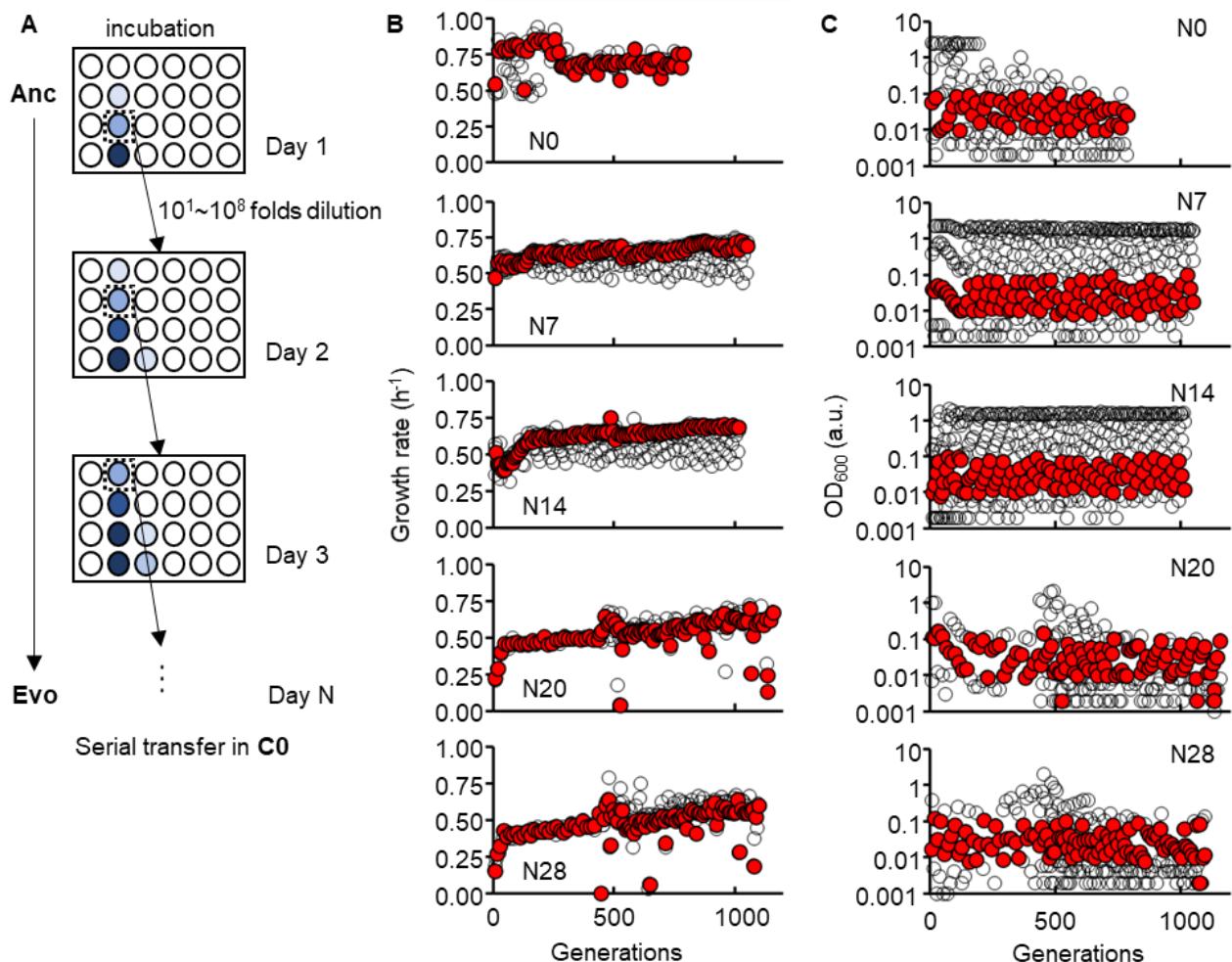


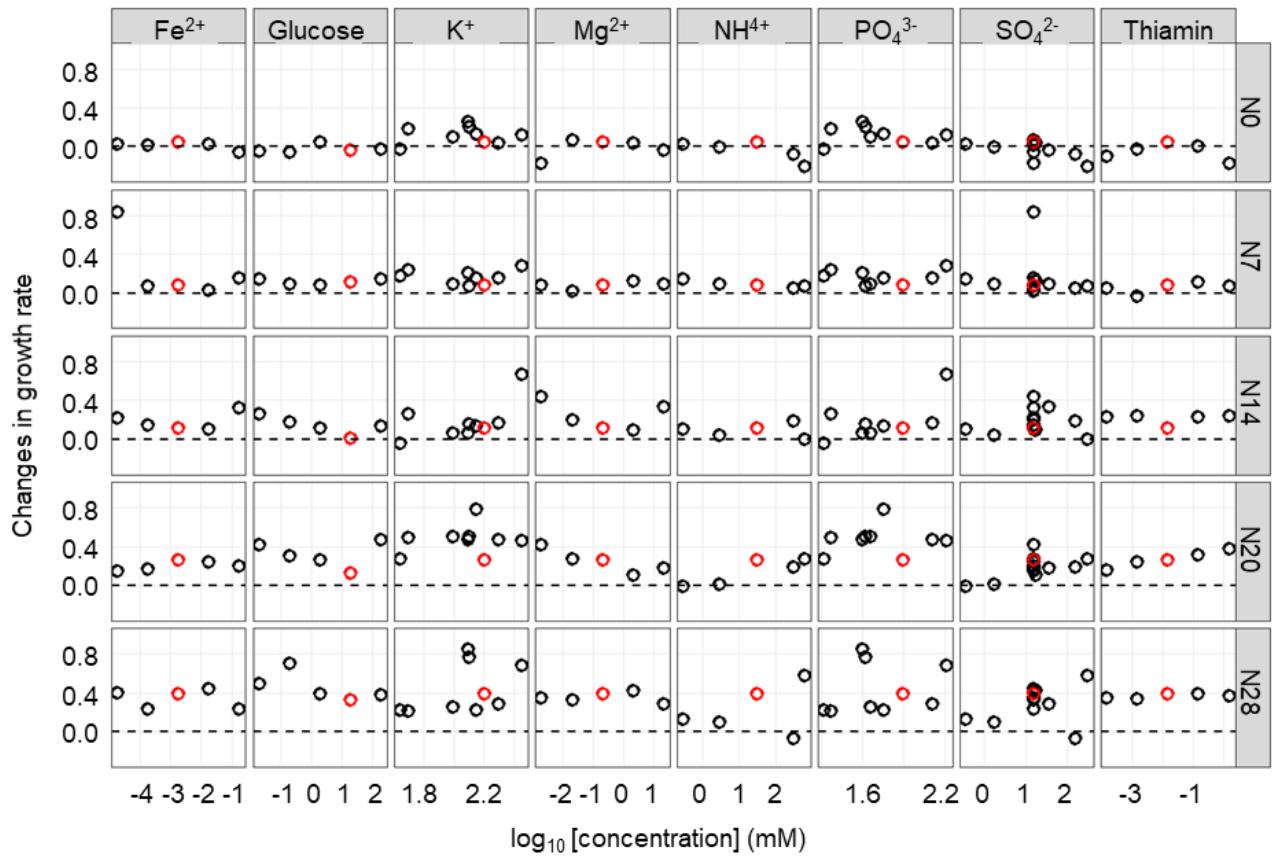
Supplementary information

Local adaptation mediated niche expansion in correlation with genetic richness

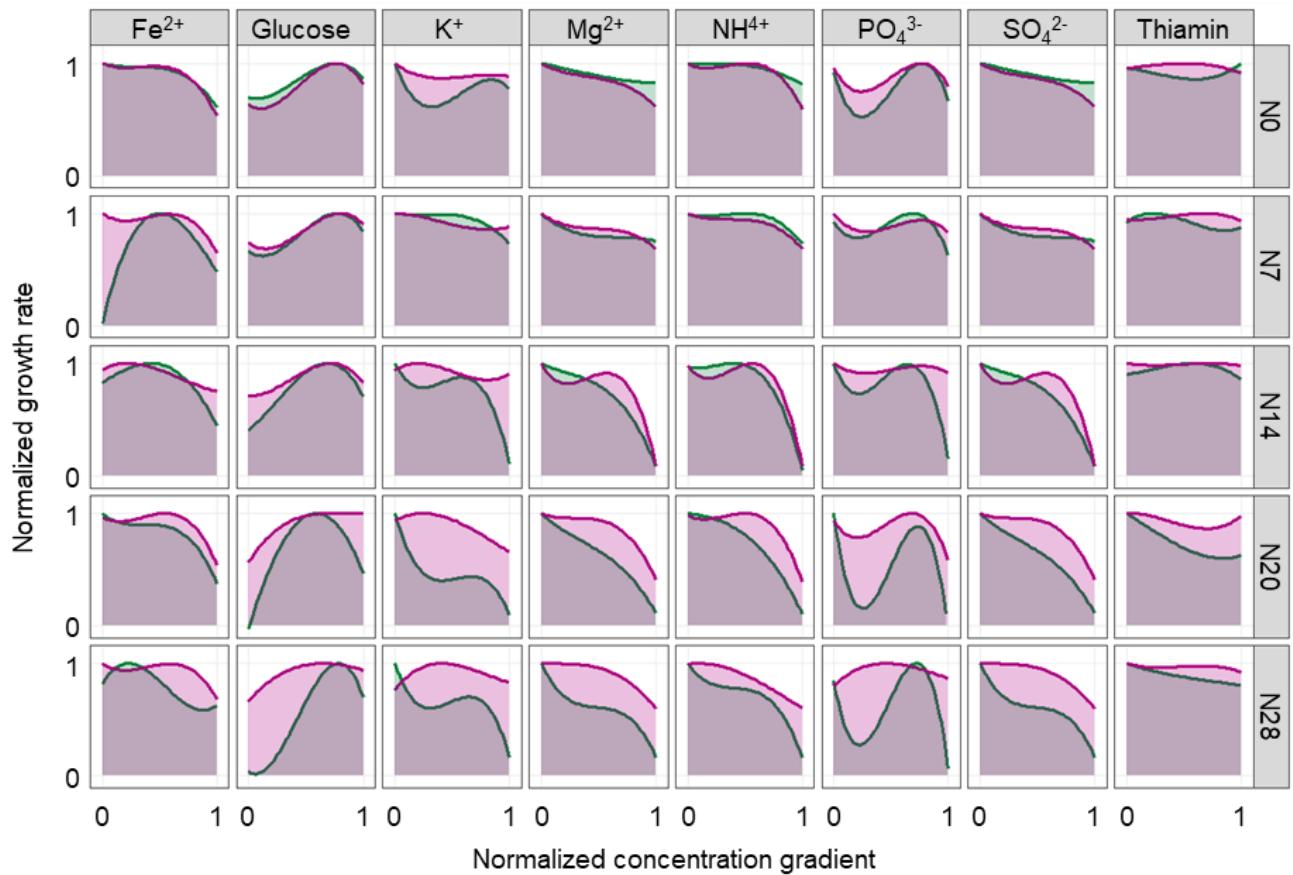
Masaomi Kurokawa¹, Issei Nishimura¹, Bei-Wen Ying^{1,*}

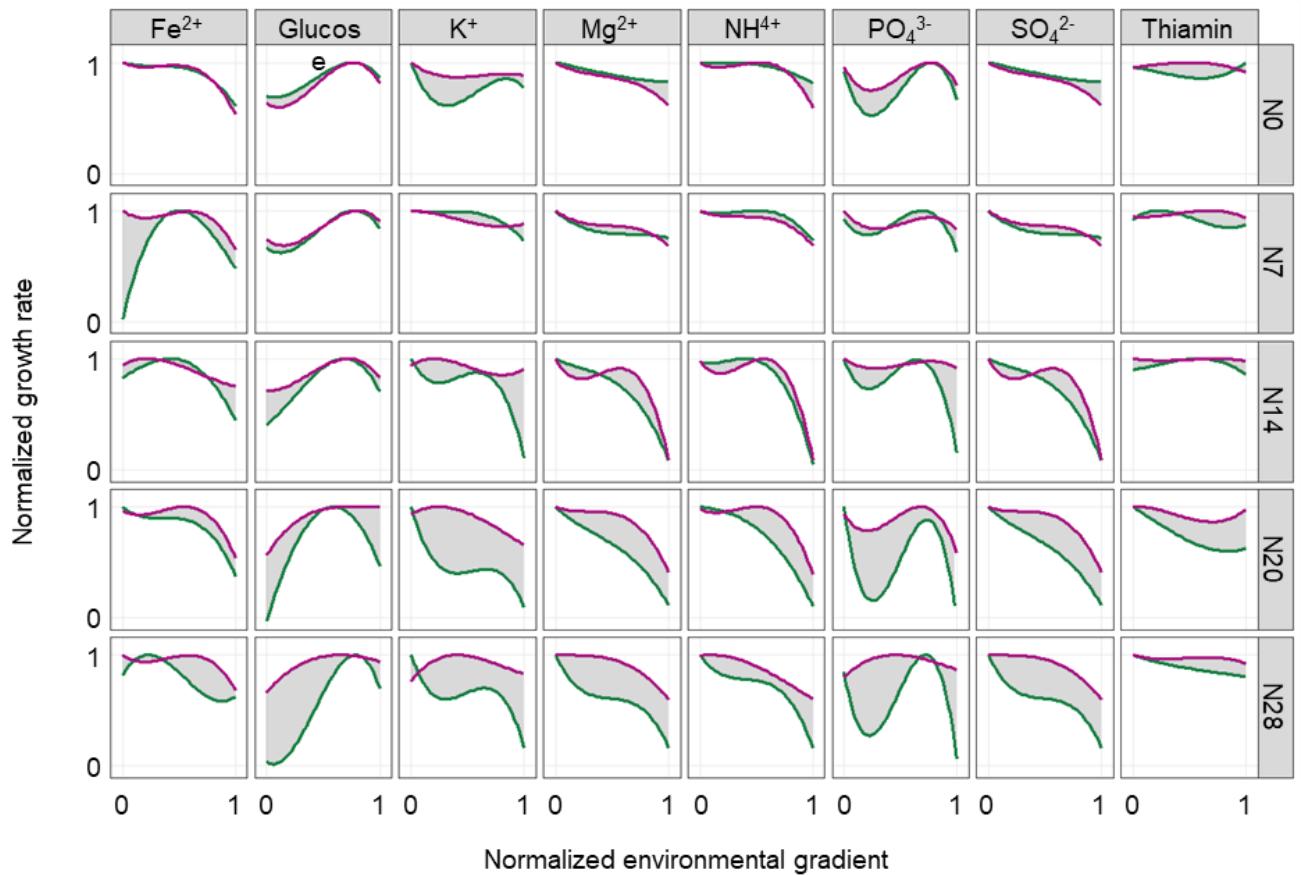

¹School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8572 Ibaraki, Japan

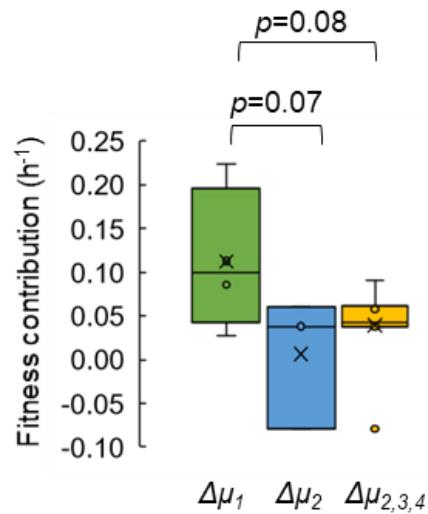
*Corresponding: ying.beiwen.gf@u.tsukuba.ac.jp

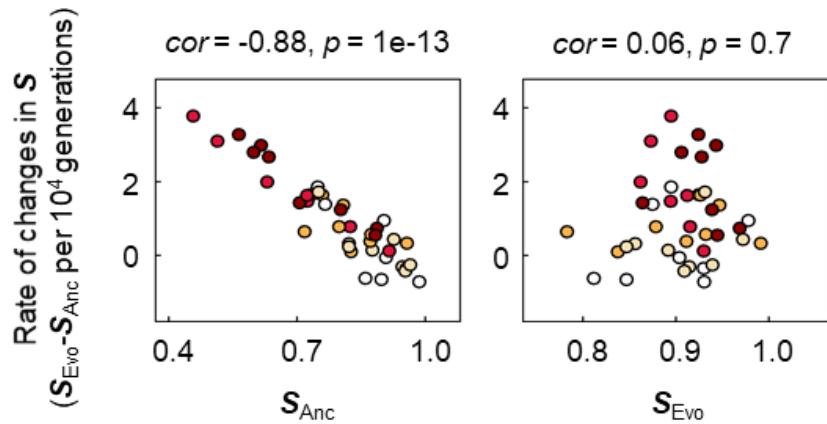

Tel/Fax: +81(0)29-853-6633

Supplementary figures (Figures S1~S7) pp.2~8


Supplementary tables (Table S1~S4) pp.9~12


Figure S1 Experimental evolution. **A.** Schematic drawing of the evolution experiment. **B.** Temporal changes in growth rate during evolution. The genomes are indicated. The grey and red circles indicate the cultures with varied dilution rates and the one out of eight cultures selected for serial transfer, respectively. **C.** Temporal changes in OD₆₀₀ during the evolution. The grey and red circles indicate the eight cultures and the one selected for serial transfer, respectively. The OD₆₀₀ of the selected cultures roughly ranged from 0.01 to 0.1.


Figure S2 Changes in growth rate across the concentration gradient of individual chemical components. The changes in fitness, which were acquired by subtracting the mean growth rate of Anc from that of Evo, are shown. The changes in C0 and C1~C28 are indicated in red and black circles, respectively. The concentrations of the chemical components are shown on a logarithmic scale. The wild-type and reduced genomes are indicated as N0 and N7~N28, respectively.


Figure S3 Niche spaces of Ancs and Evos. The fitness curves are normalized, in which both the concentration gradient and the growth rates are rescaled within one unit. The transparent green and purple areas indicate the niche spaces of Ancs and Evos, respectively.

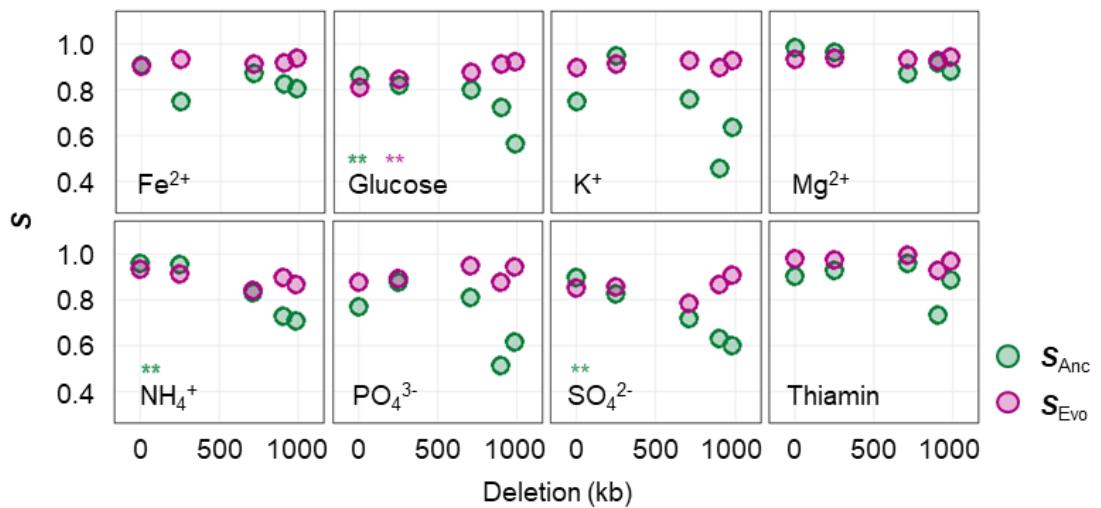

Figure S4 Changes in niche spaces between Ancs and Evos. The green and purple lines indicate the fitness curves of Ancs and Evos, respectively. The shadowed areas represent the changes in niche spaces between Ancs and Evos.

Figure S5 Boxplot of the changes in growth rates caused by mutation accumulation. Green, blue, and yellow represent the changes in growth rates caused by the first mutations, the second mutations, and the second, third and fourth mutations in the four genomes (N7, N14, N20 and N28), respectively. The statistical significance is indicated.

Figure S6 Relationships of S_{Anc} and S_{Evo} to the rate of changes in niche spaces. The rates of changes in the niche space per generation are plotted against S_{Anc} and S_{Evo} in the left and right panels, respectively. The colour variation from white to dark red represents the five different genomes of N0~N28. The Spearman rank correlation coefficients and statistical significance are indicated.

Figure S7 Relationships between niche space and genome reduction. The niche spaces of the five genomes are plotted against the lengths of genomic deletion with respect to the eight chemical components (niches). Green and purple indicate Ancs and Evos, respectively. The chemical components (niches) and the statistical significance of the Spearman rank correlation are indicated. Asterisks represent statistical significance (*, $p < 0.05$; **, $p < 0.01$).

Genomes	Strains	Genome size (bp)	Deletion (bp)	Deleted ratio (%)
N0	W3110S	4,646,332	0	0
N7	07stepAW	4,395,545	250,787	5.4
N14	14stepA γ W	3,936,788	709,544	15.3
N20	20stepCW	3,747,380	898,952	19.3
N28	MGF-01W	3,663,949	982,383	21.1

Table S1 Genomes used in the present study. Genome IDs are the labels of the wild-type (N0) and the reduced (N7, N14, N20, N28) genomes used in the study. Strain names are the names of the *E. coli* strains carrying the corresponding genomes, which were deposited in the National BioResource Project (NBRP). Genome size, deletion and deletion ratio indicate the full length of the genome, the deleted length and its ratio compared to the wild-type genome, respectively.

Environmental gradient	KH ₂ PO ₄ (mM)	K ₂ HPO ₄ (mM)	FeSO ₄ (mM)	Thiamine (mM)	(NH ₄) ₂ SO ₄ (mM)	MgSO ₄ (mM)	Glucose (mM)
C0	38.2	61.6	0.0018	0.0148	15.3	0.203	20
C1	38.2	61.6	0.000018	0.0148	15.3	0.203	20
C2	38.2	61.6	0.00018	0.0148	15.3	0.203	20
C3	38.2	61.6	0.018	0.0148	15.3	0.203	20
C4	38.2	61.6	0.18	0.0148	15.3	0.203	20
C5	38.2	61.6	0.0018	0.000148	15.3	0.203	20
C6	38.2	61.6	0.0018	0.00148	15.3	0.203	20
C7	38.2	61.6	0.0018	0.148	15.3	0.203	20
C8	38.2	61.6	0.0018	1.48	15.3	0.203	20
C9	38.2	61.6	0.0018	0.0148	15.3	0.00203	20
C10	38.2	61.6	0.0018	0.0148	15.3	0.0203	20
C11	38.2	61.6	0.0018	0.0148	15.3	2.03	20
C12	38.2	61.6	0.0018	0.0148	15.3	20.3	20
C13	38.2	61.6	0.0018	0.0148	15.3	0.203	0.02
C14	38.2	61.6	0.0018	0.0148	15.3	0.203	0.2
C15	38.2	61.6	0.0018	0.0148	15.3	0.203	2
C16	38.2	61.6	0.0018	0.0148	15.3	0.203	200
C17	38.2	61.6	0.0018	0.0148	0.153	0.203	20
C18	38.2	61.6	0.0018	0.0148	1.53	0.203	20
C19	38.2	61.6	0.0018	0.0148	153	0.203	20
C20	38.2	61.6	0.0018	0.0148	306	0.203	20
C21	1.91	61.6	0.0018	0.0148	15.3	0.203	20
C22	3.82	61.6	0.0018	0.0148	15.3	0.203	20
C23	19.1	61.6	0.0018	0.0148	15.3	0.203	20
C24	76.4	61.6	0.0018	0.0148	15.3	0.203	20
C25	38.2	3.08	0.0018	0.0148	15.3	0.203	20
C26	38.2	6.16	0.0018	0.0148	15.3	0.203	20
C27	38.2	30.8	0.0018	0.0148	15.3	0.203	20
C28	38.2	123.2	0.0018	0.0148	15.3	0.203	20

Table S2 Compositions of the 29 medium combinations. The chemical compounds used to generate the medium combinations (C) are indicated. The final concentrations of the seven compounds in the media are shown.

Strain	Changes in DNA	Changes in AA	Gene name	Description
N7	G→A	intergenic (+267/-28)	ycfH / ptsG	predicted metallo-dependent hydrolase / fused glucose-specific PTS enzyme IIBC components
	G→A	intergenic (-59/-156)	fliE / fliF	flagellar basal-body component / flagellar basal-body MS-ring and collar protein
	C→A	G139W (GGG→TGG)	trkH	potassium transporter
	Δ1 bp	coding (417/993 nt)	rbsR	DNA-binding transcriptional repressor
N14	G→A	R220H (CGT→CAT)	secF	SecYEG protein translocase auxillary subunit
	A→C	L18F (TTA→TTC)	malX	fused maltose and glucose-specific PTS enzyme IIBC components
	C→T	G359D (GGT→GAT)	cyaA	adenylate cyclase
	Δ2 bp	coding (708/2022 nt)	rep	DNA helicase and single-stranded DNA-dependent ATPase
N20	C→T	G235S (GGT→AGT)	sapD	predicted antimicrobial peptide transporter subunit
	T→G	H40Q (CAT→CAG)	ynbC	predicted hydrolase
	G→A	N14N (AAC→AAT)	yggR	predicted transporter
N28	Δ1 bp	coding (828/876 nt)	cysW	sulfate/thiosulfate transporter subunit
	C→T	G255D (GGC→GAC)	kgtP	alpha-ketoglutarate transporter
	C→A	D570E (GAC→GAA)	rpoD	RNA polymerase, sigma 70 (sigma D) factor

Table S3 Gene mutations. The genome mutations fixed in the evolved populations of the reduced genomes (N7, N14, N20 and N28) are summarized. No mutation was detected in the evolved N0. Nt and Aa represent nucleotides and amino acids, respectively. The slash indicates the noncoding region between the two genes indicated. The description indicates the function of the gene product.

ID	Target	Sequence (5' to 3')
ycfH_ptsG_F	<i>ycfH</i> / <i>ptsG</i>	GTCGAACCTCTCCAATGATCTG
ycfH_ptsG_R		GTTATTGGTAAAGCCGAGGGC
fliEF_F	<i>fliE</i> / <i>fliF</i>	CTAATGGTCGGTTGCGGCAG
fliEF_R		GGAACCGGCAACAATCAATG
trkH_F	<i>trkH</i>	GGCATCCATTCCGGCAAACC
trkH_R		GATAGTGGTGCTGTTCTGGAC
rbsR_F	<i>rbsR</i>	CACCACTGACTTCATAGCCATC
rbsR_R		CACTGCCAGTACCAATCCTTC
secF_F	<i>secF</i>	CGCTGCTGTCTATCCTCGTG
secF_R		GGAAACACCGATAAGCATGGTC
malX_F	<i>malX</i>	CCATGCAGATGACCTACTCC
malX_R		CGATACAGAACATGACAGGCAG
cyaA_F	<i>cyaA</i>	CTTCAAACGCGGCATACAGC
cyaA_R		GGAGCGTGTACTGAATACCTG
rep_F	<i>rep</i>	CGTGCAGGTTATTGGCGATC
rep_R		GTATGATGCACACCTGAAAGC
sapD_F	<i>sapD</i>	CCAGACGACAACCAATCGTAAC
sapD_R		CTGCTGATTGCTGACGAACCG
ynbC_F	<i>ynbC</i>	CAGGCATTATTAGCGGGTTTG
ynbC_R		CAAGAGATGGCTATAACCACG
yggR_F	<i>yggR</i>	GGCAGTGCAGAGGTAAACAGC
yggR_R		GTTACGCCAGTCCTGAAAG
cysW_F	<i>cysW</i>	GTGCCGTGGAAGCGAATATG
cysW_R		GTCGCTGCCGTTACAGATTG
kgtP_F	<i>kgtP</i>	GCCAGCGAACCGAAACATAAC
kgtP_R		GTTGTGGCGTTGTGGTTACG
rpoD_F	<i>rpoD</i>	GGAAGACAAGATCCGCAAAGTG
rpoD_R		CTGGAGAAACTGGTTGAAGCG

Table S4 Primers for Sanger sequencing. The sequences of the primers used to examine the population heterogeneity of the mutations determined by genome resequencing.