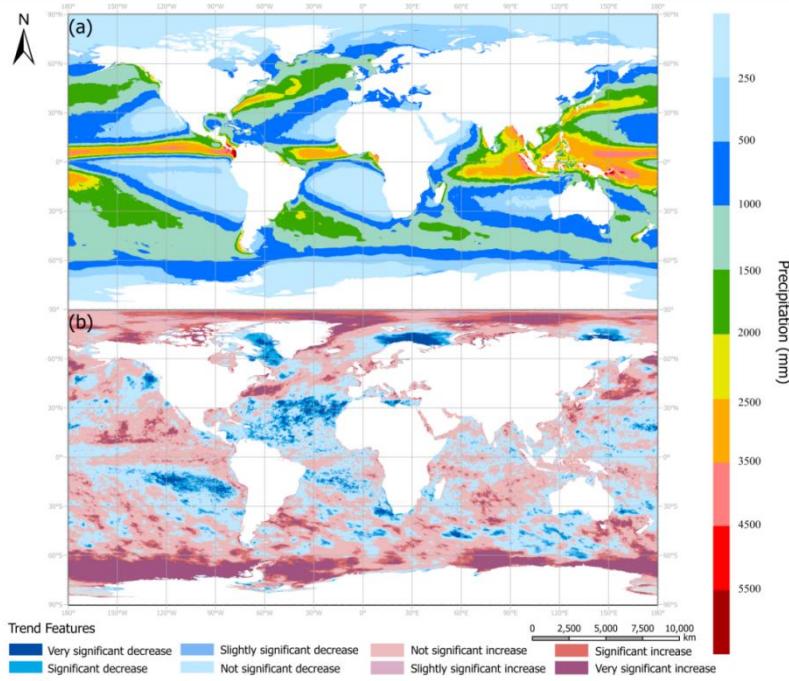

33 **Supplementary Fig. 1 | Trend chart of the global marine algal bloom area during the 'first peak'**

34 **from 2003 to 2020.** The red regions indicate areas where new algal blooms emerged during the peak
35 month compared to the previous month, while the blue regions indicate areas where algal blooms
36 declined. The increase in algal blooms during the first peak month is primarily concentrated in the
37 North Atlantic and North Pacific.


38

39 **Supplementary Fig. 2 | Trend chart of the global marine algal bloom area during the 'second**
 40 **peak' from 2003 to 2020.** The red regions indicate areas where new algal blooms emerged during the
 41 peak month compared to the previous month, while the blue regions indicate areas where algal blooms
 42 declined. The increase in algal blooms during the second peak month is primarily concentrated in the
 43 North Pacific.

44


45 **Supplementary Fig. 3 | Average annual SST and its changing trends from 2003 to 2020.** The
 46 daytime temperature and its variation trend are depicted in **a** and **c**; the nighttime temperature and its
 47 variation trend are shown in **b** and **d**. The impact of wind and ocean currents prevents the temperature
 48 of the ocean's surface from displaying a latitude distribution. Certain open seas and certain coastal
 49 waters have warmer sea surface temperatures. The map was created using ArcGIS.
 50

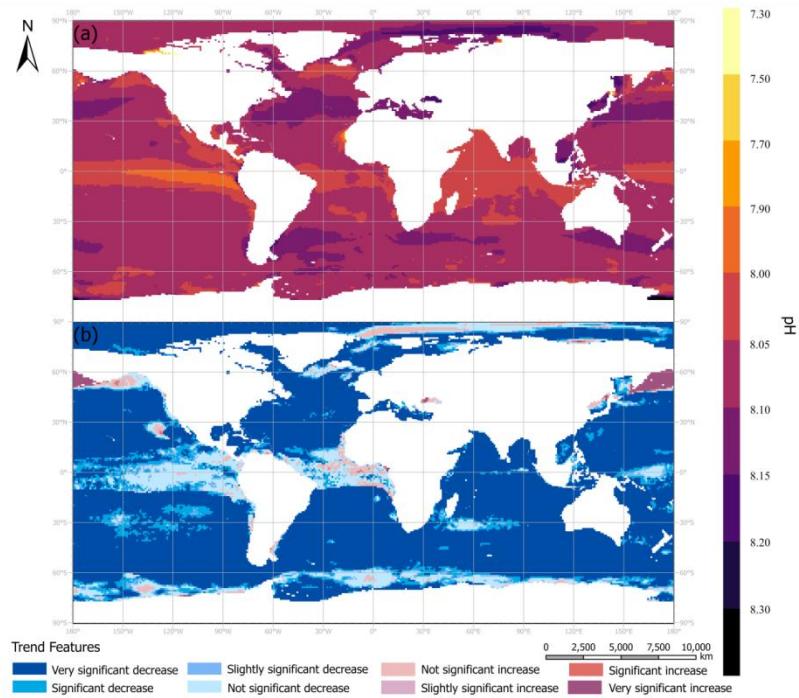
51

52 **Supplementary Fig. 4 | Average annual wind speed and its changing trends from 2003 to 2020.**

53 The daytime wind speed and its variation trend are depicted in **a** and **c**; the nighttime wind speed and
 54 its variation trend are shown in **b** and **d**. The westerly belt is the strongest wind zone in the world. The
 55 map was created using ArcGIS.
 56

57

58 **Supplementary Fig. 5 | Average annual total precipitation and its changing trends from 2003 to**


59 **2020.** Average annual total precipitation depicted in **a**. Its variation trend are depicted in **b**. The

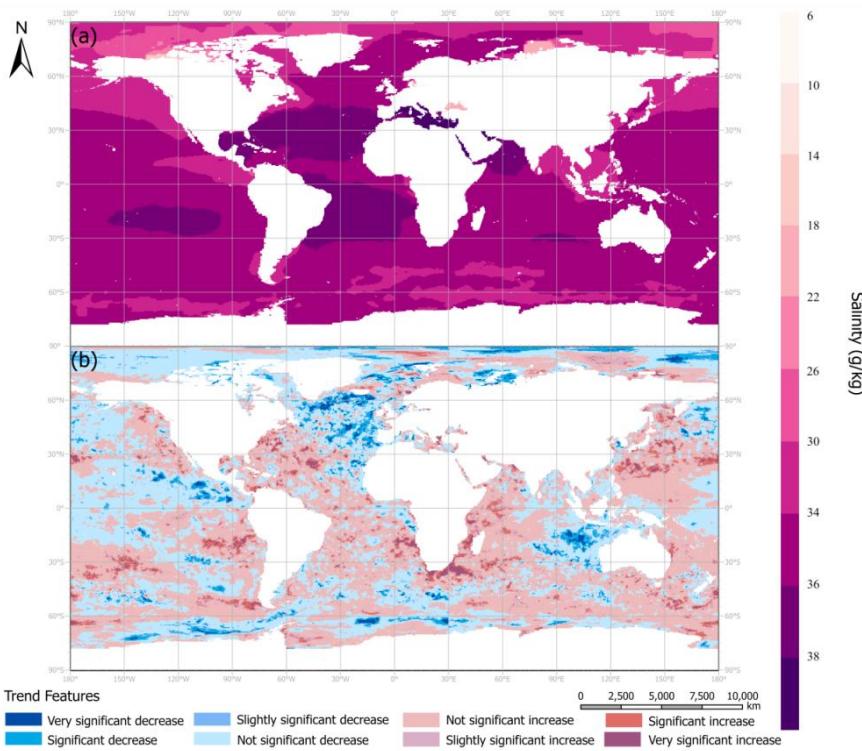
60 equatorial rainbelt is the location of the global maximum rainfall, with comparatively large rainfall near

61 the equator; similarly, the temperate rain belt experiences relatively large rainfall, with clear deviations

62 attributed to monsoon influence. overall, the global rainfall trended upward during the study period.

63 The map was created using ArcGIS.

64


65 **Supplementary Fig. 6 | Average annual pH and its changing trend of the sea surface (0 m) from**

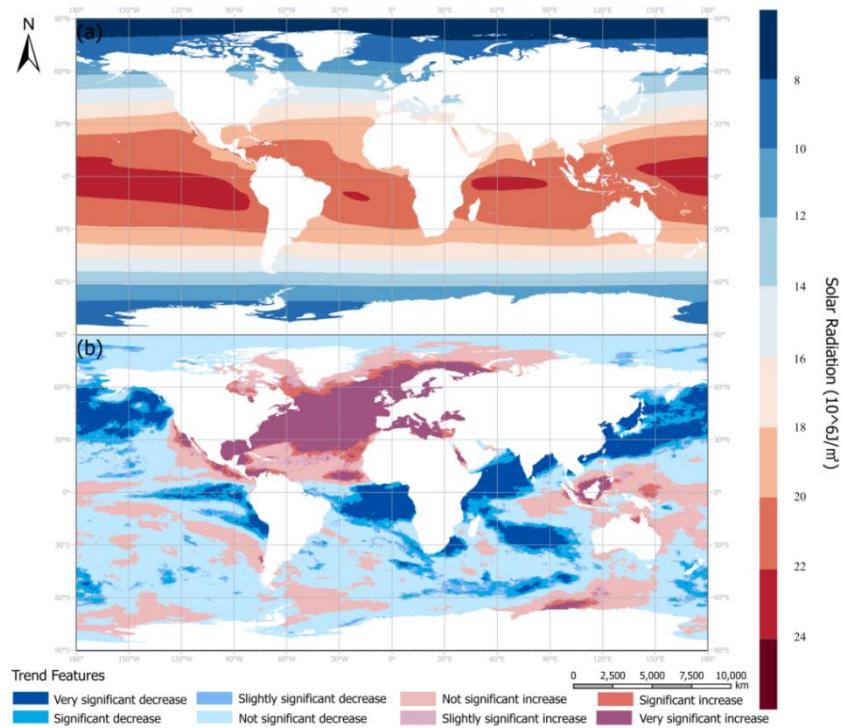
66 **2003 to 2020.** Average annual pH depicted in **a.** Its variation trend are depicted in **b.** Near the equator,

67 the worldwide ocean pH value is lower; over the research period, the pH drastically drops and exhibits

68 clear signs of acidification. The map was created using ArcGIS.

69

70

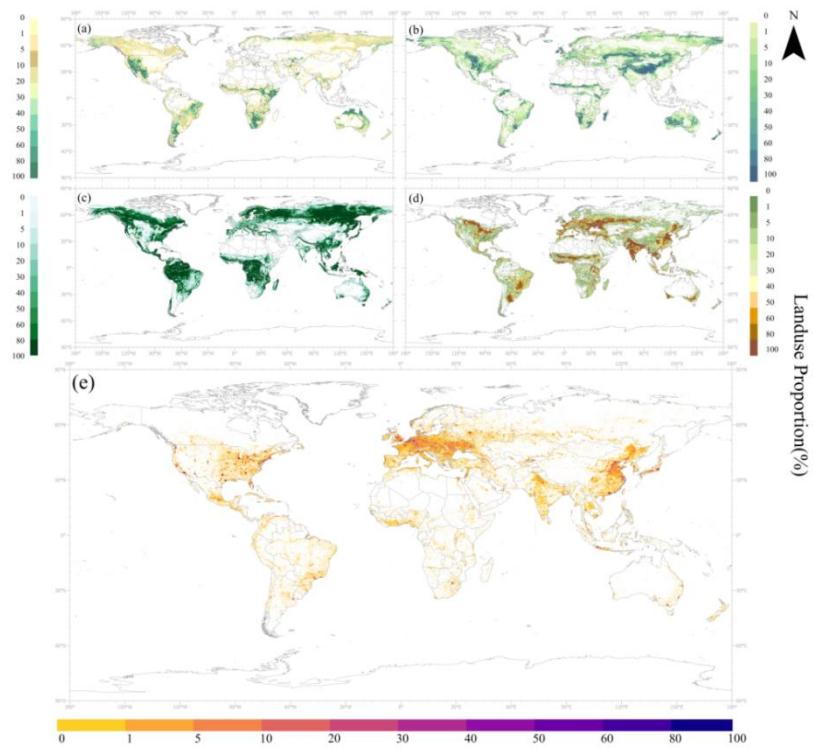

71 **Supplementary Fig. 7 | Average annual salinity and its changing trend of the sea surface (0 m)**

72 **from 2003 to 2020.** Average annual salinity depicted in **a.** Its variation trend are depicted in **b.** Salinity

73 is higher in the middle and low latitudes of Atlantic Ocean, and generally, salinity changes show an

74 increasing trend. The map was created using ArcGIS.

75

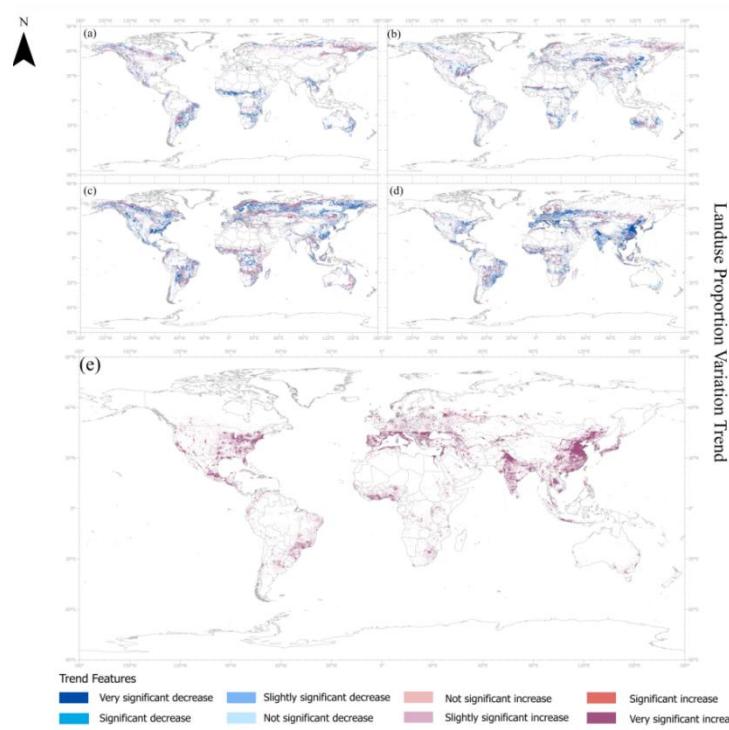


76

77 **Supplementary Fig. 8 | Average annual solar radiation from 2003 to 2020 and its changing trend.**

78 Average annual solar radiation depicted in **a**. Its variation trend are depicted in **b**. The yearly solar
 79 radiation distribution worldwide exhibits a very significant increase in the North Atlantic Ocean and a
 80 very significant decrease in the North Pacific Ocean, with latitude running parallel to the distribution.

81 The map was created using ArcGIS.

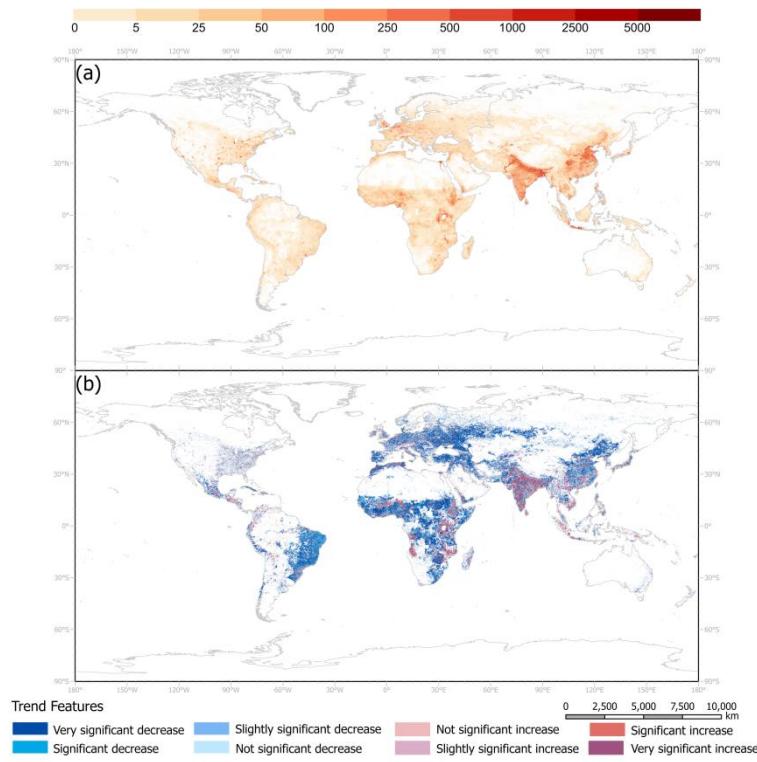


82

83 **Supplementary Fig. 9 | Average annual proportion of different land use types from 2003 to 2020.**

84 **a**, Shrub. **b**, Grass. **c**, Forest. **d**, Crop. **e**, Urban. The map was created using ArcGIS.

85


86

87 **Supplementary Fig. 10 | Change trend of the average annual proportion of different land use**

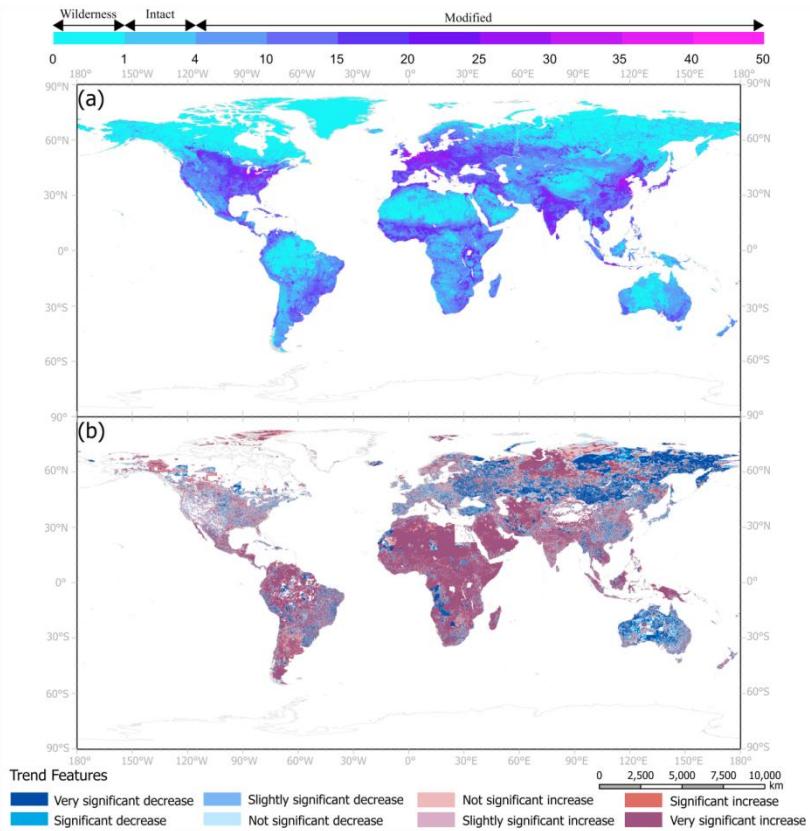
88 **types from 2003 to 2020. a, Shrub. b, Grass. c, Forest. d, Crop. e, Urban.** The map was created using

89 ArcGIS.

90

91

92 **Supplementary Fig. 11 | Average annual Ambient Population from 2003 to 2020 and its changing**


93 **trend.** Average annual ambient population depicted in **a**. Its variation trend are depicted in **b**. The

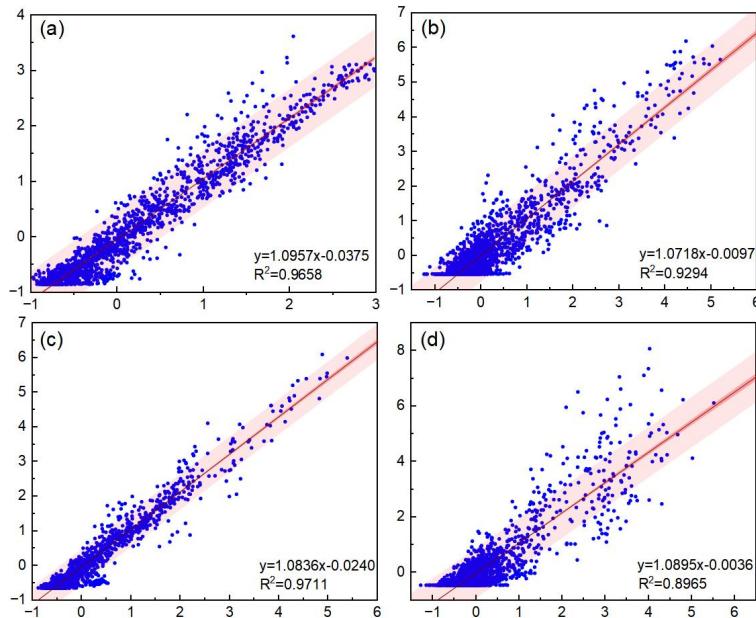
94 population is densely distributed in India, eastern and northern China, the central plains, and

95 southwestern Indonesia. There are sporadic densely populated areas in other countries. At the same

96 time, the population in most of these places has also shown an increasing trend. The map was created

97 using ArcGIS.

98


99 **Supplementary Fig. 12 | Average annual Human Footprint Project from 2003 to 2020 and its**

100 **changing trend.** Average annual human footprint project depicted in **a**. Its variation trend are depicted

101 in **b**. The footprints of human activities are higher in areas near coastal and inland waters, while in

102 alpine and desert areas, the footprints of human activities are sparse. The map was created using

103 ArcGIS.

104

105 **Supplementary Fig. 13 | Results of Linear Fitting of the GTWR Model's Predicted and Actual**
 106 **Values.** The linear fitting results of GTWR model's predicted and actual values are presented for
 107 different regions and metrics of algal blooms: **a**, Model fitting results for the area affected by algal
 108 blooms in the coastal zone. **b**, Model fitting results for the area affected by algal blooms in open waters.
 109 **c**, Model fitting results for the cumulative number of days of algal blooms in the coastal zone. **d**, Model
 110 fitting results for the cumulative number of days of algal blooms in open waters. The map was created
 111 using Origin 2024.

112

113 **Supplementary Tables:**

114 **Supplementary Tab. 1 The annual average of human footprint index and population count within**

115 **0.1×0.1 pixel in the Northern and Southern Hemispheres**

Year	Human Footprint index		Population count	
	Northern Hemisphere	Southern Hemisphere	Northern Hemisphere	Southern Hemisphere
2003	6	2	78	34
2004	6	2	85	39
2005	6	2	93	41
2006	6	2	97	41
2007	6	2	98	41
2008	6	2	100	43
2009	7	2	102	44
2010	6	2	102	44
2011	6	2	104	50
2012	7	2	107	51
2013	7	2	109	51
2014	7	2	114	51
2015	7	2	118	53
2016	7	2	121	54
2017	7	2	128	57
2018	7	2	133	61
2019	7	2	142	64
2020	7	2	160	81

Supplementary Tab. 2 Moran' I index test results

Year	Moran' I		Z-score		P-value	
	BAA	CBD	BAA	CBD	BAA	CBD
2003	0.4596	0.3762	10.0240	8.3352	0.0000	0.0000
2004	0.4521	0.4041	9.8791	8.9570	0.0000	0.0000
2005	0.4973	0.4556	10.8698	10.0608	0.0000	0.0000
2006	0.4562	0.4534	9.9627	10.0483	0.0000	0.0000
2007	0.4918	0.4532	10.7610	9.9987	0.0000	0.0000
2008	0.4768	0.4980	10.4506	11.0553	0.0000	0.0000
2009	0.5104	0.5291	11.1435	11.7021	0.0000	0.0000
2010	0.5082	0.4760	11.1235	10.5097	0.0000	0.0000
2011	0.5124	0.4101	11.2194	9.0678	0.0000	0.0000
2012	0.5121	0.4489	11.2259	9.9359	0.0000	0.0000
2013	0.5240	0.4979	11.4646	10.9018	0.0000	0.0000
2014	0.5219	0.4374	11.4403	9.7043	0.0000	0.0000
2015	0.4944	0.4479	10.8187	9.8412	0.0000	0.0000
2016	0.5242	0.4707	11.5262	10.3535	0.0000	0.0000
2017	0.5175	0.4134	11.3722	9.1326	0.0000	0.0000
2018	0.5037	0.4666	10.9682	10.1877	0.0000	0.0000
2019	0.4933	0.4246	10.7570	9.3097	0.0000	0.0000
2020	0.4762	0.4661	10.4170	10.2247	0.0000	0.0000

119

Supplementary Tab. 3 Multicollinearity test results of BAA influencing factors in open water

120

	unstandardized coefficient		standardized coefficient		collinearity statistics		
	B	standard error	Beta	t	Significance	Tolerance	VIF
(constant)	-0.0410	0.0500		-0.8160	0.4150		
DSST	-0.1950	0.0330	-0.1880	-5.9360	0.0000	0.2900	3.4520
NWS	0.2970	0.0250	0.2880	12.0630	0.0000	0.5130	1.9500
PH	0.0500	0.0190	0.0480	2.5510	0.0110	0.8250	1.2120
PREC	0.2390	0.0210	0.2310	11.4480	0.0000	0.7180	1.3940
SA	0.3060	0.1540	0.0540	1.9910	0.0470	0.3910	2.5570

Dependent variable: BAA

121

Supplementary Tab. 4 Multicollinearity test results of BAA influencing factors in continental

122

coastal waters

123

	unstandardized coefficient		standardized coefficient		collinearity statistics		
	B	standard error	Beta	t	Significance	Tolerance	VIF
(constant)	-0.3700	0.0790		-4.6730	0.0000		
DSST	-0.2890	0.0700	-0.2690	-4.1420	0.0000	0.1100	9.0940
NWS	0.3560	0.0370	0.3450	9.7060	0.0000	0.3670	2.7270
pH	-0.1550	0.0280	-0.1510	-5.4450	0.0000	0.6050	1.6530
Prec	0.0850	0.0270	0.0820	3.1910	0.0010	0.6990	1.4300
SR	0.0760	0.0560	0.0700	1.3530	0.1760	0.1710	5.8500
Sa	1.2220	0.1710	0.2590	7.1500	0.0000	0.3530	2.8300
Pop	0.0940	0.0360	0.0830	2.5900	0.0100	0.4550	2.1990
HFP	-0.0350	0.0310	-0.0330	-1.1190	0.2630	0.5400	1.8520
Urban	0.0140	0.0310	0.0130	0.4710	0.6380	0.6190	1.6160
Shurb	-0.0590	0.0290	-0.0550	-2.0370	0.0420	0.6400	1.5610
Grass	-0.1350	0.0320	-0.1080	-4.2160	0.0000	0.7000	1.4280
Forest	-0.0790	0.0300	-0.0700	-2.6460	0.0080	0.6710	1.4900
Crop	0.0560	0.0320	0.0480	1.7550	0.0790	0.6140	1.6280

Dependent variable: BAA

Supplementary Tab. 5 Multicollinearity test results of CBD influencing factors in open water

	unstandardized coefficient		standardized coefficient		collinearity statistics		
	B	standard error	Beta	t	Significance	Tolerance	VIF
(constant)	-0.3120	0.0510		-6.1540	0.0000		
pH	-0.0400	0.0210	-0.0390	-1.9350	0.0530	0.7870	1.2710
Prec	0.2800	0.0240	0.2700	11.718	0.0000	0.5890	1.6990
Sa	1.2930	0.1610	0.2290	8.0490	0.0000	0.3860	2.5920
SR	-0.5270	0.0350	-0.5130	-14.972	0.0000	0.2650	3.7700
DWS	0.1380	0.0210	0.1330	6.7240	0.0000	0.7950	1.2590

Dependent variable: CBD

Supplementary Tab. 6 Multicollinearity test results of BAA influencing factors in continental**coastal waters**

	unstandardized coefficient		standardized coefficient		collinearity statistics		
	B	standard error	Beta	t	Significance	Tolerance e	VIF
(constant)	-0.4010	0.0850		-4.6950	0.0000		
DSST	-0.5450	0.0750	-0.4800	-7.2720	0.0000	0.1110	9.0280
pH	-0.1570	0.0310	-0.1450	-5.1230	0.0000	0.6040	1.6540
Prec	-0.0940	0.0290	-0.0850	-3.2480	0.0010	0.6970	1.4350
SR	0.2590	0.0610	0.2260	4.2670	0.0000	0.1710	5.8400
Sa	1.1890	0.1850	0.2380	6.4400	0.0000	0.3520	2.8400
Pop	0.1010	0.0390	0.0840	2.5850	0.0100	0.4540	2.2040
HFP	0.0380	0.0340	0.0340	1.1220	0.2620	0.5400	1.8530
Urban	-0.0240	0.0330	-0.0200	-0.7170	0.4740	0.6200	1.6130
Shurb	-0.0050	0.0310	-0.0040	-0.1630	0.8710	0.6490	1.5400
Grass	-0.0270	0.0340	-0.0200	-0.7760	0.4380	0.7040	1.4210
Forest	-0.0650	0.0320	-0.0540	-2.0220	0.0430	0.6700	1.4920
Crop	0.0610	0.0340	0.0500	1.7770	0.0760	0.6170	1.6200
DWS	0.3340	0.0400	0.3010	8.3750	0.0000	0.3720	2.6860

Dependent variable: CBD

Supplementary Tab. 7 Related parameters of GTWR model results

	BAA		CBD	
	Coast water	Open water	Coast water	Open water
Bandwidth	49.2254	56.2623	49.2254	56.2623
Residual Squares	124.8067	415.3834	117.4729	603.2072
Sigma	0.2801	0.3876	0.2717	0.4671
AICc	467.4107	2607.4145	371.0622	3638.9218
R ²	0.7769	0.7520	0.8032	0.6770
Adjusted R ²	0.7750	0.7516	0.8015	0.6764
Spatio-temporal Distance Ratio	3.0342	3.0342	3.0342	3.0342

131 **Supplementary discussion:**

132 **The changing trend of environmental factors**

133 With respect to the worldwide distribution of ocean surface temperatures
134 (Supplementary Fig. 3a and Supplementary Fig. 3b), the average daily temperature
135 exceeds 24 °C in many regions, particularly along the coasts of the Middle East,
136 Somalia, northeastern Australia, Madagascar, and the central Atlantic and Pacific.

137 This temperature range supports the development and reproduction of algae. The only
138 regions with average nighttime temperatures above 24 °C are the Red Sea, Persian
139 Gulf, and Gulf of Oman. All other regions have nighttime temperatures below this
140 threshold. At latitudes above 50° north and south, both daily highs and overnight lows

141 are essentially below freezing. The trend in ocean surface temperature clearly
142 indicates global warming (Supplementary Fig. 3c, Supplementary Fig. 3d). Over half
143 of the ocean's surface shows an increasing trend in mean annual daylight temperature,
144 with notable exceptions being the Mediterranean Sea, the Gulf of Alaska, the central

145 North Atlantic, the African coast of the South Atlantic, and the Arctic and Antarctic
146 regions. The daily average annual temperature exhibits a significant downward trend
147 in most equatorial regions, the northern Atlantic Ocean, most of the Indian Ocean, the
148 coast of Southeast Asia, the coast of eastern China, the southeastern coast of the

149 United States, and the northern coast of Latin America. In contrast to the annual
150 average daytime temperature, the coastal regions of western Africa, southern Australia,
151 and northern Latin America show a trend where a significant increase in daytime
152 temperature shifts to a significant decrease in nighttime temperature, resulting in a

153 larger diurnal temperature range.

154 The greatest values are found in the vicinity of the westerly belt, regardless of
155 the time of day or night. High-value wind speed centers, with wind speeds above 11 m
156 s^{-1} , simultaneously occur in the northern seas of Latin America, the coast of Peru, the
157 central Pacific Ocean, and the central Indian Ocean. Conversely, low-value centers,
158 with wind speeds less than 4 m s^{-1} , low value centers emerge in Southeast Asia, the
159 western coast of South America, and the northwest coast of Latin America
160 (Supplementary Fig. 4a, Supplementary Fig. 4b). The regions that exhibited rising and
161 decreasing trends in wind speed variations across the research period are generally
162 near one another, forming a dispersed block distribution pattern (Supplementary Fig.
163 4c, Supplementary Fig. 4d).

164 Throughout the research period, there was a notable decrease in daytime wind
165 speed along the western coast of North America, the central Indian Ocean, the
166 Arabian Gulf, most of the western African coastlines, and the northwest and southeast
167 coasts of South America. Conversely, there was a significant increase in daytime wind
168 speed on the east coast of North America, the northeast and southwest coasts of South
169 America, the north and east coasts of Africa, the Bay of Bengal, the southern coast of
170 Southeast Asia, and most of Oceania's coasts. Wind speed variations in the Pacific
171 Ocean exhibit greater erratic behavior, with a downward trend in the northern
172 hemisphere and an upward trend in the southern hemisphere. The nighttime wind
173 speed trend generally aligns with the daytime trend; however, the decrease in
174 nighttime wind speed is more pronounced than during the day. Additionally, there are

175 regions where the daytime and nighttime wind speed trends are reversed. For instance,
176 in the coastal region of southwest Africa, daytime wind speed is trending upward,
177 while nighttime wind speed is trending downward. This pattern is also observed in the
178 coastal regions of Peru and Chile in South America.

179 The geographical distribution map of precipitation (Supplementary Fig. 5a)
180 shows that the equatorial rainy belt is the location of the peak annual precipitation,
181 with a maximum of around 10712 mm yr⁻¹, and that this belt is shifting northward.

182 The east coasts of temperate zone continents receive higher summer precipitation due
183 to monsoons and warm currents, in addition to the comparatively high yearly rainfall
184 near the equator. Consequently, these regions see annual precipitation exceeding
185 1,000 mm. In contrast, the west coasts of continents receive significantly less rainfall
186 than that on the east coast due to the absence of such rainfall-promoting elements.

187 Southeast Asia, regardless of the coastal orientation, receives between 1,500 and
188 2,000 mm of precipitation annually. The arctic regions and the subtropical regions
189 along the continent's western coast are home to areas with minimal rainfall. During
190 the research period, there was a noticeable upward trend in annual precipitation in the
191 polar areas. However, a distinct 'Matthew effect' was observed, indicating an
192 increasing trend in regions already experiencing high annual rainfall. Conversely, in
193 smaller regions, annual rainfall trends showed polarization and a downward trend
194 (Supplementary Fig. 5b).

195 The global ocean's pH ranges primarily between 7.90 and 8.15, with the majority
196 falling between 8.05 and 8.10. In the coastal zones of Southeast Asia, the pH ranges

197 from 8.10 to 8.20, while it decreases towards the equator, averaging between 7.90 and
198 8.05 (Supplementary Fig. 6a). Additionally, high pH values are observed in the Arctic
199 seas, the Mediterranean Sea, the northern coast of East Asia, the southern coast of
200 Africa, the east and west coasts of southern South America, the central North Pacific,
201 and the central North Atlantic. A significant declining trend in pH is evident across
202 most of the world's oceans, indicating a trend toward acidification. Only a very small
203 portion of the marine regions show an increasing trend in pH values. For example, the
204 western Gulf of Alaska and the Bering Sea exhibit a noticeable upward trend in pH
205 values (Supplementary Fig. 6b).

206 Global ocean salinity predominantly ranges between 34-36g kg⁻¹ (Supplementary
207 Fig. 7a). The lowest average salinity value is 6.455g kg⁻¹, which occurs near the Baltic
208 Sea, while the highest average salinity value is 40.82g kg⁻¹, which occurs near the
209 Mediterranean Sea. The Red Sea and Persian Gulf also have higher salinity. In
210 addition, within the range of 40°N-30°S in the Atlantic Ocean, the water salinity is
211 basically 36-38g kg⁻¹. High salinity values are also present in parts of the Arabian Sea,
212 the South Pacific, and the central regions of the South Indian Ocean. During the study
213 period, only a small number of water bodies exhibited significant trends in salinity
214 increase or decrease, with a relatively dispersed distribution. For instance, the North
215 Atlantic waters near Europe showed a significant or highly significant decreasing
216 trend, whereas the waters near the United States and Mexico exhibited a significant or
217 highly significant increasing trend. Most of the global ocean salinity did not show
218 significant changes over the study period. Notably, salinity in the Yellow Sea and the

219 western Indian Ocean demonstrated significant or highly significant decreasing trends,
220 while salinity in some waters west of South America and the coastal zones of southern
221 Africa showed increasing trends (Supplementary Fig. 7b).

222 The distribution of solar radiation primarily follows latitudinal zones; however,
223 in the tropics, solar radiation is higher in open waters, exceeding $24 \times 10^6 \text{ J m}^{-2}$, and
224 lower in waters close to the continental coast, primarily within the range of $22 \times 10^6 \text{ J}$
225 $\text{m}^{-2} \sim 24 \times 10^6 \text{ J m}^{-2}$ (Supplementary Fig. 8a). The trend of solar radiation over the
226 study period indicates that, while solar radiation over other sea areas, particularly
227 above 30°N in the North Pacific, essentially showed a decreasing trend, solar
228 radiation over the North Atlantic showed a significant (or extremely significant)
229 increase. In general, there is a noticeable downward trend in solar radiation over and
230 around the equator of the North Indian and South Atlantic Oceans. Moreover, the
231 trend is essentially declining along the west coast of South America and increasing
232 along the coast of Southeast Asia (Supplementary Fig. 8b).

233 East Asia, South Asia, and Southeast Asia have more forests and cultivated areas
234 compared to shrub land. Regions with the highest concentrations of urban land
235 include eastern China, Western Europe, and the east coast of the United States
236 (Supplementary Fig. 9). During the research period, urban land use exhibited the most
237 significant change, showing a substantial increasing trend globally (Supplementary
238 Fig. 10e). Concurrently, there is a noticeable decline in cropland areas in China, India,
239 and Europe (Supplementary Fig. 10d).

240 The population is densely concentrated in India, eastern and northern China, the

241 central plains, and southwestern Indonesia, with sporadic densely populated areas in
242 other countries (Supplementary Fig. 11a). It is also evident that a significant portion
243 of the population resides near bodies of water. Generally, populations are concentrated
244 in coastal, lake, and riverside locations. Notable examples include the African shore
245 of the Nile River, particularly in the northern region near the Mediterranean Sea, and
246 the population distribution around the Great Lakes in the United States. During the
247 research period, there was a notable decrease in population density in regions such as
248 eastern Brazil and northern Europe, and a significant increase in densely populated
249 areas such as India (Supplementary Fig. 11b).

250 human footprint values are low in alpine and desert regions, such as the Sahara
251 and areas between 60° N and 90° N. However, these values are higher near coastal
252 and inland waters in eastern and southern Asia, western Europe, and eastern North
253 America (Supplementary Fig. 12a). During the research period, the trend of human
254 activity footprints exhibited a significant increase in most parts of the world, with
255 only a notable decrease observed in eastern Russia and central and western Australia
256 (Supplementary Fig. 12b).

257

258 **Construction of Geographically and Temporally Weighted Regression**

259 There is no significant collinearity among the explanatory variables since the
260 GTWR model requires spatial autocorrelation of the explained events. The Moran's I
261 index test confirms that BAA and CBD data exhibit spatial autocorrelation
262 (Supplementary Tab. 2), aligning with the GTWR's requirement for "spatial

263 autocorrelation of explained variables". The GTWR model, a linear model,
264 necessitates that explanatory variable do not have severe collinearity (VIF < 10). The
265 collinearity test results indicate high collinearity between solar radiation, daytime and
266 nighttime wind speeds, and SST. Factors were screened by ranking the contribution
267 rates of GeoDetector: in open water, the BAA driving mechanism excluded solar
268 radiation, nighttime SST, and daytime wind speed; in coastal waters, the BAA driving
269 mechanism excluded nighttime SST and daytime wind speed; in open water, the CBD
270 driving mechanism excluded daytime SST, nighttime SST, and daytime wind speed;
271 in coastal waters, the CBD driving mechanism excluded nighttime SST and nighttime
272 wind speed. A multicollinearity test was performed on the screened variables, and the
273 results are shown in Supplementary Tab. 3 to Supplementary Tab. 6.

274 The results indicate that the BAA-driven model for land coastal waters
275 comprises daytime SST, nighttime wind speed, pH, rainfall, solar radiation, salinity,
276 population, human footprint, and land use. For open waters, the BAA-driven model
277 includes daytime SST, nighttime wind speed, pH, rainfall, and salinity. The
278 CBD-driven model for land coastal waters consists of daytime SST, daytime wind
279 speed, pH, rainfall, solar radiation, salinity, population, human footprint, and land use.
280 The CBD-driven model for open waters includes rainfall, salinity, solar radiation, and
281 daytime wind speed. These models adhere to the GTWR requirement that "no strong
282 collinearity exists in explanatory variables." All variables are independent and do not
283 interfere with the model's stability due to mutual influence. Therefore, further
284 modeling analysis is feasible.

285 Supplementary Tab. 7 displays the essential parameter results of the GTWR
286 model used in this investigation. And Extended Data Fig. 9 shows the results of linear
287 fitting of the GTWR Model's predicted and actual values. The R^2 values indicate that
288 the model has a satisfactory fitting effect.

289

290 **Major driving factors: A Spatiotemporal Regression Analysis**

291 Temperature directly influences algal bloom development, but not all species of
292 blooms have consistent temperature-growth responses globally¹. In a majority of
293 open seas, the regression coefficient between daytime SST and the BAA is positive,
294 particularly in the North Atlantic and the Arabian Sea, indicating that rising
295 temperatures have triggered blooms in these regions. Previous research has shown
296 that the affected area of algal blooms increases with rising temperatures¹. However, in
297 coastal waters, the regression coefficient between daytime SST and BAA is negative
298 (Extended Data Fig. 4a and Extended Data Fig. 4b), suggesting that higher sea surface
299 temperatures result in smaller bloom sizes. Blooms typically appear after a certain
300 temperature threshold is reached. When water temperatures rise beyond this threshold,
301 the division rate of phytoplankton cells slows down or halts, eventually leading to the
302 bloom's decline². SST changes also have indirect effects on blooms, for instance,
303 rising SST can increase ocean stratification, promoting the growth of *dinoflagellates*,
304 which can migrate vertically to access deeper nutrients³. At high latitudes,
305 stratification can isolate phytoplankton from nutrient-rich, colder upper waters⁴,
306 favoring *diatom* development over *dinoflagellates*⁵. Determining the precise net effect

307 of SST on marine phytoplankton blooms is challenging due to the interaction between
308 SST and other environmental factors, which often shows a significant two-factor
309 amplification (Fig. 3b).

310 In general, wind speed has a beneficial impact on BAA (Extended Data Fig. 4c
311 and Extended Data Fig. 4d), particularly in the North Atlantic and Arctic Ocean. This
312 finding contrasts with the conventional wisdom that wind speed and algal blooms are
313 inversely related⁶. However, the effect of wind on phytoplankton blooms largely
314 depends on the wind's direction and the specific region it affects. Abnormally intense
315 algal blooms can also occur during windy seasons⁷. For instance, westerly winds in
316 the Southern Ocean carry aerosols laden with nutrients from Australian wildfires
317 across the ocean, which are then deposited into the water by precipitation, leading to
318 massive algal blooms⁷. Moreover, the annual average wind speed across most of the
319 world's oceans is less than 8 m*s^{-1} , except in the westerly belt (Supplementary Fig. 4a
320 and Supplementary Fig. 4b). This suggests that lower wind speeds do not submerge
321 algae, causing the blooms to "disappear". Instead, they actively contribute to the
322 migration and spread of the blooms. Consequently, there are regional variations in the
323 effect of wind speed on marine phytoplankton blooms.

324 The impact of solar radiation on algal bloom dynamics varies significantly across
325 different ocean regions. In coastal areas of North and South America, the North
326 Pacific coast, and the Eastern Atlantic coast, solar radiation has a substantial positive
327 effect on the BAA (Extended Data Fig. 4g and Extended Data Fig. 4h) and the CBD
328 (Extended Data Fig. 5c and Extended Data Fig. 5d). Conversely, in open waters, solar

329 radiation exhibits a slight negative effect on the cumulative number of algal bloom
330 days (Extended Data Fig. 5c and Extended Data Fig. 5d). This phenomenon may be
331 attributed to differences in water turbidity. Coastal areas often have turbid waters due
332 to sediments such as silt carried by rivers, whereas open waters, far from land and
333 human activities, are typically very clear. Water turbidity directly affects the
334 penetration of solar radiation, thereby influencing light utilization by phytoplankton.
335 Consequently, the impact of solar radiation differs markedly between coastal zones
336 and open waters. Over time, the regression coefficients from 2003 to 2020 have
337 remained relatively stable (Extended Data Fig. 5c and Extended Data Fig. 5d).

338 In 2003, salinity's influence on BAA was primarily observed in the coastal zones
339 of Brazil and Argentina, the southern Atlantic Ocean, and the eastern sea area of
340 Australia. Notably, the regression coefficient between BAA and salinity showed a
341 positive effect only in New Zealand's coastal waters (Extended Data Fig. 4e). By 2020,
342 salinity impacts on BAA had increased along the eastern coast of South America and
343 near the equator in the western Pacific Ocean (Extended Data Fig. 4f). The effect of
344 salinity on CBD is also more pronounced in coastal zones, particularly along the
345 eastern coast of South America and the northeastern coast of Asia, exhibiting negative
346 and positive effects, respectively (Extended Data Fig. 5a and Extended Data Fig. 5b).
347 Over time, significant changes were observed in the North Pacific Ocean: salinity had
348 a weak positive effect on bloom CBD in 2003 (Extended Data Fig. 5a) but a negative
349 effect in 2020 (Extended Data Fig. 5b). Overall, salinity's negative impact on bloom
350 dynamics is more significant in coastal zones, suggesting that intensified water

351 circulation due to climate change⁸ and large groundwater discharges⁹ reduce coastal
352 seawater salinity while enriching coastal ecosystems with nutrients, leading to
353 increased blooms. For blooms more adaptive to high salinity environments (e.g.,
354 *Trichodesmium*¹⁰), the effect of salinity on bloom dynamics shows a positive impact in
355 waters with high net evaporation and salinity.

356 The coastal zone of South Africa and the area near the North Pacific Ocean are
357 regions where precipitation significantly impacts the CBD. These areas generally
358 exhibit negative effects, while other sea areas show no readily apparent control effect
359 (with regression coefficients between -2 and 2) (Extended Data Fig. 5e and Extended
360 Data Fig. 5f). This indicates that periods of heavy precipitation limit phytoplankton
361 biomass¹¹. The strength of precipitation largely determines its impact on algal blooms.
362 As precipitation intensity increases, the degree of algal blooms generally decreases.
363 Thus, increased rainfall usually restricts the overall duration of algal blooms.
364 However, in 2020, precipitation positively affected the CBD along the northeast Asian
365 coast. This suggests that increased precipitation may enhance the nutrient load of
366 estuaries, creating favorable hydrological conditions for phytoplankton growth,
367 thereby increasing the likelihood of blooms in continental coastal zones¹².
368

369 ¹ Gobler, C. J. *et al.*, Ocean warming since 1982 has expanded the niche of toxic algal blooms in
370 the North Atlantic and North Pacific oceans. *Proceedings of the National Academy of Sciences* **114**
371 4975-4980 (2017).

372 ² Hunter-Cevera, K. R. *et al.*, Physiological and ecological drivers of early spring blooms of a
373 coastal phytoplankton. *SCIENCE* **354** 326-329 (2016).

374 ³ Beaugrand, G. & Kirby, R. R., How do marine pelagic species respond to climate change?
375 Theories and observations. *ANNU REV MAR SCI* **10** 169-197 (2018).

376 ⁴ Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A., Ocean acidification: the other CO₂
377 problem. *ANNU REV MAR SCI* **1** 169-192 (2009).

378 ⁵ Allen, J. T. *et al.*, Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic.
379 *NATURE* **437** 728-732 (2005).

380 ⁶ Kuttippurath, J., Sunanda, N., Martin, M. V. & Chakraborty, K., Tropical storms trigger
381 phytoplankton blooms in the deserts of north Indian Ocean. *NPJ Climate and Atmospheric Science* **4** 11
382 (2021).

383 ⁷ Tang, W. *et al.*, Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires.
384 *NATURE* **597** 370-375 (2021).

385 ⁸ Shi, X. *et al.*, Salinity decline promotes growth and harmful blooms of a toxic alga by diverting
386 carbon flow. *GLOBAL CHANGE BIOL* **30** e17348 (2024).

387 ⁹ Luijendijk, E., Gleeson, T. & Moosdorf, N., Fresh groundwater discharge insignificant for the
388 world's oceans but important for coastal ecosystems. *NAT COMMUN* **11** 1260 (2020).

389 ¹⁰ Pade, N. *et al.*, Trimethylated homoserine functions as the major compatible solute in the globally
390 significant oceanic cyanobacterium *Trichodesmium*. *Proceedings of the National Academy of Sciences*

391 113 13191-13196 (2016).

392 ¹¹ Ajani, P. A. *et al.*, Response of planktonic microbial assemblages to disturbance in an urban
393 sub-tropical estuary. *WATER RES* **243** 120371 (2023).

394 ¹² Wells, M. L. *et al.*, Harmful algal blooms and climate change: Learning from the past and present
395 to forecast the future. *HARMFUL ALGAE* **49** 68-93 (2015).