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1 Extended Methods

1.1 Neural Bellman-Ford Network (NBFNet)

Our newly developed BioPathNet is a path-representation learning-based method for graph comple-50

tion built upon the NBFNet framework. Below, we describe the foundations of NBFNet to provide an51

understanding of how BioPathNet operates.52

Unlike node embedding methods or node GNN encoders that infer links between entities in a KG53

by learning node representations in an embedding space, NBFNet is a general graph neural network54

framework that performs link prediction by learning representations for each path from the query entity55

to potential tail entities. This is done by considering the relations along each possible path between56

the query entity and the potential tail entity. Given a KG, NBFNet learns to predict the tail node for57

a query (u, q, ?). It does this by learning a node pair representation hq(u, v) for nodes u and v, which58

captures all the possible paths between u and v conditioned on q. In NBFNet, the path formulation is59

represented by a generalized sum of path representations between u and v, denoted by hq(P ), with a60

commutative summation operator
⊕

:61

hq(u, v) = hq(P1)⊕ hq(P2)⊕ ......⊕ hq(PM ) (1)

where M denotes the possible number of paths between u and v. Each path representation hq(P ) is62

defined as the generalized product of the edges (or edges representations) belonging to that path, with63

the multiplication operator
⊗

.64

hq(P ) = wq(e1)⊗ wq(e1)⊗ .......⊗ wq(ep) (2)

where p is number of edges e1, ..., ep belonging to path P . In compact form, the path formulation65

can be written as:66

hq(u, v) =
⊕

p∈Pu,v

⊗
e∈P

wq(e) (3)

This, in practice, means that we compute the representation between nodes u and v under query67

relation q by considering every path between the source node u and the target node v. Each path is68

represented by the product of edge representations wq along that path, and we sum these products to69

obtain the final representation.70

Two key factors contribute to NBFNet’s scalability for large graphs and its effectiveness in learning71

tasks: the use of the generalized Bellman-Ford dynamic programming framework for path representation72

and the abstraction of this process into a neural formulation.73

Generalized Bellmann-Ford path representation The approach above, which predicts a link74

between a head and tail node by enumerating all possible paths and summing their contributions, is75

not scalable. As the network grows, the number of possible paths between the head and tail nodes76

increases exponentially, making this method impractical for larger networks. To achieve a scalable path77

formulation, NBFNet utilizes the Bellman-Ford dynamic programming algorithm, which efficiently finds78

the shortest path from a single source node to all other nodes in a weighted graph through a recursive79

process [1]:80

d[v] = min(d[u] + w(u, v)) (4)

By extending this equation to generalize the addition operator to any summation operator
⊕

and the81

minimum operator to any multiplication operator
⊗

, we derive the generalized Bellman-Ford algorithm82

[2]. This generalization transforms the original Bellman-Ford algorithm for shortest path calculation83

into a versatile framework that simultaneously computes pair representations hq(u, v) for a given entity84

u, query relation q, and all vertices v in a graph. This approach reduces the computational cost to poly-85

nomial time relative to the number of nodes and edges in the graph. The formulation of the generalized86

Bellman-Ford algorithm is as follows:87
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h(0)
q (u, v)← 1q(u = v) (5)

h(t)
q (u, v)← (

⊕
(x,v)∈E

h(t−1)
q (u, x)⊗ wq(x, r, v))⊕ h(0)

q (u, v) (6)

It first initializes the boundary condition on the source node (equation 5), representing the shortest88

path between u and v at the start. If the head and tail nodes coincide (u = v), the boundary condition is89

set to the generalized 1, which corresponds to 0 in the shortest path context (i.e., the shortest distance90

between a node and itself is zero) and to ∞ in the case u ̸= v. Equation 6 describes the Bellman-Ford91

iteration, updating the shortest path distance between u and v. In each iteration, the representation92

from the previous layer (t− 1) is multiplied by the transition edge representation wq to obtain the new93

representation hq(u, v). Here, Wq is a function of the relation between u and v. The boundary condition94

is added at each step to ensure accurate path formulation. The algorithm starts by propagating the95

boundary condition from the source node to its neighbors. Thanks to the distributive properties of the96

multiplication operator, all prefixes sharing this propagation are computed simultaneously. This iterative97

process continues, assessing potential target nodes, until all paths from the source node to the tail node98

are covered after t iterations, where t represents the path length.99

Neural formulation The generalized summation and multiplication operators are handcrafted. By100

abstracting the boundary condition in equation 5 to an indicator function, the multiplication operator101

in equation 6 to a message passing formulation, and the summation operator to a general aggregation102

function, NBFNet extends the generalized path formulation of the Bellman-Ford algorithm into a neural103

network framework. In this formulation, neural network functions parametrize the boundary condition,104

multiplication, and summation functions, allowing a generalized GNN framework to learn these three105

neural functions effectively.106

h(0)
v ← INDICATOR(u, v, q) (7)

h(t)
v ← AGGREGATE({MESSAGE(h(t−1)

x , wq(x, r, v))|(x, r, v) ∈ E(v)} ∪ {h(0)
v }) (8)

For the indicator function, NBFNet learns the embedding of the query relation q and assigns q to107

node v if v equals the source node u. For message passing, NBFNet borrows relational operators from108

KG embeddings, such as translation from TransE, multiplication from DistMult, and rotation from109

RotatE. Aggregation functions are implemented using permutation-invariant functions from GNN liter-110

ature, including sum, mean, max, and principal neighborhood aggregation (PNA). Traditionally, edge111

representations are defined as transition probabilities or lengths. However, since an edge’s contribution112

varies with the query relation, NBFNet parameterizes edge representations as a linear function of the113

query relation [3]. NBFNet can be interpreted as a novel GNN framework for learning pair representa-114

tions. Unlike common GNN frameworks, which compute pair representations as two independent node115

representations hq(u) and hq(u), in NBFNet, each node learns a representation conditioned on the source116

node. The learned pair representation hq(u, v) is then used to solve the link prediction problem, i.e.,117

predicting the tail entity v given the head entity u and relation q. This is formulated as the conditional118

likelihood of the tail entity v as:119

p(v|u, q) = σ(f(hq(u, v))) (9)

where where σ( ) is the sigmoid function and f( ) is a feed-forward neural network.120

1.2 Gene function prediction task

The following hyperparameters of BioPathNet were optimized for: adversarial temperature (corre-121

sponding to the temperature in self-adversarial negative sampling) {0.5, 1.0, 2.0}; negative samples:122

{32, 64}; aggregation function: sum, PNA (Principal Neighborhood Aggregator [4]; number of hid-123

den layers: {4, 5, 6}; hidden layer dimension: {32, 64}; learning rate {5e − 3, 1e − 3, 5e − 4}. Optimal124
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hyperparameter set of BioPathNet {’layers’: 6, ’hidden dim’: 32, ’num negatives’: 32, ’lr’: 0.005, ’adver-125

sarial temperature’: 0.5, ’batch size’: 8, ’epochs’: 8}. Hyperparameters were optimized on the validation126

MRR.127

1.3 Drug repurposing task

For this task, the hyperparameter search for the BioPathNet model considered the parameters dependent128

= {yes, no}, number of hidden layers = {2, 4, 6, 8}, aggregator function = {sum, pna}, adversarial tem-129

perature = {0.5, 1, 2, 5}, and number of negative samples = {32, 64, 128}. The best MRR performance130

in the KG completion validation set determined the final parameter set. The experiments were repeated131

for five different data split seeds in the TxGNN code. The mean ± standard deviation of performance132

metrics were reported.133

1.4 Synthetic lethality gene pair prediction task

We train BioPathNet for 15 epochs and for five random seeds and tuned hyperparameters such as the134

number of hidden layers in {4, 5}, the number of sampled negatives per positive example in {32, 64}, and135

the adversarial temperature in {0.5, 1.0, 2.0, 5.0}. Optimal hyperparameter set of BioPathNet {’layers’:136

5, ’hidden dim’: 32, ’num negatives’: 64, ’lr’: 0.005, ’adversarial temperature’: 0.5, ’batch size’: 64,137

’epochs’: 15}.138

1.5 LncRNA-target prediction task

The KG constructed by LncTarD 2.0 consists mainly of a densely connected subgraph of 2,646 genes139

and 6,084 involved regulations, surrounded by many isolated subgraphs containing only two or three140

genes. Only the largest connected component was kept and split into train, validation, and test set141

using the python package PyKeen [5], at a ratio of 0.8, 0.1, and 0.1, while ensuring that all nodes were142

included in the training set with at least one triplet. The optimal hyperparameter set of BioPathNet in143

this setting was: {’layers’: 6, ’hidden dim’: 32, ’num negatives’: 32, ’lr’: 0.005, ’adversarial temperature’:144

0.5, ’batch size’: 64, ’epochs’: 10}.145

1.6 Baseline methods used for comparison

TransE The key idea of TransE is to model relationships as translations in the embedding space.146

For each triplet (u, r, v), the relationship r is modeled as a translation vector such that the embedding147

of the tail entity v should be close to the embedding of the head entity u plus the embedding of the148

relationship r: u + r ≈ v. The plausibility of a triplet (u, r, v) is determined by a scoring function149

based on the distance between u + r and v: f(u, r, v) = ∥u + r − v∥2. TransE is trained to minimize150

the distance for correct triplets and maximize the distance for incorrect triplets using a margin-based151

ranking loss [6]. The following hyperparameters were used: {’embedding dim’: 512, ’num negatives’:152

512, ’lr’: 0.0005, ’epochs’: 100}. The code for training is an efficient re-implemtnation of the original153

algorithm and can be found at the following link: https://github.com/DeepGraphLearning/torchdrug154

(inside /torchdrug/models/embedding.py)155

RotatE RotatE is a KGE model that represents entities as complex-valued vectors and relation-156

ships as rotations in the complex plane. This allows the model to capture various relational patterns,157

including symmetry, antisymmetry, inversion, and composition. Each entity u and v (head and tail)158

is represented as a complex vector, and each relationship r is represented as a complex vector with a159

modulus of 1, representing a rotation in the complex plane. For a triplet (u, r, v), the relationship r160

rotated u to match v, v ≈ u ◦ v, where ◦ denotes the element-wise (Hadamard) product. The plausi-161

bility of a triplet (u, r, v) is determined by a scoring function based on the distance between u and v:162

f(u, r, v) = ∥u ◦ r − v∥2. RotatE is trained to minimize the distance for correct triplets and maximize163

the distance for incorrect triplets using a margin-based ranking loss [7]. The following hyperparameters164
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were used: {’embedding dim’: 512, ’num negatives’: 512, ’lr’: 0.0005, ’epochs’: 100}. The code for train-165

ing is an efficient re-implemtnation of the original algorithm and can be found at the following link:166

https://github.com/DeepGraphLearning/torchdrug (inside /torchdrug/models/embedding.py)167

DistMult DistMult (Multiplicative Distance) is a knowledge graph embedding model that represents168

entities and relationships as vectors and captures interactions through a multiplicative mechanism. Each169

entity u and v (head and tail) and each relationship r is represented as a vector in the embedding space.170

For a triplet (u, r, v), the relationship r interacts multiplicatively with the head entity u to predict171

the tail entity v: v ≈ u ◦ r, where ◦ denotes the element-wise (Hadamard) product. The plausibility172

of a triplet (u, r, v) is determined by a scoring function that measures the similarity between u ◦ r173

and v: f(u, r, v) = −∥u ◦ r − v∥22. DistMult is trained to maximize the score for correct triplets and174

minimize the score for incorrect triplets using, similarly to TransE, a margin-based ranking loss [8].175

The following hyperparameters were used: {’embedding dim’: 512, ’num negatives’: 512, ’lr’: 0.001, ’L3176

regularization’ = 1e-4, ’epochs’: 100}. The code for training is an efficient re-implemtnation of the original177

algorithm and can be found at the following link: https://github.com/DeepGraphLearning/torchdrug178

(inside /torchdrug/models/embedding.py)179

Relational Graph Convolutional Networks (R-GCNs) R-GCN is a variant of the Graph Convo-180

lutional Network (GCN) specifically designed to handle graphs with multiple types of relations. R-GCN181

extends GCN to incorporate relational data, making it suitable for KGs. R-GCN employs a neural182

encoder to learn the representation for each node, while the decoder retains the scoring functions from the183

KGE models. Initially, the embeddings for each node are initialized [9]. During each layer of the GNN’s184

message passing, messages are passed, aggregated, and used to update the node’s embedding. The mes-185

sages are obtained by applying a W
(l)
r,M matrix on the embeddings of the previous layer h

(l−1)
i separately186

for each relation r, allowing R-GCN to handle graphs with multiple types of edges by learning separate187

weight matrices for each relation type: m
(l)
r,i = W

(l)
r,Mh

(l−1)
i . Next, the incoming messages of each node vi188

from the neighboring nodes Nr(i) are aggregated by the taking the average: m̃
(l)
r,i =

1
|Nr(l)|

∑
j∈Nr(i)

m
(l)
r,j .189

Finally, the node’s embedding from the previous layer is updated by h
(l)
i = h

(l−1)
i +

∑
r∈TR

m̃
(l)
r,i. This190

process ensures that each node’s embedding is updated with information from its neighbors, consider-191

ing the type of relation connecting them. The final embeddings of the nodes are derived after L layers192

of propagation. The hyperparameters for R-GCN were optimized using grid search on the parameters193

num negatives, lr and hidden dim. Two separate searches were conducted: one without the BRG, yield-194

ing the best set as {’num negatives’: 64, ’lr’: 10−4, ’layers’: 3, ’hidden dim’ = 256}, and another with195

the BRG, resulting in the best set as {’num negatives’: 32, ’lr’: 10−5, ’layers’: 5, ’hidden dim’ = 128}.196

The code for training is an efficient re-implemtnation of the original algorithm and can be found at the197

following link: https://github.com/DeepGraphLearning/torchdrug (inside /torchdrug/models/gcn.py)198

Transductive Graph Neural Network (TxGNN) TxGNN is a graph neural network-based model199

designed to predict drug-disease relationships in zero-shot scenarios where there is minimal prior infor-200

mation or treatment history. Utilizing PrimeKG, a comprehensive biomedical knowledge graph, TxGNN201

employs R-GCNs to learn embeddings of drugs and diseases, capturing complex interactions by mapping202

them into a shared latent space. This allows TxGNN to predict drug-disease interactions, focusing on203

indications and contraindications, even for diseases with limited molecular characterization. It achieves204

this through the use of disease signature vectors, adaptive embedding aggregation, and iterative opti-205

mization of non-linear transformations. TxGNN improves drug-disease prediction by splitting training206

into pre-training and fine-tuning phases. In pre-training, all triplets are used, while fine-tuning focuses207

on drug-disease relations like indication, contraindications, and off-label use. This is in contrast208

to BioPathNet, where we do not divide our approach into these two phases or perform pre-training.209

Instead, we use all triplets containing non-drug-disease relations in the message passing BRG with-210

out considering them for supervision. TxGNN was trained using the hyperparameters provided in211

the original publication: pretraining: {’lr’: 1e − 3, ’batch size’: 1024, ’pretrain epochs’: 2}; finetun-212

ing: {’lr’: 5e − 4, ’hidden dim’: 512, ’batch size’: 1024, ’pretrain epochs’: 500}. The hyperparameters213
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used in fine-tuning were the same for all disease splits. The code used for trinaing can be found here:214

https://github.com/mims-harvard/TxGNN215

Knowledge Representation for Synthetic Lethality (KR4SL) KR4SL is a path-representation216

learning GNN-based method for the prediction of SL gene pairs. The framework begins with the con-217

struction of a heterogeneous KG that integrates genes, gene interactions, pathways, GO terms, and an218

SL graph augmented with reverse and identity edges. This graph is processed through an encoder that219

identifies relevant relational paths for each primary gene, combining structural graph information with220

textual semantics of entities. KR4SL utilizes a gated recurrent unit (GRU) to enhance the sequential221

semantics of the relational paths. As messages propagate through the network, they are enriched by fus-222

ing structural and textual information. An attentive aggregation mechanism evaluates the importance223

of different edges, focusing on the most essential paths for model explanations. Finally, a scoring decoder224

processes the semantic representations of candidate SL partners, generating scores to rank and select225

the top-k candidates as the most probable SL partners. The code used for trinaing can be found here:226

https://github.com/JieZheng-ShanghaiTech/KR4SL.227

We use the code from GitHub to train KR4SL in the transductive setting. We trained KR4SL on228

the original (unthresholded) data using the same hyperparameters specified by the authors on GitHub,229

’weight decay rate’: 0.000089, ’lr’: 0.0011, ’batch size’: 50, ’epochs’: 15, ’hidden dim’: 48, ’drop out’:230

0}. The experiments were run five times with different seeds. The same set of parameters was used for231

thresholded data.232

1.7 Model Evaluation

Models were evaluated by ranking positive triplets ⟨u, r, v⟩ of the test set against all negative triplets233

⟨u, r, v′⟩ that are not present in the KG, following the filtered ranking protocol [8]. Equally, for the reverse234

relation direction r−1, positive triplets of the form ⟨v, r, u⟩ are ranked against all negatives ⟨v, r−1, u⟩.235

This approach yields a very stringent evaluation that forces the model to rank positive samples highly.236

The metrics used are mean rank (MR), mean reciprocal rank (MRR), and hits at k (Hits@k). MR is237

calculated by averaging the ranks q of the positive samples among negatives. Lower values are ideal,238

with the best value at 1.239

MR =
1

|Q|
∑
q∈Q

q (10)

MRR is the average of the reciprocal rank 1
q , placing less emphasis on lowly ranked triplets. The240

values range in [0, 1], and the larger the value, the better the model.241

MRR =
1

|Q|
∑
q∈Q

1

q
(11)

Finally, the metric Hits@k provides the probability of correct predictions in the top k predicted242

triplets made by the model. It can also be considered the percentage of positive triplets in the top k243

and is, therefore, equivalent to Recall@k. Like MRR, values range in [0, 1], and the larger the value, the244

better the model.245

H@k =

∣∣{q ∈ Q : q < k}
∣∣∣∣Q∣∣ (12)

The best model is selected based on the highest MRR in a validation set.246

While the conditional probability is modeled in KGC by predicting the tail entity v given the head247

entity u and the relation r, it might be sensible to evaluate under the joint probability of u, v, and248

r. Therefore, to remain consistent with the TxGNN we compared against in the drug prediction task,249

we also used AUPRC, which summarizes the precision and recall at different probability thresholds, as250

well as specificity and F1 score at the probability threshold of 0.5 (equation 13) using code inherent to251

TxGNN. They evaluate the performance per disease node.252
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Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 = 2× Precision×Recall

Precision+Recall
(13)

TxGNN calculates AUPRC using two strategies. The first compares each positive ground truth253

item vs. one negative from the list of drugs of a disease area, referred to as AUPRC 1:1. The second254

considers all positive and negative ground truth items, referred to as AUPRC. The first metric conveys255

information on the model’s ability to distinguish a positive from a randomly sampled negative in direct256

comparison. In contrast, the latter focuses on distinguishing positives and negatives across the whole257

dataset. Furthermore, the AUPRC accounts for the positive/negative class imbalance and provides a258

balanced evaluation of precision and recall. We chose to predominately use the latter, which reflects a259

real-world scenario of identifying therapeutical opportunities within a given set of drugs.260

For the SL prediction task, we compared the seed-wise performance of our model with the perfor-261

mance of KR4SL using metrics inherent to the KR4SL framework’s code: NDCG@k, Recall@k, and262

Precision@k. Moreover, we computed MRR from equation 11 for both BioPathNet and KR4SL by first263

calculating MRR for each query gene and then averaging gene-wise MRR overall query genes.264

Recall@k here is utilized to evaluate how effectively a model predicts SL relationships within its top265

k predictions and is defined as follows:266

Recall@k =
1

N

N∑
n=1

∑k
i=1 1{GKR

n (i) ∈ GKP
n }

|GKP
n |

(14)

where N is the total number of query genes, GKP
n is the set of known SL partner candidates of gene267

n and GKR
n is the set of top-k SL gene partners for gene n ranked by prediction scores meaning that268

GKR
n (i) is i-th predicted SL partner for gene n.269

Respectively, Precision@k is employed to assess how effectively a model predicts SL relationships270

within its top-k predictions, normalized by either the size of the top-k predictions or the size of the271

known SL relationships, whichever is smaller. Precision@k is defined as follows:272

Precision@k =
1

N

N∑
n=1

∑k
i=1 1{GKR

n (i) ∈ GKP
n }

min{|GKP
n |, k}

(15)

NDCG@k is used to evaluate a model’s capability to prioritize the top-k candidate genes associated273

with SL relationships and is defined as follows:274

NDCG@k =
1

N

N∑
n=1

DCG@k(n)

IDCG@k(n)
(16)

where DCG@k(n) and IDCG@k(n) are defined as follows:275

DCG@k(n) =

k∑
i=1

21{G
KR
n (i)∈GKP

n } − 1

log2(i+ 1)
(17)

IDCG@k(n) =

min{|GKP
n |,k}∑

i=1

1

log2(i+ 1)
(18)
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2 Supplementary Tables

2.1 Gene function prediction task

Supplementary Table 1: Summary of the dataset for the gene function prediction task: the number
of nodes, edges and relation types in the background regulatory graph (BRG) obtained from
Pathway Commons, as well as train, validation and test set obtained from KEGG.

Number of nodes Number of edges Number of relations
BRG 30,885 1,884,146 13
Train 7,070 22,702 1
Valid 2,348 3,243 1
Test 3,533 6,487 1
Unique count 31,410 1,916,513 14

Supplementary Table 2: Detailed breakdown of the relation types in the functional annotation data
set: Number of edges per relation type in BRG, train, validation and test set.

Relation Count
BRG controls-transport-of-chemical 3,741

reacts-with 4,063
controls-transport-of 7,899
used-to-produce 14,747
controls-phosphorylation-of 17,660
controls-production-of 21,262
consumption-controlled-by 22,659
controls-expression-of 125,860
catalysis-precedes 147,948
in-complex-with 191,275
controls-state-change-of 191,548
interacts-with 517,390
chemical-affects 618,094

Train KEGGPathway 22,702
Valid KEGGPathway 3,227
Test KEGGPathway 6,438
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Supplementary Table 3: Best hyperparameter sets for gene function prediction tasks with
and without BRG, dim refers to embedding dimension, L is the number of hidden layers, lr is the learning
rate, Adv. T the adversarial temperature used in self-adversarial negative sampling, Aggr. Function
specifies the aggregation function, relevant only for BioPathNet that can choose between sum and PNA.

Model dim L lr NegSam Adv. T Aggr. Function

TransE w BRG 128 - 1e-3 512 1 -
TransE w/o BRG 512 - 5e-4 512 1 -
DistMult w BRG 128 - 1e-3 512 1 -
DistMult w/o BRG 512 - 1e-3 512 1 -
RotatE w BRG 128 - 2e-4 512 1 -
RotatE w/o BRG 512 - 5e-4 512 1 -
R-GCN w BRG 128 5 5e-4 32 1 -
R-GCN w/o BRG 256 3 1e-4 64 1 -
BioPathNet w BRG 32 6 5e-3 32 1 PNA
BioPathNet w/o BRG 32 6 5e-3 32 1 PNA
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2.2 Drug repurposing task

Supplementary Table 4: Number of diseases per disease area split, as well as the number of
edges used as BRG and for training, validation, and testing.

Disease area
Number of
diseases

BRG Train Valid
Test

contraindication
Test

indication
Adrenal gland 6 5,728,452 33,063 4,723 303 33

Anemia 19 5,705,775 33,715 4,817 752 88
Cardiovascular 111 5,695,332 30,930 4,419 4,215 453

Cell proliferation 201 5,689,920 33,102 4,729 1,047 999
Mental health 60 5,690,512 33,443 4,778 1,567 355

Supplementary Table 5: Zero-shot prediction scenario for Alzheimer’s disease: diseases
included and number of contraindication and indication drugs in custom data split generated following
TxGNN code on disease evaluation.

Disease ID # contraindication # indication
Alzheimer disease 28,780 56 8
Alzheimer disease w/o neurofibrillary tangles 83,960 2 7
Lewy body dementia 29,296 2 0
Pick disease 28,473 27 7
Dementia (disease) 37,573 28 3

Supplementary Table 6: Best Hyperparameter Sets for Each Disease Area Split, dim refers
to embedding dimension, L is the number of hidden layers, lr is the learning rate, Adv. T the adver-
sarial temperature used in self-adversarial negative sampling, Aggr. Function specifies the aggregation
function, in this case PNA was always the best performing.

Disease Area dim L lr NegSam Adv. T Aggr. Function

Adrenal Gland 32 6 5e-3 64 0.5 PNA
Anemia 32 4 1e-3 64 1.0 PNA
Cardiovascular 32 6 1e-3 64 0.5 PNA
Cell Proliferation 32 6 1e-3 64 1.0 PNA
Mental Health 32 4 5e-3 64 1.0 PNA
Alzheimer 32 6 5e-3 64 1.0 PNA
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Supplementary Table 7: Performances across five different disease area splits, mean metrics
summarized as average across contraindication and indication.

Anemia
Recall
@20

AP
@20

MRR
@20

F1
AUPRC

1:1
AUPRC

TxGNN 0.45 0.457 0.535 0.244 0.667 0.352
BioPathNet 0.504 0.493 0.52 0.305 0.674 0.412

Adrenal gland
Recall
@20

AP
@20

MRR
@20

F1
AUPRC

1:1
AUPRC

TxGNN 0.604 0.724 0.725 0.612 0.587 0.632
BioPathNet 0.562 0.903 0.9 0.405 0.582 0.721

Cardiovascular
Recall
@20

AP
@20

MRR
@20

F1
AUPRC

1:1
AUPRC

TxGNN 0.1 0.17 0.199 0.059 0.606 0.108
BioPathNet 0.166 0.23 0.249 0.074 0.605 0.136

Cell proliferation
Recall
@20

AP
@20

MRR
@20

F1
AUPRC

1:1
AUPRC

TxGNN 0.539 0.487 0.549 0.256 0.811 0.437
BioPathNet 0.604 0.626 0.654 0.404 0.813 0.556

Mental health
Recall
@20

AP
@20

MRR
@20

F1
AUPRC

1:1
AUPRC

TxGNN 0.167 0.228 0.264 0.112 0.617 0.16
BioPathNet 0.219 0.265 0.297 0.132 0.57 0.187
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2.3 Synthetic lethality gene pair prediction task

Supplementary Table 8: The statistics of the BRG and SL graph as reported by KR4SL.

# Entities # Relationss # Triples
SL graph 9,746 1 35,374
BRG 42,547 32 381,761

Supplementary Table 9: Number of edges and source genes in each data split for various thresholds

threshold 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8
# edges (BRG) 396,619 396,221 394,922 392,429 390,151 386,705 385,090 384,900
# genes (BRG) 14,858 14,460 13,161 10,668 8,390 4,944 3,329 3,139
# edges (train) 9,878 9,617 8,770 7,038 5,540 3,274 2,137 2,015
# genes (train) 5,444 5,363 4,747 3,252 2,597 1,804 846 755
# edges (valid) 3,533 3,447 3,172 2,568 2,004 1,184 764 721
# genes (valid) 2,918 2,870 2,544 1,803 1,412 946 556 516
# edges (test) 7,049 6,887 6,254 5,029 3,909 2,279 1,556 1,466
# genes (test) 4,474 4,407 3,853 2,601 2,020 1,367 739 664
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Supplementary Table 10: Detailed breakdown of the relation types in the SynLethDB: Number of
edges per head and tail type in BRG

Entity 1 Relation Entity 2 # Triples
gene participates GpPW Pathway 41,726
gene NOT|enables molecular function 233
gene NOT|involved in biological process 376
gene NOT|is active in cellular component 3
gene NOT|located in cellular component 109
gene NOT|part of cellular component 134
gene is active in cellular component 8,749
gene located in cellular component 51,382
gene part of cellular component 60,679
gene acts upstream of or within biological process 202
gene acts upstream of biological process 158
gene acts upstream of negative effect biological process 2
gene acts upstream of or within negative effect biological process 2
gene acts upstream of or within positive effect biological process 7
gene acts upstream of positive effect biological process 15
gene colocalizes with cellular component 874
gene contributes to molecular function 752
gene enables molecular function 54,511
gene involved in biological process 105,623
gene NOT|colocalizes with cellular component 9
gene NOT|contributes to molecular function 3
gene NOT|acts upstream of or within biological process 1
gene NOT|acts upstream of or within negative effect biological process 1
biological process happens during biological process 7
biological process has part biological process 144
biological process has part molecular function 94
biological process is a biological process 33158
biological process negatively regulates biological process 1,858
biological process negatively regulates molecular function 192
biological process occurs in cellular component 119
biological process part of biological process 3,144
biological process positively regulates biological process 1,834
biological process positively regulates molecular function 200
biological process regulates biological process 2,092
biological process regulates molecular function 218
cellular component has part cellular component 154
cellular component is a cellular component 3,224
cellular component part of cellular component 1,222
molecular function has part molecular function 167
molecular function is a molecular function 7,493
molecular function negatively regulates molecular function 50
molecular function occurs in cellular component 31
molecular function part of biological process 722
molecular function part of molecular function 8
molecular function part of Pathway 1
molecular function positively regulates molecular function 40
molecular function regulates biological process 1
molecular function regulates molecular function 36

Supplementary Table 11: Best hyperparameter set for Synthetic lethality gene pair prediction
task, dim refers to embedding dimension, L is the number of hidden layers, lr is the learning rate, Adv.
T the adversarial temperature used in self-adversarial negative sampling, Aggr. Function specifies the
aggregation function.

Model dim L lr NegSam Adv. T Aggr. Function

BioPathNet 32 5 5e-3 64 0.5 PNA
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Supplementary Table 12: Performance comparison between BioPathNet and state-of-the-art
SL gene pair prediction method KR4SL for unthresholded data.

seed 1234 seed 1235 seed 1236 seed 1237 seed 1238
metric KR4SL BioPathNet KR4SL BioPathNet KR4SL BioPathNet KR4SL BioPathNet KR4SL BioPathNet
MRR 0.285 0.295 0.284 0.300 0.285 0.297 0.280 0.294 0.284 0.299
NDCG@10 0.341 0.364 0.341 0.362 0.343 0.360 0.337 0.366 0.340 0.366
NDCG@20 0.356 0.383 0.355 0.381 0.357 0.378 0.352 0.383 0.354 0.384
NDCG@50 0.368 0.400 0.368 0.397 0.369 0.394 0.364 0.400 0.367 0.401
Precision@10 0.434 0.451 0.439 0.455 0.437 0.450 0.435 0.452 0.437 0.455
Precision@20 0.485 0.515 0.484 0.519 0.486 0.511 0.484 0.511 0.485 0.516
Precision@50 0.529 0.580 0.533 0.581 0.532 0.572 0.530 0.574 0.533 0.580
Recall@10 0.424 0.440 0.428 0.444 0.427 0.440 0.424 0.441 0.426 0.444
Recall@20 0.480 0.511 0.480 0.515 0.482 0.507 0.479 0.507 0.481 0.512
Recall@50 0.528 0.579 0.532 0.580 0.531 0.571 0.529 0.573 0.532 0.579

Supplementary Table 13: Performance comparison between BioPathNet and state-of-the-art
SL gene pair prediction method KR4SL for thresholded data.

seed 1234 seed 1235 seed 1236 seed 1237 seed 1238
metric KR4SL BioPathNet KR4SL BioPathNet KR4SL BioPathNet KR4SL BioPathNet KR4SL BioPathNet
MRR 0.338 0.360 0.339 0.360 0.336 0.348 0.333 0.362 0.339 0.353
NDCG@10 0.398 0.420 0.401 0.416 0.399 0.406 0.396 0.418 0.401 0.412
NDCG@20 0.416 0.437 0.415 0.434 0.415 0.427 0.412 0.436 0.416 0.432
NDCG@50 0.428 0.453 0.428 0.451 0.428 0.443 0.425 0.452 0.429 0.448
Precision@10 0.507 0.525 0.512 0.519 0.513 0.508 0.511 0.519 0.513 0.517
Precision@20 0.569 0.583 0.560 0.581 0.570 0.579 0.566 0.581 0.565 0.584
Precision@50 0.611 0.641 0.608 0.644 0.615 0.641 0.613 0.638 0.612 0.642
Recall@10 0.496 0.514 0.501 0.508 0.501 0.498 0.499 0.507 0.501 0.506
Recall@20 0.564 0.579 0.556 0.577 0.566 0.575 0.562 0.576 0.561 0.580
Recall@50 0.610 0.640 0.608 0.643 0.614 0.640 0.612 0.637 0.611 0.641
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2.4 LncRNA-gene target prediction task

Supplementary Table 14: Summary of the functional annotation data set: number of nodes, edges
and relation types in the background regulatory graph (BRG), as well as train, validation and test
sets.

Number of nodes Number of edges Number of relations

BRG 15,806 1,035,133 7
Train 2,646 4,867 6
Valid 533 608 6
Test 535 609 6
Unique
count

16,844 1,041,217 13

Supplementary Table 15: Detailed breakdown of the relation types in the functional annotation data
set: Number of edges per relation type in BRG, train, validation and test set.

Relation Count
BRG interacts-with 469,203

in-complex-with 154,868
controls-state-change-of 144,259
catalysis-precedes 141,554
controls-expression-of 114,698
controls-phosphorylation-of 7,246
controls-transport-of 3,305

Train ceRNA or sponge 2,305
expression association 1,530
interact with protein 366
transcriptional regulation 351
epigenetic regulation 272
interact with mRNA 43

Valid ceRNA or sponge 275
expression association 208
interact with protein 48
transcriptional regulation 44
epigenetic regulation 31
interact with mRNA 2

Test ceRNA or sponge 247
expression association 228
interact with protein 52
transcriptional regulation 47
epigenetic regulation 28
interact with mRNA 7
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Supplementary Table 16: Best hyperparameter set for LncRNA-gene target prediction
task, dim refers to embedding dimension, L is the number of hidden layers, lr is the learning rate, Adv.
T the adversarial temperature used in self-adversarial negative sampling, Aggr. Function specifies the
aggregation function.

Model dim L lr NegSam Adv. T Aggr. Function

BioPathNet 32 6 5e-3 64 0.5 PNA
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3 Supplementary Figures

3.1 Supplementary Figure 1
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Supplementary Figure 1: BioPathNet’s performance on PrimeKG A) PrimeKG schema: a
multi-modal knowledge graph with 10 biological node types (e.g., protein, disease, drug) and over 5 mil-
lion relations, for predicting drug-disease interactions. B) AUPRC performance in zero-shot prediction
across five disease area splits (adrenal gland, anemia, cardiovascular, cell proliferation, mental health),
calculated by comparing ground truth positives and negatives, then averaging across all diseases in each
area.
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3.2 Supplementary Figure 2

B Clofarabine indication for ALLA Top contrainidcation predictions
for ALL

C Clofarabine indication for ALL 
after exluding similar diseases

E Capecitabine indication 
for Gastric Cancer

D Top contrainidcation predictions
for Gastric Cancer

F Capecitabine indication
for Gastric Cancer 
after exluding similar diseases

Levetiracetam
Mitoxantrone

Desmopressin
Ifosfamide

Tretinoin
Gabapentin

Sodium oxybate
Nelarabine

Cyclosporine
Ribavirin

Dasatinib
Alitretinoin

Methoxsalen
Mercaptopurine

Metformin
Succinylcholine

Tacrolimus
Azathioprine
Carmustine
Alprostadil

0.0 0.2 0.4 0.6

Probability

D
ru

g
s

contraindication

Colesevelam
Tryptophan

Orlistat
Tranexamic acid

Levonorgestrel
Zinc gluconate

Alitretinoin
Levetiracetam

Sodium oxybate
Ascorbic acid
Indomethacin
Chlorambucil

Doxapram
Acitretin

Magnesium hydroxide
Clomifene
Ranitidine

Famotidine
Nizatidine

Cimetidine

0.0 0.2 0.4 0.6

Probability

D
ru

g
s

contraindication

Supplementary Figure 2: Inspecting BioPathNet predictions in zero-shot learning A) Top
20 predictions of contraindication for ALL. Path interpretation for the prediction of Clorafabine as
an indication for ALL in near-shot learning scenario (B) and in zero-shot scenario (C). D) Top 20
predictions of contraindication for Gastric Cancer. Path interpretation for the prediction of Capecitabine
as an indication for Gastric Cancer in near-shot learning scenario (E) and in zero-shot scenario (F).
Known contraindications, included in the ground truth of PrimeKG, are highlighted in orange, while
while newly predicted contraindications are in light blue. The visualization (B-C and E-F) shows the
top 10 significant paths used by BioPathNet for prediction, with edge widths representing weights and
the highest-weight path highlighted in red.
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3.3 Supplementary Figure 3
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Supplementary Figure 3:Comparison of BioPathNet with state-of-the-art SL gene pair pre-
diction algorithm KR4SL for varying SL confidence thresholds: A) Distribution of confidence
scores of SL pairs per evidence source as provided by SynLethDB-v2.0 as the ”r.statistic score”. B) Per-
formance comparison of BioPathNet and KR4SL with performance metrics reported across thresholds
applied to the confidence score of SL evidence. C) Difference in performances between BioPathNet and
KR4SL for both methods trained on SL pairs which were filtered to have a confidence score of at least
0.2. Bars are shown for each metric (NDCG, Precision, Recall) and different k, and represent the mean
difference in performance, while error bars denote standard deviations for the different seeds (N = 5).
BioPathNet significantly outperformed KR4SL on 0.2-thresholded data (p-values: p = 1.07 × 10−3,
p = 1.89× 10−4, p = 1.21× 10−4 for NDCG@k; p = 1.04× 10−2, p = 4.19× 10−7, p = 2.42× 10−5 for
Precision@k; and p = 8.57× 10−3, p = 4.59× 10−7, p = 2.43× 10−5 for Recall@k, for k ∈ {10, 20, 50}.)
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3.4 Supplementary Figure 4
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Supplementary Figure 4: Prediction of novel incRNA-target regulatory interactions. A
presents BioPathNet predicted targets for the cancer lncRNA PVT1, ranked by prediction probability,
similar to Figure 6A. Additionally, regulation types are distinguished using different colors: green for
epigenetic regulation, yellow for expression association, gray for interaction with mRNA, and red for
interaction with protein. Known triples are shown with 50% transparency, while novel triples are dis-
played with full opacity. B-D Explanations for top 3-5 novel predicted targets of PVT1: SUZ12, CDH1,
and KLF2.
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