Nomenclatures:

Symbols	Abbreviations	Symbols	Abbreviations	
3LNF	Three Line-to-Neutral Fault	Ki_{2c}	The disturbance indicator derived using the cross-correlation estimator (ri_{2c})	
CT	Current Transformer	K_s	The selected setting of the time multiplier	
CTR	Current Transformer Ratio	MCSA	Motor current signature analysis	
СВ	Circuit Breaker	N_c	The number of observations per one cycle for each current wave,	
CMV	Common-Mode Voltage	N_s	The number of observations per the data set size $(N_s \le N_c)$ of the current wave,	
DAC	Data Acquisition Card	PMSMs	Permanent magnet synchronous motors	
DLF	Double Line Fault	PWM	Pulse Width Modulation	
DLNF	Double Line-to-Neutral Fault	ri _{12a}	The strength of the cross-correlation estimator quantified between each two corresponding data sets for the two currents $(i_{Ia}(n))$ and $i_{2a}(n)$ taken for 'A' phase of the AC machine stator windings,	
FFT	Fast Fourier Transform	ri _{12b}	The strength of the cross-correlation estimator quantified between each two corresponding data sets for the two currents $(i_{1b}(n))$ and $i_{2b}(n)$ taken for 'B' phase of the AC machine stator windings,	
$i_{Ia}(n)$, $i_{Ib}(n)$ and $i_{Ic}(n)$:	The values of the three-phase currents at instant 'n' measured at the three-phase supply end of the AC machine stator windings.	ri _{12c}	The strength of the cross-correlation estimator quantified between each two corresponding data sets for the two currents $(i_{lc}(n))$ and $i_{2c}(n)$ taken for 'C' phase of the AC machine stator windings,	
$i_{2a}(n)$, $i_{2b}(n)$ and $i_{2c}(n)$:	The quantities of the three-phase currents at instant 'n' measured at the three-phase neutral end of the AC machine stator windings.	ri_{la}	The strength of the auto-correlation estimator quantified between each two consecutive data sets that are shifted from each other by one cycle for the electrical current $i_{Ia}(n)$ acquired at the supply side end,	
$i_{1a}(n-N_c)$	The observation of the electrical current (i_{la}) at the instant $(n-N_c)$,	ri _{2a}	The strength of the auto-correlation estimator quantified between each two consecutive data sets that are shifted from each other by one cycle for the electrical current $i_{2a}(n)$ acquired at the neutral side end,	
$i_{2a}(n-N_c)$	The observation of the electrical current (i_{2a}) at the instant $(n-N_c)$,	ri_{1b}	The strength of the auto-correlation estimator quantified between each two consecutive data sets that are shifted from each other by one cycle for the electrical current $i_{Ib}(n)$ acquired at the supply side end,	
$i_{1b}(n-N_c)$	The observation of the electrical current (i_{Ib}) at the instant $(n-N_c)$,	ri _{2b}	The strength of the auto-correlation estimator quantified between each two consecutive data sets that are shifted from each other by one cycle for the electrical current $i_{2b}(n)$ acquired at the neutral side end,	
$i_{2b}(n-N_c)$	The observation of the electrical current (i_{2b}) at the instant $(n-N_c)$,	ri_{Ic}	The strength of the auto-correlation estimator quantified between each two consecutive data sets that are shifted from each other by one cycle for the electrical current $i_{lc}(n)$ acquired at the supply side end,	
$i_{1c}(n-N_c)$	The observation of the electrical current	ri _{2c}	The strength of the auto-correlation estimator quantified between each two consecutive data sets that are shifted from	

	(i_{1c}) at the instant $(n-N_c)$,		each other by one cycle for the electrical current $i_{2c}(n)$ acquired at the neutral side end,	
$i_{2c}(n-N_c)$	The observation of the electrical current (i_{2c}) at the instant $(n-N_c)$,	r _{auto}	The auto-correlation coefficient computed for each phase current	
IM	Induction motor,	r_{pu}	The predetermined correlation pickup of the relay (it is $r_{pu} = 1.0 - \Delta s_2$ or $r_{pu} = 1.0 - \Delta s_3$),	
Ki_{12a}	The disturbance indicator derived using the cross-correlation estimator (ri_{12a})	SLNF	Single-Line-to-Neutral Fault	
Ki _{12b}	The disturbance indicator derived using the cross-correlation estimator (ri_{12b})	TTTFs	Turn-to-Turn Faults	
Ki _{12c}	The disturbance indicator derived using the cross-correlation estimator (ri_{12c})	T_i	The estimated tripping time of the relay (in Sec)	
Ki _{1a}	The disturbance indicator derived using the cross-correlation estimator (ri_{la})	Ti_{Ia}	The estimated tripping time (in Sec) of the relay based on the auto-correlation coefficient, ri_{1a}	
Ki_{1b}	The disturbance indicator derived using the cross-correlation estimator (ri_{lb})	Ti_{2a}	The estimated tripping time (in Sec) of the relay based on the auto-correlation coefficient, ri_{2a}	
Ki_{Ic}	The disturbance indicator derived using the cross-correlation estimator (ri_{lc})	Ti_{12a}	The estimated tripping time (in Sec) of the relay based on the cross-correlation coefficient, ri_{12a}	
Ki_{2a}	The disturbance indicator derived using the cross-correlation estimator (ri_{2a})	Δs_1 , Δs_2 and Δs_3	the numerical values of the correlation deviations,	
Ki_{2b}	The disturbance indicator derived using the cross-correlation estimator (ri_{2b})	DRPMSM	Dual-Redundancy Permanent Magnet Synchronous Motor,	
$T_{startup}$	The AC machine startup time	$I_{startup}$	The AC machine startup current,	
T_{backup}	The tripping time of the main protection for the next protection zone (in the case of external fault).	ri_{lxy}	The cross-correlation estimator quantified between each two corresponding data sets for the two currents $(i_{lx}(n))$ and $i_{ly}(n)$ taken at the supply end for the two different phases 'X and Y' of the AC machine stator windings,	
ri _{2xy}	The cross-correlation estimator quantified between each two corresponding data sets for the two currents $(i_{2x}(n))$ and $i_{2y}(n)$ taken at the neutral end for the two different phases ' X and Y ' of the AC machine stator windings,			

Appendix 1: The specifications of the power model elements

The specifications of the power system elements	Numerical value
Three-phase power supply:	
Rated line voltage	380 V
Rated frequency	50 Hz
Three-phase induction motor:	
Rated power	2.9 kW (Star connection)
Rated line voltage	400 V
Nominal frequency	50 Hz
Rated line current	6.3 A
Rated speed	1415 rpm
No. of taps per each winding	
	20 Tapes 5 Turns
No. of turns per each tap	
Turn dimension	0.8 mm ²
Current transformers (CTs):	
Current Transformer turns' Ratio (CTR)	200/5
Frequency	475063 Hz
CT accuracy class	1.0
Rated burden	2.5 VA
CT burden	ΙΩ
Voltage Transformers (VTs)	
Voltage Transformer turns' Ratio (VTR)	220/6/3
VT accuracy class	0.5
Nominal frequency	50/60 Hz
Rated burden	25 VA
Miniature Circuit Breaker (MCB1)	
Phase type	Three phase
Rated current	63 A
Rated voltage	400 V

Appendix 2: Input quantities of the proposed protection algorithm

Quantity designation	Quantity description	Value
$i_{Ia}(n)$, $i_{Ib}(n)$ and $i_{Ic}(n)$	The current measurements of <i>a</i> , <i>b</i> and <i>c</i> phases, respectively, at the instant <i>n</i> taken at the supply end of the AC machine stator windings,	They are measured on-line and updated
$I_{2a}(n), i_{2b}(n) \text{ and } i_{2c}(n)$	The current measurements of a , b and c phases, respectively, at the instant n taken at the neutral end of the AC machine stator windings,	
F _c	The fundamental cycle frequency for electrical signals	50 Hz
T _c	The cycle time interval	20 milliseconds
F_{sp}	The frequency rate of the digital system	2.5 kHz
T_{sp}	The sampling time span	0.4 milliseconds
N_c	The sample size per each one cycle, $N_c = T_c / T_{sp}$ or $N_c = F_{sp} / F_c$	50 samples/cycle
Ns	The sample size per each data set area, $N_s = N_c$	50 samples/data set
T_{ds}	The full display time	10 cycles
Δs_1	The predetermined deviation for the cross-correlation coefficients: $(ri_{12a}, ri_{12b} \text{ and } ri_{12c})$	+0.05
Δs_2	The predetermined deviation for the auto-correlation coefficients: (ri_{la}, ri_{Ib}) and ri_{Ic}	+0.05
Δs ₃	The predetermined deviation for the auto-correlation coefficients: $(ri_{2a}, ri_{2b} \text{ and } ri_{2c})$	+0.05
K _s	The selected setting of the time multiplier used for estimating the tripping time in the case of TTTF,	0.3
r_{pu}	The predetermined correlation pickup of the relay (it is $r_{pu} = 1.0 - \Delta s_2$ or $r_{pu} = 1.0 - \Delta s_3$), and	+0.95