
Statistical model for k-mer counts.

1 Overview

The distance of k-th k-mer count nk from haplogroup h is measured by
standardized square distance:

dh,k =
(nk − µh,k · cov)2

σ̂2k
,

where µk,h is the average number of times k-th k-mer is present in hap-
logroup h genomes, cov is the sequencing coverage of the sample (estimated
coverage for as CG-rich region as the k-th k-mer) and σ2k is the estimated
variability of the k-mer count for particular sample given the haplogroup,
sample/sequencing quality and coverage.

The total raw distance of the investigated sample from the haplogroup
h is measured by the average distance over all k-mers included in the hap-
logroup model:

dh =
1

nmodel k−mers

nmodel k−mers∑
i=1

dh,k. (1)

The haplogroup with smallest distance from the sample is proposed as the
most likely haplogroup.

2 Variance σ2k estimation

In estimating the variance for k-mer counts we relay on the following model
for k-mer counts. The counts for k-mer k for an individual i from haplogroup
h in a sample s are assumed to follow the Poisson distribution for given k-mer
and sample:

Nk,s|k, s ∼ Poi(λh,i,s,k),
where λh,i,s,k = (µh,k+γi,k+εs,k) ·covs. The haplogroup mean µh,k indicates
how many times k-th k-mer appears, on average, in haplogroup h genomes.
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The i-th individual has k-th k-mer in his/her genome µh,k + γi,k times (re-
peats). The person-speci�c random e�ect γi,k,E(γi,k) = 0 indicates how
many more or less copies of this k-mer the given individual has compared to
haplogroup average. The random e�ect εs,k,E(εs,k) = 0 allows to account
for uneven sequencing coverage of di�erent regions in some samples.

If one limits its attention to unique NIPT k-mers (k-mers that are present
in genomes of all individuals, but are present in only one location � their
copy number is always one), then µh,k+γi,k = 1 and the NIPT k-mer counts
can be modelled as

Ns,k|s, k ∼ Poi((1 + εs,k) · covs).

Hence the variance of k-mer counts for all NIPT k-mers in a sample can be
calculated as:

Var(Ns,k|s) = E (Var(Ns,k|s, k) |s) +Var (E(Ns,k|s, k) |s)
= E ((1 + εs,k) · covs |s) +Var ((1 + εs,k) · covs |s)
= covs + cov2s ·Var (εs,k|s)
= covs + cov2s · σ2s .

The variance of εs,k, the σ
2
s := Var (εs,k|s), measures the overdispersion

of k-mer counts compared to the Poisson distribution (the variance of all
NIPT k-mer counts from particular sample may have higher variance than
covs, σ

2
s can be viewed as a measure of the overdispersion parameter for

negative binomial distribution).
If one estimates the variance of NIPT k-mer counts, V̂ar(Ns,k|s), and

the average sample coverage ( ˆcoverages, mean NIPT k-mer count), one can
calculate an estimate for σ2s for a given sample:

σ̂2s = (V̂ar(Ns,k|s)− ˆcovs)/ ˆcov2s.

If one predicts the coverage for a given k-mer based on its CG-content
(taking into account the possible CG-related bias in sequencing or higher
substitution rate in ancient DNA), the formula for estimating the σ̂2s changes
to

σ̂2s = (V̂ar (Ns,k|s)− E ( ˆcovs,k|s)−Var ( ˆcovs,k|s))/E
(
ˆcov2s,k|s

)
. (2)

If the estimate from Equation 2 is negative it is replaced with zero.
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One can derive the Equation 2 using similar logic as before, just by assum-
ing that after using information about CG% content in estimating coverage
the additional unexplained variability in k-mer counts do not depend on k-
mer CG%, namely Var(εs,k|CG) = σ2s for all possible CG% values. Also one
has to notice, that the estimated coverage of a k-mer, covs,k, is the same for
all k-mers with the same CG%, Var(covs,k|s, CG) = 0:

Var(Ns,k|s) =Var(covs,k(1 + εs,k)|s)
=Var(E(covs,k(1 + εk,s)|s, k)|s)+

E(Var(covs,k(1 + εk,s)|s, k)|s)
=Var(covs,k(1 + εk,s)|s) + E(covs,k(1 + εs,k)|s)
=Var(covs,k(1 + εs,k)|s) + E(covs,k|s)
=Var(E(covs,k(1 + εs,k)|CG, s)|s)+

E(Var(covs,k(1 + εs,k)|CG, k)|k) + E(covs,k|s)
=Var(covs,k|s) + E(cov2s,k · σ2s |s) + E(covs,k|s)
=Var(covs,k|s) + σ2s · E(cov2s,k) + E(covs,k|s).

One can solve this equation for σ2s and replace remaining terms with
estimates calculated using sample NIPT k-mers do get the Equation 2.

After estimating the sample-speci�c σ2s one can proceed with the mod-
elling of the variances for model k-mers (k-mers for which the copy number
can vary between individuals and between haplogroups). As stated previ-
ously, we assume

Nh,i,s,k|s, k ∼ Poi ((µh,k + γi,k + εs,k) · covs,k) ,

and we are interested in the variance of the k-mer counts given the hap-
logroup, estimated sample quality (σ2s) and estimated k-mer sequencing cov-
erage covs,k (estimated from the k-mer CG%):

Var(Nh,i,s,k |h, σ2s , covs,k, k ).

Conditioning on the sample quality here is interpreted as a condition on the
εs,k values, eg Var(εs,k|σ2s) = σ2s .
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The k-mer count variance for k-th model k-mer, σ2k, can be expressed as

σ2k :=Var
(
Nh,i,s,k|h, σ2s , covs,k, k

)
(3)

=Var
(
E(Nh,i,s,k|h, i, s, k)|h, σ2s , covs,k, k

)
+

+ E
(
Var(Nh,i,s,k|h, i, s, k)|h, σ2s , covs,k, k

)
=Var

(
(µh,k + γi,k + εs,k) · covs,k|h, σ2s , covs,k, k

)
+

+ E
(
(µh,k + γi,k + εs,k) · covs,k|h, σ2s , covs,k, k

)
=cov2s,k ·Var (γi,k + ε|h, σs, covs,k, k)+

+ covs,k · E ((µh,k + γh,i + εs,k) |h, σs, covs,k, k)
=cov2s,k · (σ2h + σ2s) + covs,k · µh,k.

The k-mer copy number variability within the haplogroup h, σ2h, is esti-
mated during the model building as the variability in k-mer copy numbers
in the reference sample. The value of µh,k is estimated as the mean copy
number for the given haplogroup.

Additional problems might arise if in a small reference set a given k-mer
is never observed. If one uses the estimated values for µh,k, µ̂h,k = 0 and
for σ̂2h = 0 in the Equation 3 to calculate the expected variability of the
k-mer count one could get the estimated variance for k-mer counts to be
exactly equal to zero (especially for high quality samples for which σ2s = 0).
However, if due to a sequencing error one does observe this particular k-mer
at least once, then the distance from the given haplogroup as calculated by
Equation 1 would be in�nitely large. To account for additional variability
of the k-mer counts due to sequencing errors/imprecise estimation of the
haplogroup means, additional correction factors are added when estimating
the variance:

σ̂2k =cov2s,k · (σ̂2h + σ̂2s) + covs,k · µ̂h,k+ (4)

+ (µ̂2h,k/Ê(cov|h) + σ̂2h)/nh · cov2s,k + λerr · covs,k,

where λerr is the average number of times we encounter a k-mer due to
sequencing errors if sequencing with coverage 1. The default value used in
this implementation is λerr = 0.003. The correction term λerr ·covs,k intends
to account for the possible e�ect of sequencing errors.

The correction term (µ̂2h,k/E(covh,i,s,k|h)+ σ̂2h)/nh ·cov2s,k tries to account
for the additional possible variability in k-mer counts due to possible mis-
estimation of µh,k. If the number of reference samples from the haplogroup
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h, nh, is large, then this correction term vanishes to zero. But if there are
just a few reference samples from this haplogroup, then this correction term
tries to account for additional uncertainty due to possible misestimation of
the haplogroup mean.

3 Statistical haplogroup testing

Sometimes, especially for low-coverage and low-quality samples, the selected
haplogroup h might not be the correct haplogroup. To investigate the relia-
bility of the call one might want to test the hypothesis:

H0 : some other haplogroup is the correct haplogroup

H1 : the called haplogroup is the correct haplogroup.

Notice, that the null hypothesis is a composite hypothesis and by rejecting
the null hypothesis one has proven that the proposed haplogroup is really
the correct haplogroup. However, the reference samples used for building
the haplogroup model might not be really representative for the samples
one might want to use the model for. For example, the high quality ref-
erence samples might come from currently living representatives of a hap-
logroup, but the ancient DNA sample one might want to test might come
from a period when that haplogroup reprentatives had somewhat di�erent
Y -chromosomes. One might accidentally prove the incorrect call just be-
cause the ancient DNA sample from haplogroup h′ is considerably di�erent
from contemporary reference samples from haplogroup h′ (there could ex-
ist other possible problems of the same kind, for example if one uses one
sequencing method for reference samples and another for the sample tested
one potentially might obtain signi�cantly di�erent k-mer distributions just
because the di�erence in sequencing methods). To allow the reference sam-
ples to be from di�erent population than the tested sample one might want
to slightly rephrase the hypothesis. The modi�ed alternative hypothesis
is H1: the tested individual Y -chromosome is more similar (closer) to the
called haplogroup (given unlimitied coverage and no sequencing errors) than
to any other tested haplogroup vs the null hypothesis stating that some
other haplogroup might actually be more similar to the tested individual
Y -chromosome.

3.1 Testing in case of two alternatives

If there exists just two possibilities, the investigated individual might belong
either into haplogroup h or haplogroup h′. Lets assume, that according to
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the sample haplogroup h was the closest haplogroup, dh < dh′ , and we want
to prove that the haplogroup h is actually the closest haplogroup to the
investigated individual Y -chromosome, E (dh − dh′) < 0, eg one can test the
pair of hypothesis

H0 : E (dh − dh′) ≥ 0

H1 : E (dh − dh′) < 0.

If one can reject the null hypothesis then one has proven the haplogroup
h to be the closer haplogroup. To test these hypothesis one can look at the
pairwise di�erences for each k-mer:

zk = dh,k − dh′,k.

Then, by using the one-sided z-test, we can test the hypothesis H0 : Ezk ≥ 0.
Small p-value would indicate, that the called haplogroup is really the correct
haplogroup (tested individual Y -chromosome is really more similar, closer,
to the haplogroup h than to the alternative).

3.2 Testing in case of more than two alternatives

When testing the composite null hypothesis (no other haplotype can be
closer to the sample than the haplotype called), �rst for all the alternatives
pairwise tests are performed. Then the largest p-value obtained is reported as
the p-value for the composite null hypothesis. This type of testing composite
hypothesis is a conservative approach from statistical perspective � selecting
the largest p-value as the p-value for the composite test guarantees that the
type I-error probability will not exceed α for a given signi�cance level α, but
can sometimes actually be considerably smaller than α.
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