Supporting Information

Potent and Selective SETDB1 Covalent Negative Allosteric Modulator Reduces Methyltransferase Activity in Cells

Mélanie Uguen¹, Devan J. Shell¹, Madhushika Silva², Yu Deng^{3,4}, Fengling Li², Magdalena M. Szewczyk², Ka Yang⁵, Yani Zhao¹, Michael A. Stashko¹, Jacqueline L. Norris-Drouin¹, Jarod M. Waybright^{1,6}, Serap Beldar², Justin M. Rectenwald¹, Angie L. Mordant⁷, Thomas S. Webb⁷, Laura E. Herring⁷, Cheryl H. Arrowsmith², Suzanne Ackloo², Steven P. Gygi⁵, Robert K. McGinty^{1,3,4}, Dalia Barsyte-Lovejoy², Pengda Liu^{3,4}, Levon Halabelian², Lindsey I. James^{1,3}, Kenneth H. Pearce^{1,3}, Stephen V. Frye^{1,3,*}.

¹UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA.

²Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.

³Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.

⁴Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

⁵Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

⁶Current address: Design Therapeutics, Carlsbad, California 92011, USA.

⁷UNC Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

*Corresponding author email address: svfrye@email.unc.edu

Keywords: SETDB1, Covalent ligand, Kme reader, Tudor domain, Negative Allosteric Modulator, Allosteric, Methyltransferase

Table of Contents

1.	Chem	iistry 3
	1.1.	General Information
	1.2.	Analytical Equipment
	1.3.	General Procedures
	1.4.	Synthetic Schemes4
	1.5.	Compound Data6
2.	Cryst	allography47
3.	Biolo	gical Evaluation48
	Figure	S1. Isothermal titration calorimetry results for UNC6535 and SETDB1 3TD 48
	_	S2. Radiometric methyltransferase activity assay for UNC6535 using SETDB1-1-1291) or SETDB1-S (aa 570-1291)
	_	S3. Fluorescence polarization results for UNC6535 using SETDB1-S (aa 570-
	_	S4. Evaluation of the intrinsic reactivity of 1-8 towards glutathione using LC- antification49
	_	S5. TR-FRET displacement of H3K9Me2K14Ac for 1-8 using the WT SETDB1
	_	S6. TR-FRET displacement of H3K9Me2K14Ac for 1-8 using C385A SETDB1
	•	S7. TR-FRET displacement of H3K9Me2K14Ac-modified nucleosome for 0013 (4) and UNC10016 (2) using the WT SETDB1 3TD50
	•	S8. Dose-response evaluation of UNC10013 (4) ability to inhibit the Itransferase ability of of SETD2 (left) and PRMT1 (right)51
	•	S9. TR-FRET displacement of H3K9Me2K14Ac peptide for UNC10013 (4), 1277 (11) and UNC11366 (12) using the WT SETDB1 3TD51
	•	S10. FP displacement of FITC-H3K9Me2K14Ac peptide for UNC10013 (4), 1277 (11) and UNC11366 (12) using the WT SETDB1 3TD
		S1. Methyltransferase selectivity evaluation of UNC10013 (4) and UNC1001653
		S2. Cysteine-targeted activity-based protein profiling data for the detected 23 nes of SETDB154

1. Chemistry

1.1. General Information

Chemicals were purchased from commercial suppliers and used without further purification. Thin layer chromatography (TLC) was performed on glass plates coated with 60 F254 silica. Flash chromatography was carried out using a Teledyne Isco Combiflash Rf200, Rf200i or NextGen 300+ automated flash system with RediSep Rf normal phase or C18 RediSep Rf Gold reverse phase silica gel pre-packed columns. Fractions were collected at 220 nm and/or 254 nm. Preparative HPLC was performed using an Agilent Prep 1200 series with the UV detector set to 220 nm and 254 nm. Samples were injected onto either a Phenomenex Luna 250 × 30 mm (5 μ m) C18 column or a Phenomenex Luna 75 x 30 mm (5 μ m) C18 column at room temperature. Microwave irradiation was performed in a CEM Discover SP microwave reactor in sealed vials. Reactions were irradiated at temperatures between 60 and 250 °C using low or medium absorbance mode depending on the solvent.

1.2. Analytical Equipment

¹H NMR spectra were obtained using a Varian 400MR Inova spectrometer using a frequency of 400 MHz. ¹³C spectra were acquired using the Varian 400MR Inova spectrometer operating at a frequency of 101 MHz or a Bruker Avance III HD 700 MHz at a frequency of 176 MHz. The abbreviations for spin multiplicity are as follows: s = singlet; d = doublet; t = triplet; g = quartet, p = quintuplet, h = sextuplet and m = multiplet. Combinations of these abbreviations are employed to describe more complex splitting patterns (e.g. dd = doublet of doublets). Analytical LCMS data for all compounds was acquired using an Agilent 6110 Series system with the UV detector set to 254 nm. Samples were injected (<10 µL) onto an Agilent Eclipse Plus 4.6 × 50 mm, 1.8 µm, C18 column at room temperature. Mobile phases A (H2O + 0.1% acetic acid) and B (MeCN + 1% H2O + 0.1% acetic acid) were used with a linear gradient from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a flow rate of 1.0 mL/min. Mass spectra (MS) data were acquired in positive ion mode using an Agilent 6110 single quadrupole mass spectrometer with an electrospray ionization (ESI) source. Analytical LCMS (at 254 nm) was used to establish the purity of targeted compounds. All compounds that were evaluated in biochemical and biophysical assays had >95% purity as determined by LCMS.

1.3. General Procedures

General Procedure 1: Amide formation using acyl chloride reagent.

In a round-bottom flask containing the aniline derivative (1.0 eq.) in 3:1 DCM/DMF (33 mL/mmol) cooled down to 0 °C using an ice bath, the acyl chloride reagent (1.2 eq.) followed by triethylamine (2.0 eq.) were added. The mixture was stirred at 0 °C for 30 min and then at room temperature for another 30 min. Methanol was then added to the mixture and the solvent was removed under reduced pressure.

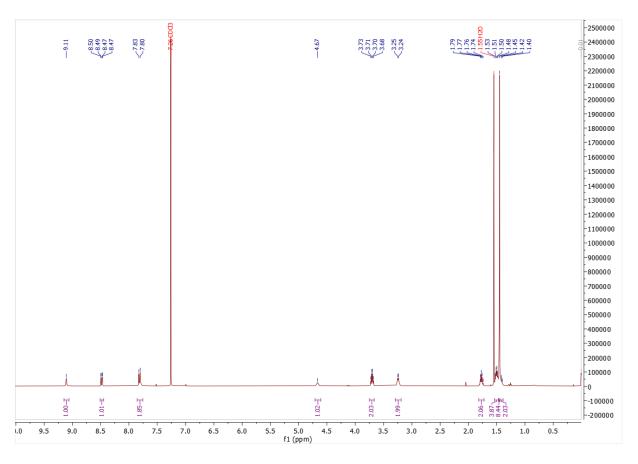
General Procedure 2: Amide formation with in situ acyl chloride formation.

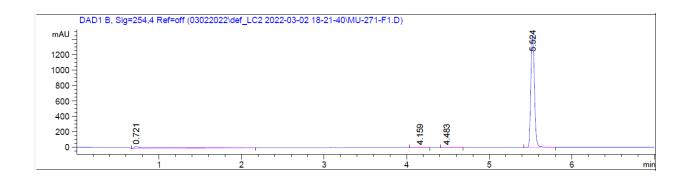
In a round-bottom flask containing the carboxylic acid derivative (1.5 eq.) in THF (4.2 mL/mmol) cooled down to 0 °C using an ice bath, oxalyl chloride (1.5 eq.) was added dropwise followed by a catalytic amount of DMF. The mixture was stirred at 0 °C for 15 min before being stirred at room temperature for another 2 h. Then, the mixture was cooled down to 0 °C before the aniline derivative (1.0 eq.) dissolved in THF (8.4 mL/mmol) was added dropwise followed by DIPEA (2.0 eq.). The mixture was then stirred at room temperature for 1 h.

1.4. Synthetic Schemes

Scheme S1. General synthetic route for the synthesis of **1-10**.

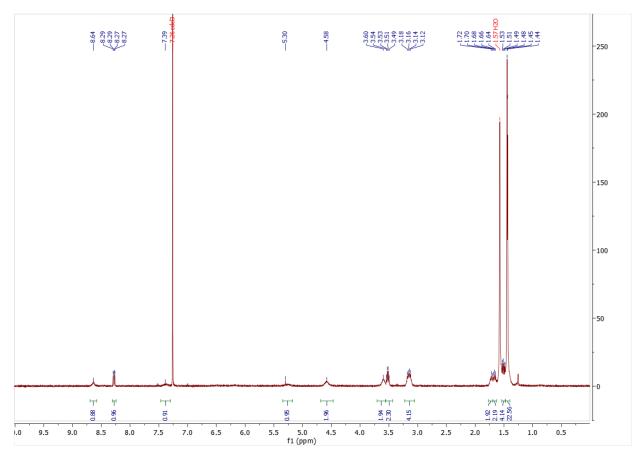
Scheme S2. Synthetic route for the synthesis of UNC6535.

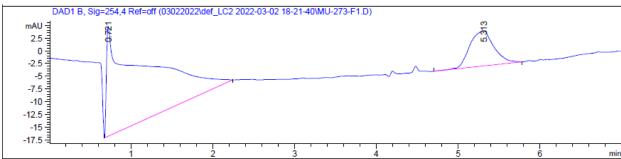

 $\textbf{Scheme S3.} \ \textbf{Synthetic route for the synthesis of UNC11277}.$


Scheme S4. Synthetic route for the synthesis of UNC11366.

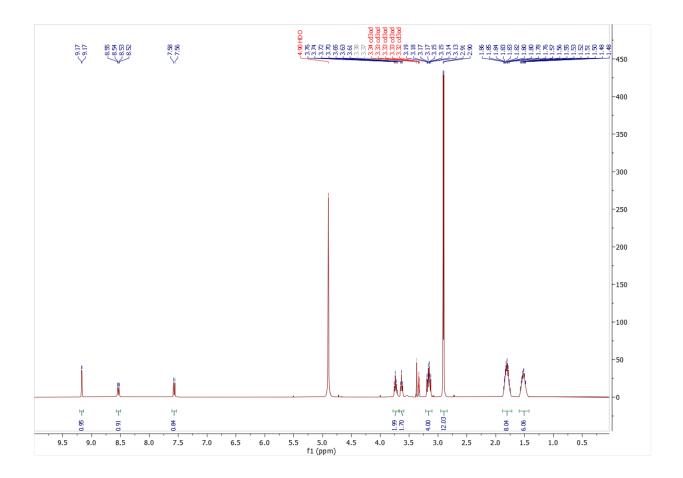
1.5. Compound Data

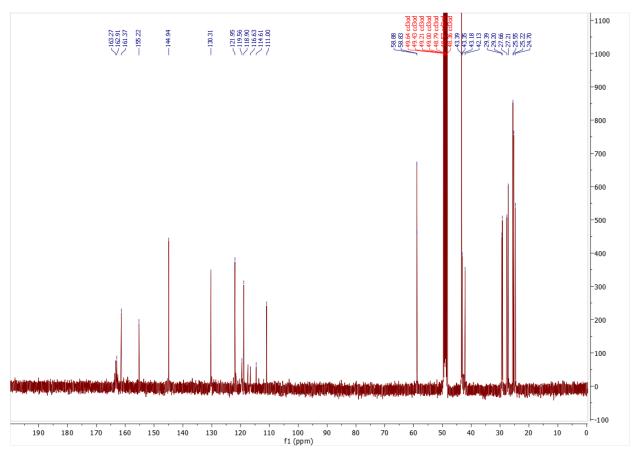
tert-butyl (6-((2-chloro-6-nitroquinazolin-4-yl)amino)hexyl)carbamate (Intermediate 1)

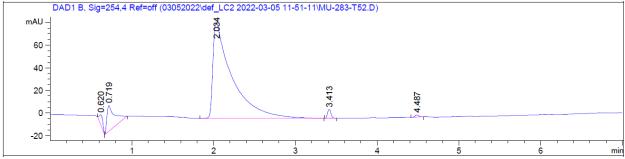

In a round-bottom flask containing 2,4-dichloro-7-nitroquinazoline (200 mg, 1.0 eq.) dissolved in 1.0 mL of DMF, *N*-Boc-1.6-diaminohexanediamine (202 μ L, 1.1 eq.) and DIPEA (286 μ L, 2.0 eq.) were added. The mixture was stirred at room temperature for 2 h. The solvent was removed by reduced pressure. Flash chromatography (0 to 60% EtOAc in Hexane) yielded the desired product as a yellow solid (305 mg, 88%). H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.48 (dd, J = 9.2, 2.4 Hz, 1H), 7.81 (d, J = 9.2 Hz, 2H), 4.71 – 4.61 (m, 1H), 3.70 (q, J = 6.1 Hz, 2H), 3.24 (q, J = 6.2 Hz, 2H), 1.76 (p, J = 6.3 Hz, 2H), 1.54 – 1.47 (m, 4H), 1.45 (s, 8H), 1.44 – 1.39 (m, 2H). MS(ES+) m/z 424.2 [M + H]⁺.



tert-butyl (6-((2-((5-((tert-butoxycarbonyl)amino)pentyl)amino)-6-nitroquinazolin-4-yl)amino)hexyl)carbamate (Intermediate 2)

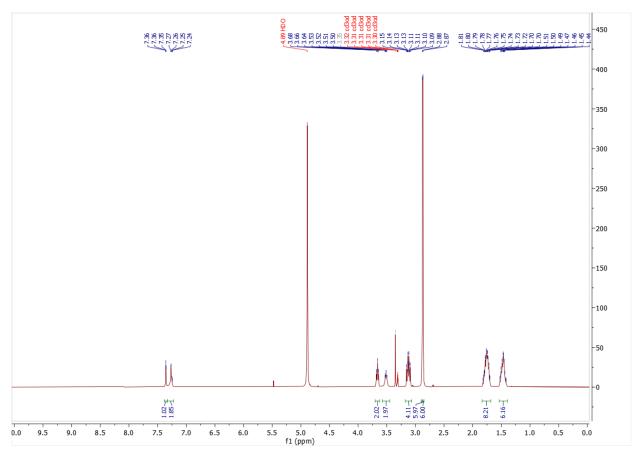

In a microwave vial, **Intermediate 1** (284 mg, 1.0 eq.), *N*-Boc-1,5-diaminoheptane (167 μ L, 1.2 eq.) and DIPEA (233 μ L) were dissolved in 3.3 mL of IPA. The mixture was heated at 160 °C for 2 h under microwave irradiation. The solvent was removed under reduced pressure. Flash chromatography (0 to 20% MeOH in DCM) yielded the desired product as a yellow sticky oil (351 mg, 89%). ¹H NMR (400 MHz, cdcl₃) δ 8.70 – 8.58 (m, 1H), 8.28 (dd, J = 9.3, 2.4 Hz, 1H), 7.39 (s, 2H), 5.34 – 5.17 (m, 0H), 4.69 – 4.47 (m, 2H), 3.71 – 3.56 (m, 2H), 3.52 (q, J = 6.7 Hz, 2H), 3.22 – 3.05 (m, 4H), 1.77 – 1.69 (m, 2H), 1.69 – 1.63 (m, 2H), 1.53 – 1.48 (m, 4H), 1.44 (d, J = 3.7 Hz, 22H). MS(ES+) m/z 590.3 [M + H]⁺.

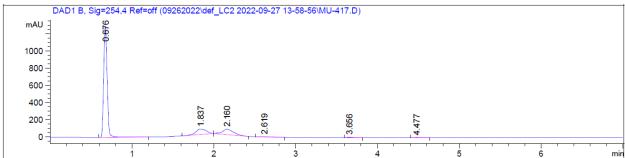




N^4 -(6-(dimethylamino)hexyl)- N^2 -(5-(dimethylamino)pentyl)-6-nitroquinazoline-2,4-diamine • 3 TFA salts (Intermediate 3)

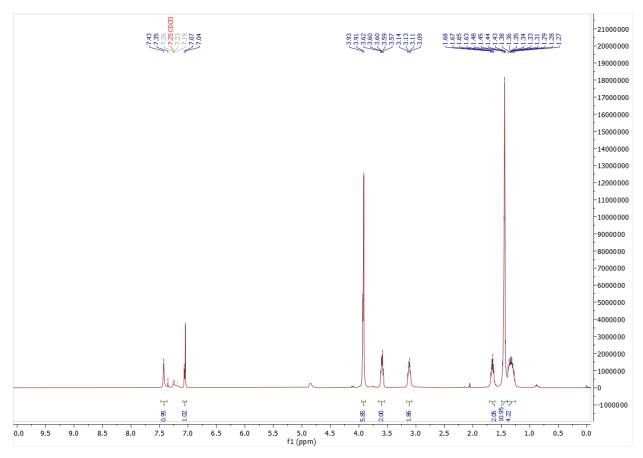
In a round-bottom flask containing **Intermediate 2** (348 mg, 1.0 eq) in 4.9 mL of DCM, TFA (455 μ L, 10 eq.) was added. The mixture was stirred at room temperature overnight. The solvent was removed under pressure. The crude mixture was dissolved in 2.8 mL of MeOH. Formaldehyde 37% in H₂O solution (264 μ L, 6.0 eq.) was added. The mixture was stirred at room temperature for 1 h before sodium triacetoxyborohydride (1.67g, 8.0 eq.) was added partwise. The mixture was stirred at room temperature overnight. Water and MeOH were then added to the mixture before flash chromatography loading. Flash chromatography (5 to 100% MeOH in 0.1% TFA in H2O) yielded the desired product as a yellow oil (342 mg, 74%) as a TFA salt. ¹H NMR (400 MHz, cd₃od) δ 9.17 (d, J = 2.3 Hz, 1H), 8.53 (dd, J = 9.1, 2.4 Hz, 1H), 7.57 (d, J = 9.2 Hz, 1H), 3.74 (t, J = 7.1 Hz, 2H), 3.63 (t, J = 6.7 Hz, 2H), 3.22 – 3.10 (m, 4H), 2.91 (s, 6H), 2.90 (s, 7H), 1.88 – 1.72 (m, 8H), 1.60 – 1.42 (m, 6H). ¹³C NMR (101 MHz, cd₃od) δ 163.27 (TFA), 162.91 (TFA), 161.37, 155.22, 144.94, 130.31, 121.95, 119.56 (TFA), 118.90, 116.63 (TFA), 114.61, 111.00, 58.88, 58.83, 43.39, 43.35, 43.18, 42.13, 29.39, 29.20, 27.66, 27.21, 25.55, 25.22, 24.70. MS(ES+) m/z 446.3 [M + H]⁺.

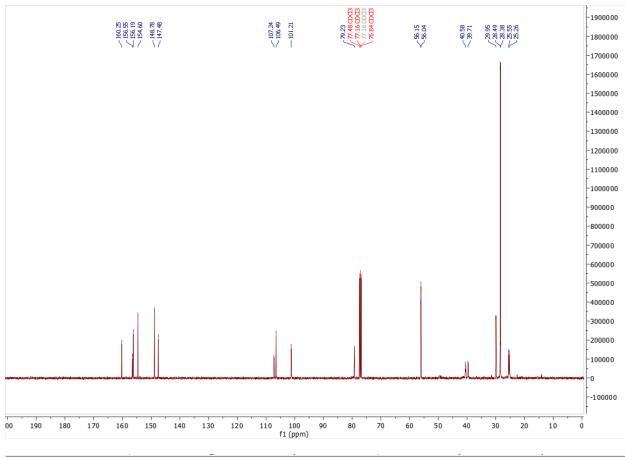


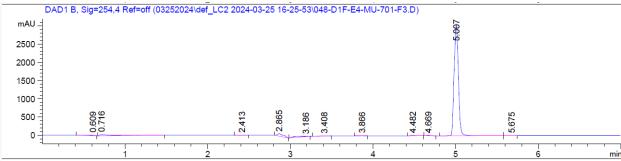

$$H_2N$$
 H_2N
 H_3N
 H_4N
 H_5
 H_5

N^4 -(6-(dimethylamino)hexyl)- N^2 -(5-(dimethylamino)pentyl)quinazoline-2,4,6-triamine • 3 TFA salts (Intermediate 4)

In a round-bottom flask containing **Intermediate 3** (342 mg, 1.0 eq.) in 3.7 mL of MeOH, 10 % palladium on carbon (82 mg, 0.1 eq.) was added. A H₂ balloon was fitted on the

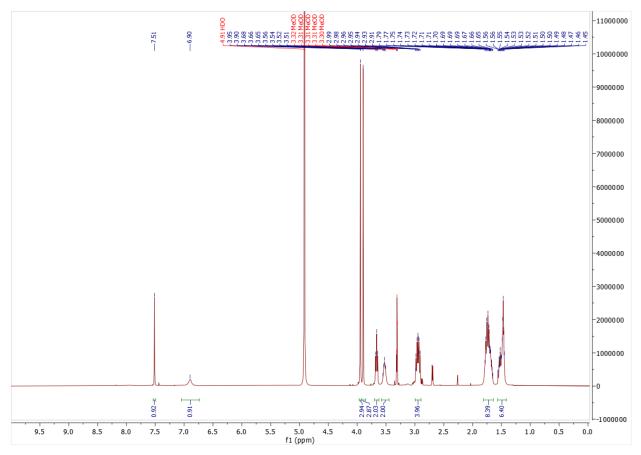

flask after removing the air. The mixture was stirred at room temperature overnight. After reaction completion, the mixture was filtered over celite using MeOH for rinsing and then the solvent was removed under reduced pressure. This yielded the desired compound as a brown oil (556 mg, 96%) as a TFA salt. 1 H NMR (400 MHz, cd₃od) δ 7.36 (s, 1H), 7.33 – 7.22 (m, 2H), 3.66 (t, J = 7.1 Hz, 2H), 3.51 (t, J = 7.0 Hz, 2H), 3.18 – 3.07 (m, 4H), 2.88 (s, 6H), 2.87 (s, 6H), 1.84 – 1.68 (m, 8H), 1.54 – 1.39 (m, 6H). MS(ES+) m/z 416.4 [M + H]⁺.

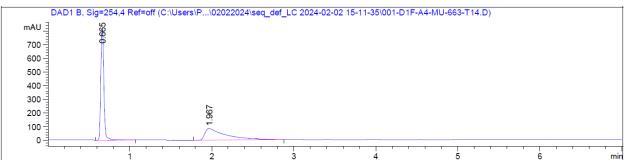




tert-butyl (6-((2-chloro-6,7-dimethoxyquinazolin-4-yl)amino)hexyl)carbamate (Intermediate 5)

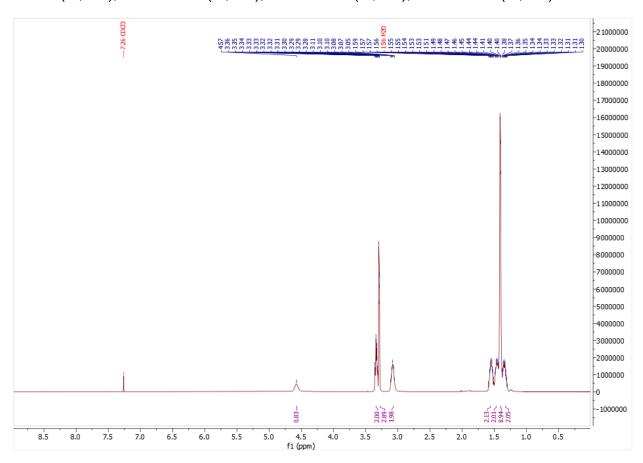
In a scintillation vial containing 2,4-dichloro-6.7-dimethoxyquinazoline (100 mg, 1.0 eq.) in 0.48 mL of DMF, *N*-Boc-1,6-diaminohexane (95 µL, 1.1 eq.) and DIPEA (134 µL, 2.0 eq.) were added. The mixture was stirred at room temperature for 2 h. The solvent was removed under pressure. Flash chromatography (0 to 100% EtOAc in Hex) yielded the desired product as a white solid (158 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.09 – 7.02 (m, 1H), 3.92 (d, J = 7.2 Hz, 6H), 3.65 – 3.55 (m, 2H), 3.12 (q, J = 6.5 Hz, 2H), 1.65 (p, J = 6.9 Hz, 2H), 1.50 – 1.40 (m, 11H), 1.39 – 1.25 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 160.25, 156.55, 156.19, 154.60, 148.78, 147.48, 107.24, 106.49, 101.21, 79.23, 56.15, 56.04, 40.58, 39.71, 29.95, 28.49, 28.38, 25.55, 25.26. MS(ES+) m/z 439.2 [M + H]⁺.

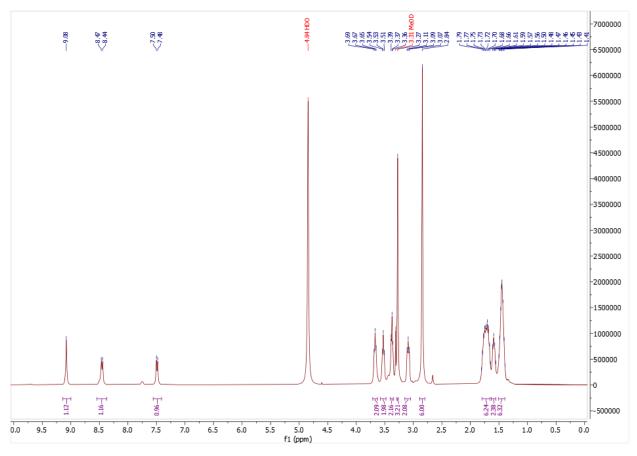


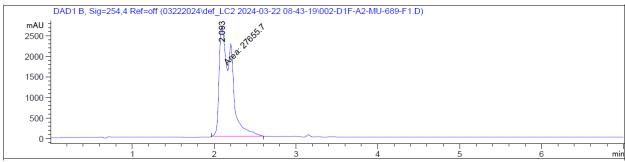


N^4 -(6-aminohexyl)- N^2 -(5-aminopentyl)-6,7-dimethoxyquinazoline-2,4-diamine • 3 TFA salts (Intermediate 6)

In a microwave vial containing **Intermediate 5** (215 mg, 1.0 eq.) in 0.61 mL of IPA, *N*-Boc-1.5-diaminohexane (123 μ L, 1.2 eq.) and DIPEA (171 μ L, 2.0 eq.) were added. The mixture was heated at 160 °C for 2 h under microwave irradiation. The solvent was then

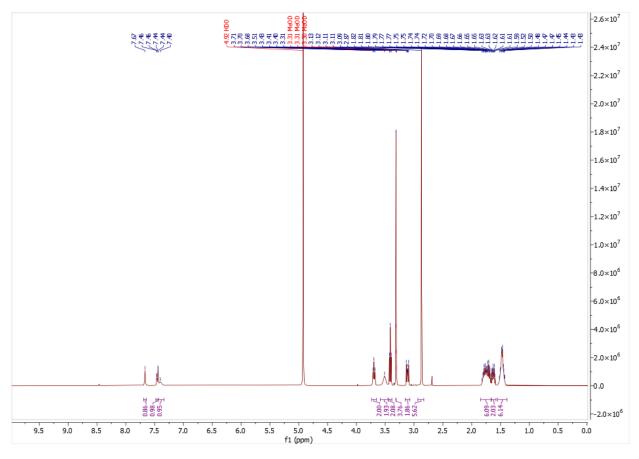

removed under reduced pressure. The crude mixture was dissolved in 3.7 mL of DCM and TFA (378 μ L, 10 eq.) was added. The mixture was stirred at room temperature overnight. The solvent was then removed under reduced pressure. Flash chromatography (5 to 100% MeOH in 0.1% TFA in H₂O) yielded the desired product as a yellow oil (99 mg, 50%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 7.51 (s, 1H), 6.90 (s, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.66 (t, J = 7.1 Hz, 2H), 3.58 – 3.45 (m, 2H), 3.00 – 2.89 (m, 4H), 1.81 – 1.64 (m, 8H), 1.57 – 1.41 (m, 6H). MS(ES+) m/z 405.3 [M + H]⁺.

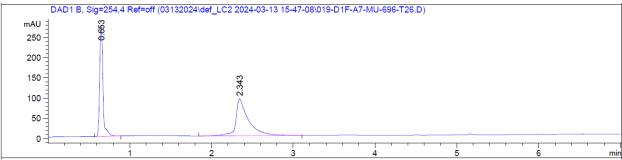

tert-butyl (5-methoxypentyl)carbamate (Intermediate 7)


To a round-bottom flask containing *tert*-butyl (5-hydroxypentyl)carbamate (300 mg, 1.0 eq.) in 6.0 mL of anhydrous THF, 60% NaH in mineral oil (70.8 mg, 1.2 eq.) and methyl iodide (111 μ L, 1.0 eq.) were added. The mixture was stirred at room temperature overnight under nitrogen. TLC (30% EtOAc in hexane with KMnO₄ stain) showed reaction completion. A saturated aqueous solution of NH₄Cl was added to the mixture and extracted with EtOAc. The organic fractions were combined, dried over MgSO₄ and the solvent was removed under reduced pressure. Flash chromatography (0 to 50% EtOAc in hexane) yielded **Intermediate 7** as a transparent oil (316 mg, 98%). ¹H NMR (400 MHz, CDCl3) δ 4.57 (s, 1H), 3.37 – 3.31 (m, 2H), 3.31 – 3.24 (m, 3H), 3.13 – 3.00 (m, 2H), 1.61 – 1.51 (m, 2H), 1.51 – 1.44 (m, 2H), 1.44 – 1.37 (m, 9H), 1.38 – 1.27 (m, 2H).

N^4 -(6-(dimethylamino)hexyl)- N^2 -(5-methoxypentyl)-6-nitroquinazoline-2,4-diamine • 2 TFA salts (Intermediate 8)

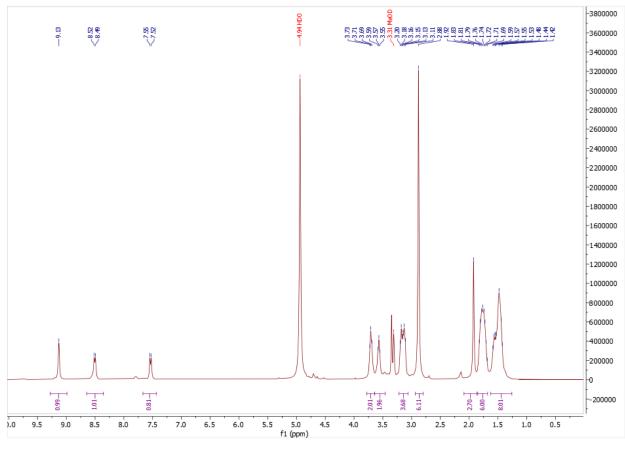
In a round-bottom flask, Intermediate 7 (315.5 mg, 1.0 eq.) was dissolved in 10.0 mL of DCM. TFA (1.1 mL, 10 eq.) was then added. The mixture was stirred at room temperature overnight. The solvent and TFA were then removed under reduced pressure yielding 5methoxypentan-1-amine as a transparent oil (257 mg, 77%). Then, crude 5methoxypentan-1-amine (120.0 mg, 1.1 eq.) and Intermediate 1 (200.0 mg, 1.0 eq.) were dissolved in 1.2 mL of IPA in a microwave vial. DIPEA (164 µL, 2.0 eq.) was then added and the mixture was heated at 160 °C for 2 h under microwave irradiation. The solvent was removed under reduced pressure. The crude mixture was dissolved in 1.2 mL of DCM, and TFA (364 µL, 10 eq.) was added. The mixture was stirred at room temperature overnight. The solvent and TFA were then removed under reduced pressure. The resulting crude was dissolved in 1.2 mL of MeOH before a 37% formaldehyde solution in water (106 µL, 3.0 eq.) and a drop of acetic acid were added. The mixture was stirred at room temperature for 1 h before sodium triacetoxyborohydride (300 mg, 3.0 eg.) was added partwise. The mixture was stirred at room temperature overnight. The solvent was then removed under reduced pressure. Flash chromatography (5 to 60% MeOH in 0.1% TFA in H₂O) yielded **Intermediate 8** as a transparent oil (77 mg, 25%). ¹H NMR (400 MHz, MeOD) δ 9.08 (s, 1H), 8.45 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 3.67 (t, J = 7.2 Hz, 2H), 3.53 (t, J = 7.1 Hz, 2H), 3.37 (t, J = 6.4 Hz, 2H), 3.27 (s, 3H), 3.09 (t, J = 8.1 Hz, 2H), 2.84 (s, 6H), 1.73 (dh, J = 30.4, 7.0 Hz, 6H), 1.59 (p, J = 6.8 Hz, 2H), 1.45 (dh, J = 15.0, 7.1 Hz, 6H). $MS(ES+) m/z 433.4 [M + H]^+$.

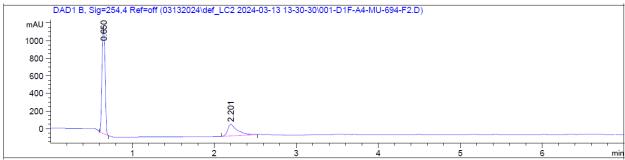



$$H_2N$$
 H_2N
 H_3N
 H_4N
 H_5
 H_5
 H_5
 H_7
 H_7

N^4 -(6-(dimethylamino)hexyl)- N^2 -(5-methoxypentyl)quinazoline-2,4,6-triamine • 2 TFA salts (Intermediate 9)

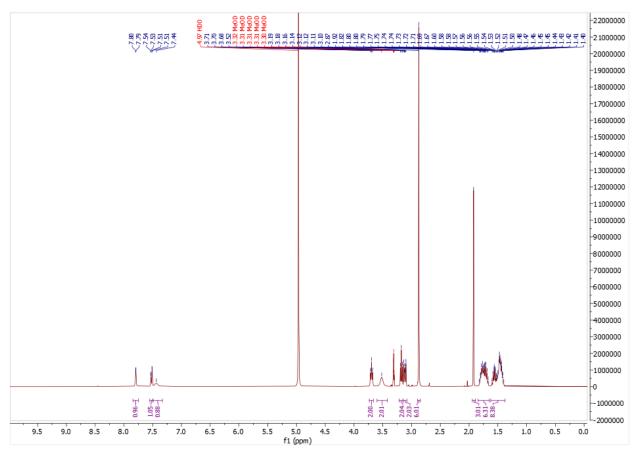
In a round-bottom flask containing **Intermediate 8** (77 mg, 1.0 eq.) in 0.4 mL of MeOH, 10 % palladium on carbon (19 mg, 0.1 eq.) was added. A H₂ balloon was fitted on the

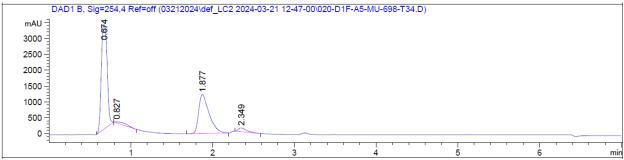

flask after removing the air. The mixture was stirred at room temperature overnight. After reaction completion, the mixture was filtered over celite using MeOH for rinsing and then the solvent was removed under reduced pressure. Flash chromatography (5 to 100% MeOH in 0.1% TFA in H_2O) yielded the desired compound as a brown oil (50 mg, 45%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 7.67 (s, 1H), 7.45 (dd, J = 8.6, 2.3 Hz, 1H), 7.40 (s, 1H), 3.70 (t, J = 7.2 Hz, 2H), 3.51 (s, 2H), 3.41 (t, J = 6.4 Hz, 2H), 3.31 (s, 3H), 3.15 – 3.07 (m, 2H), 2.87 (s, 6H), 1.84 – 1.67 (m, 6H), 1.66 – 1.58 (m, 2H), 1.55 – 1.39 (m, 6H). MS(ES+) m/z 403.4 [M + H]⁺.



N-(5-((4-((6-(dimethylamino)hexyl)amino)-6-nitroquinazolin-2-yl)amino)pentyl)acetamide • 2 TFA salts (Intermediate 10)

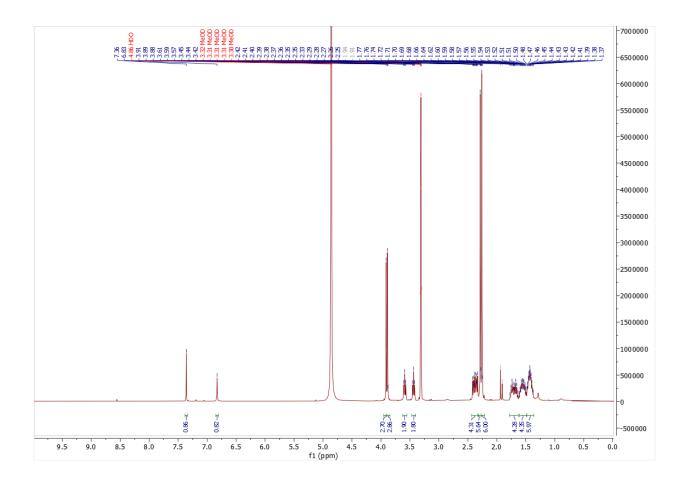
a round-bottom flask, Intermediate 1 (200 mg, 1.0 eq.) aminopentyl)acetamide (134 mg, 1.1 eq.) were dissolved in 1.2 mL of IPA in a microwave vial. DIPEA (164 µL, 2.0 eq.) was then added and the mixture was heated at 160 °C for 2 h under microwave irradiation. The solvent was removed under reduced pressure. The crude mixture was dissolved in 1.2 mL of DCM, and TFA (364 µL, 10 eq.) was added. The mixture was stirred at room temperature overnight. The solvent and TFA were then removed under reduced pressure. The resulting crude was dissolved in 1.2 mL of MeOH before a 37% formaldehyde solution in water (106 µL, 3.0 eq.) and a drop of acetic acid were added. The mixture was stirred at room temperature for 1 h before sodium triacetoxyborohydride (300 mg, 3.0 eg.) was added partwise. The mixture was stirred at room temperature overnight. The solvent was then removed under reduced pressure. Flash chromatography (5 to 100% MeOH in 0.1% TFA in H₂O) yielded **Intermediate 10** as a light yellow oil (150 mg, 46%). 1 H NMR (400 MHz, MeOD) δ 9.13 (s, 1H), 8.50 (d, J= 9.3 Hz, 1H, 7.54 (d, J = 9.1 Hz, 1H), 3.71 (t, J = 7.4 Hz, 2H), 3.57 (t, J = 7.2 Hz, 2H),3.22 - 3.06 (m, 4H), 2.88 (s, 6H), 1.92 (s, 3H), 1.85 - 1.68 (m, 6H), 1.62 - 1.26 (m, 8H).MS(ES+) m/z 460.3 [M + H]⁺.

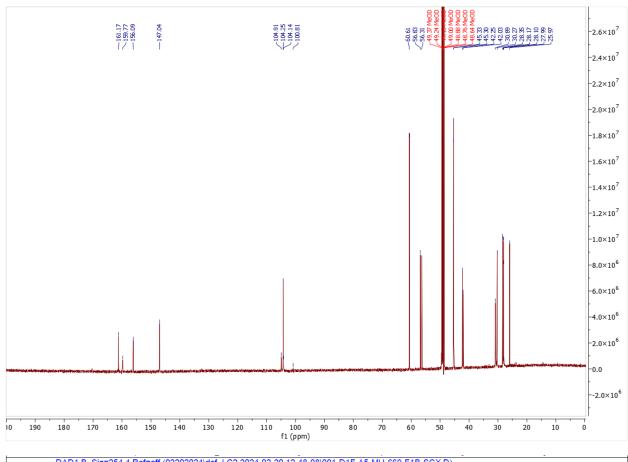


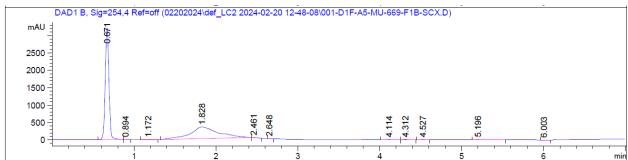


N-(5-((6-amino-4-((6-(dimethylamino)hexyl)amino)quinazolin-2-yl)amino)pentyl)acetamide • 2 TFA salts (Intermediate 11)

In a round-bottom flask containing **Intermediate 10** (150 mg, 1.0 eq.) in 0.8 mL of MeOH, 10 % palladium on carbon (35 mg, 0.1 eq.) was added. A H₂ balloon was fitted on the

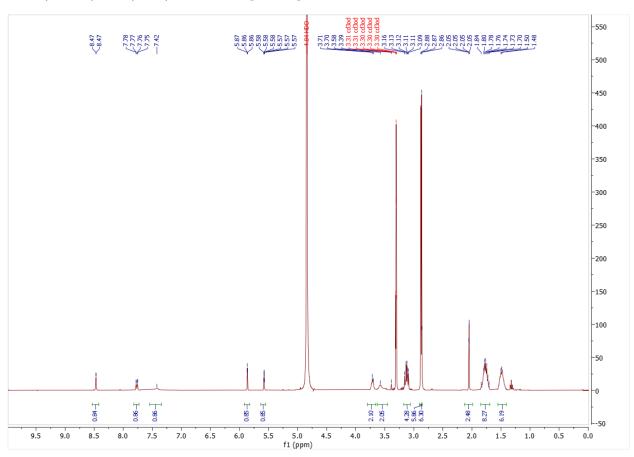

flask after removing the air. The mixture was stirred at room temperature overnight. After reaction completion, the mixture was filtered over celite using MeOH for rinsing and then the solvent was removed under reduced pressure. Flash chromatography (5 to 100% MeOH in 0.1% TFA in H₂O) yielded the desired compound as a light brown oil (78 mg, 36%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 7.79 (s, 1H), 7.52 (dd, J = 8.8, 2.3 Hz, 1H), 7.44 (s, 1H), 3.70 (t, J = 7.2 Hz, 2H), 3.52 (s, 2H), 3.18 (t, J = 7.0 Hz, 2H), 3.15 – 3.08 (m, 2H), 2.87 (s, 6H), 1.92 (s, 3H), 1.84 – 1.65 (m, 6H), 1.62 – 1.37 (m, 8H). MS(ES+) m/z 430.4 [M + H]⁺.

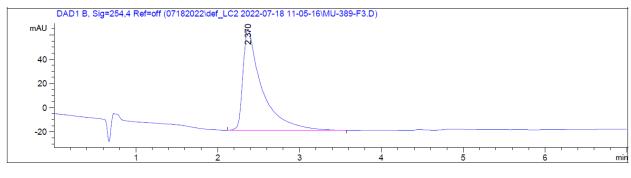




N^4 -(6-(dimethylamino)hexyl)- N^2 -(5-(dimethylamino)pentyl)-6,7-dimethoxyquinazoline-2,4-diamine • 3 TFA salts (UNC6535)

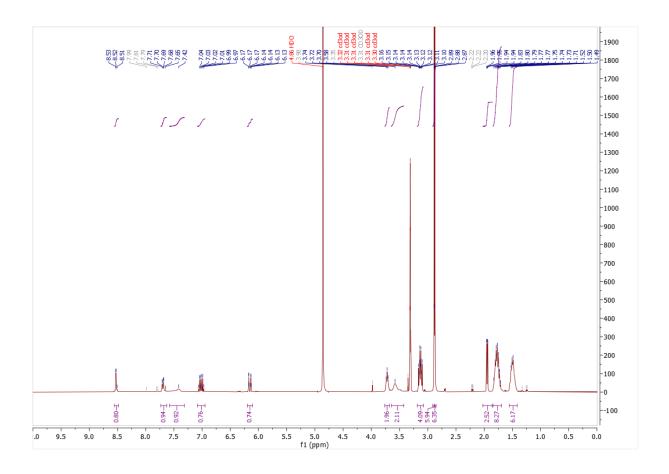
In a round-bottom flask containing **Intermediate 6** (99 mg, 1.0 eq.) in 1.2 mL of MeOH, a 37% formaldehyde solution in H₂O (110 µL, 6.0 eq.) was added. The mixture was stirred at room temperature for 1 h before sodium triacetoxyborohydride (416 mg, 8.0 eq.) was added partwise. The mixture was stirred at room temperature overnight. Water and MeOH were then added to the mixture before flash chromatography loading. Flash chromatography (5 to 100% MeOH in 0.1% TFA in H₂O) followed by semi-prep HPLC (5 to 50% MeOH in 0.05% TFA in H₂O) and strong cation exchange desalting (MeOH followed by 10% NH3 in MeOH) yielded the desired product as a yellow oil (4 mg, 3%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 7.36 (s, 1H), 6.83 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.59 (t, J = 7.2 Hz, 2H), 3.44 (t, J = 7.0 Hz, 2H), 2.43 – 2.33 (m, 4H), 2.29 (s, 6H), 2.26 (s, 6H), 1.78 – 1.63 (m, 4H), 1.61 – 1.49 (m, 4H), 1.48 – 1.36 (m, 6H). ¹³C NMR (176 MHz, MeOD) δ 161.17, 159.77, 156.09, 147.04, 104.91, 104.25, 104.14, 100.81, 60.61, 56.83, 56.31, 45.33, 45.30, 42.25, 42.03, 30.89, 30.27, 28.35, 28.17, 28.10, 27.99, 25.97. MS(ES+) m/z 461.4 [M + H]⁺.

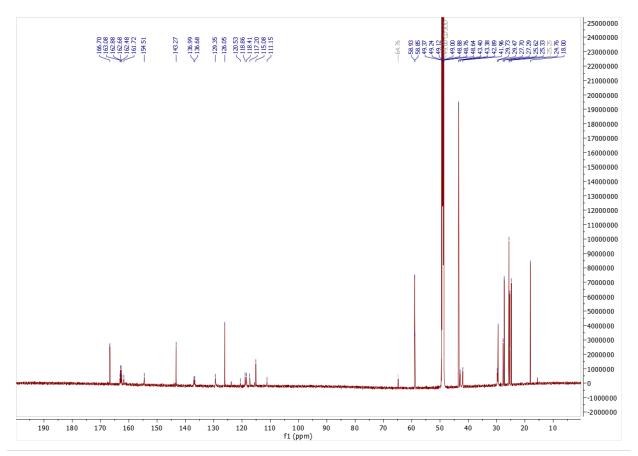


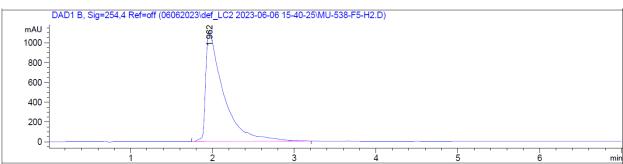


N-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)methacrylamide • 3 TFA salts (UNC10014 (1))

UNC10014 was obtained by following General Procedure 1 using **Intermediate 4** and methacryloyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a yellow oil (1 mg, 2%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.47 (d, J = 2.2 Hz, 1H), 7.77 (dd, J = 8.9, 2.2 Hz, 1H), 7.42 (s, 1H), 5.92 – 5.82 (m, 1H), 5.58 (td, J = 1.7, 0.9 Hz, 1H), 3.70 (t, J = 6.3 Hz, 2H), 3.58 (s, 2H), 3.17 – 3.06 (m, 4H), 2.88 (s, 6H), 2.87 (s, 6H), 2.06 – 2.04 (m, 2H), 1.85 – 1.69 (m, 8H), 1.55 – 1.41 (m, 6H). MS(ES+) m/z 484.4 [M + H]⁺.

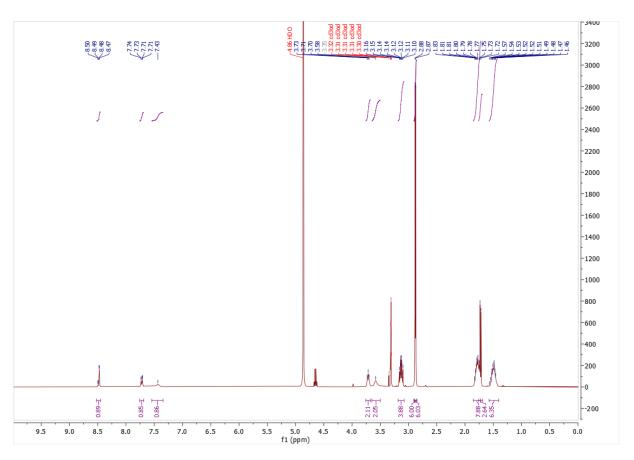


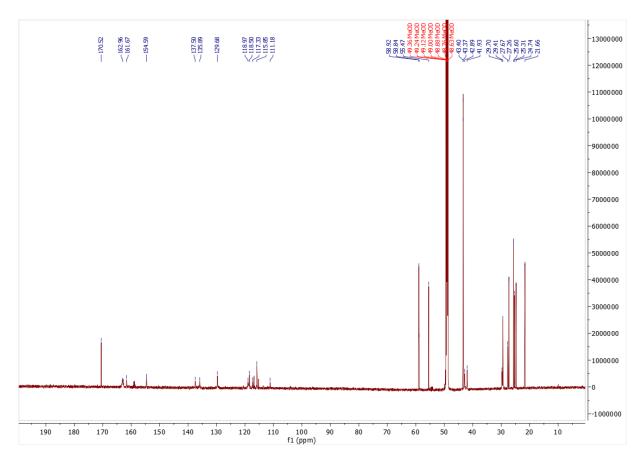


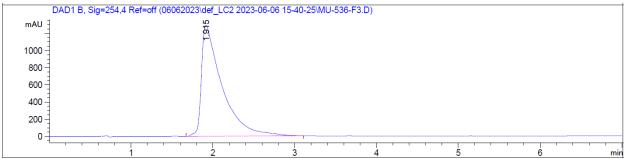

(*E*)-*N*-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)but-2-enamide • 3 TFA salts (UNC10016 (2))

UNC10016 was obtained by following General Procedure 1 using **Intermediate 4** and (*E*)-but-2-enoyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) followed by semi-prep HPLC purification (5% to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a yellow solid (7.0 mg, 20%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.53 (d, J = 2.2 Hz, 1H), 7.69 (dd, J = 9.0, 2.2 Hz, 1H), 7.42 (s, 1H), 7.08 – 6.95 (m, 1H), 6.15 (dq, J = 15.2, 1.5 Hz, 1H), 3.72 (t, J = 6.7 Hz, 2H), 3.58 (m, 2H), 3.19 – 3.08 (m, 4H), 2.88 (s, 6H), 2.87 (s, 6H), 1.95 (dd, J = 6.9, 1.7 Hz, 3H), 1.84 – 1.69 (m, 8H), 1.56 – 1.42 (m, 6H). ¹³C NMR (176 MHz, MeOD) δ 166.70, 162.78 (q, TFA), 161.72, 154.51, 143.27, 136.99, 136.68, 129.35, 126.05, 120.53 (TFA), 118.86 (TFA), 118.41, 117.20 (TFA), 115.51 (TFA), 115.08, 111.15, 58.93, 58.85, 43.40, 43.38, 42.89, 41.96, 29.73, 29.47, 27.70, 27.29, 25.62, 25.33, 24.76, 18.00. MS(ES+) m/z 484.3 [M + H]⁺.

Note: IPA in NMR

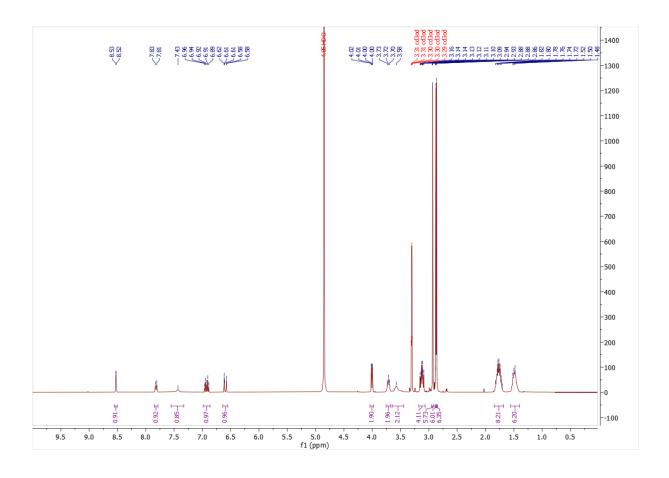


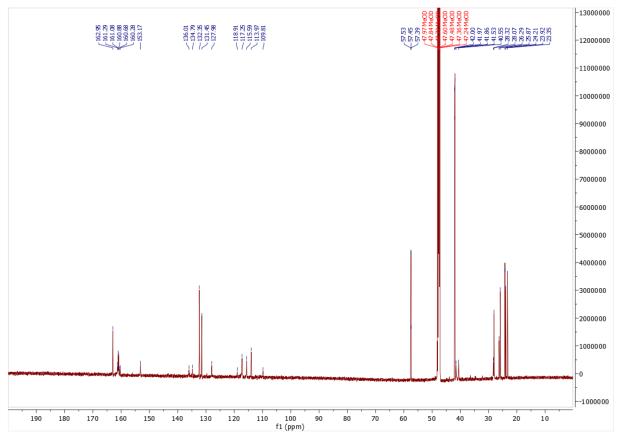


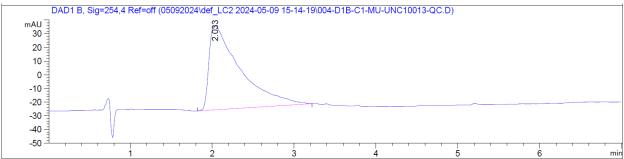

$$\begin{array}{c|c}
O & & & & & \\
N & & & \\$$

2-chloro-*N*-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)propenamide • 3 TFA salts (UNC9846 (3))

UNC9846 was obtained by following General Procedure 1 using **Intermediate 4** and 2-chloropropanoyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a light yellow oil (9 mg, 24%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.47 (d, J = 2.2 Hz, 1H), 7.72 (dd, J = 8.9, 2.2 Hz, 1H), 7.43 (s, 1H), 3.71 (t, J = 6.6 Hz, 2H), 3.58 (s, 2H), 3.19 – 3.08 (m, 4H), 2.88 (s, 6H), 2.87 (s, 6H), 1.85 – 1.73 (m, 8H), 1.72 (d, J = 6.7 Hz, 3H), 1.57 – 1.40 (m, 6H). ¹³C NMR (176 MHz, MeOD) δ 170.52, 162.96 (q, TFA), 161.67, 154.59, 137.50, 135.89, 129.68, 118.97 (TFA), 118.50, 117.33 (TFA), 115.85, 111.18, 58.92, 58.84, 55.47, 43.40, 43.37, 42.89, 41.93, 29.70, 29.41, 27.67, 27.26, 25.60, 25.31, 24.74, 21.66. MS(ES+) m/z 506.3 [M + H]⁺.

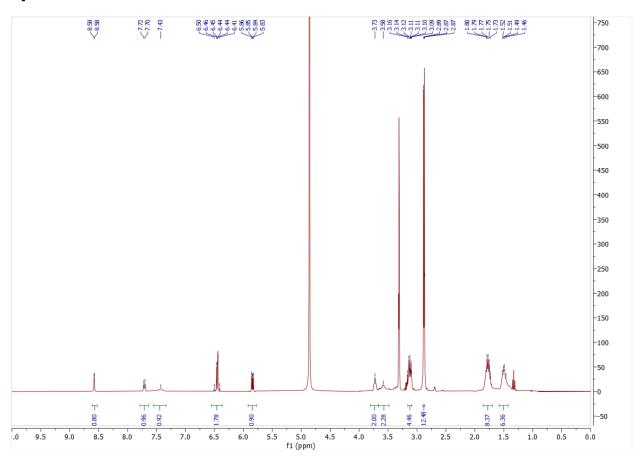


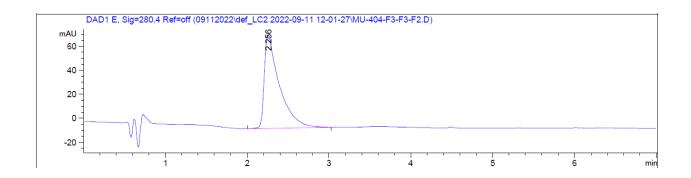




(*E*)-4-(dimethylamino)-*N*-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)but-2-enamide • 4 TFA salts (UNC10013 (4))

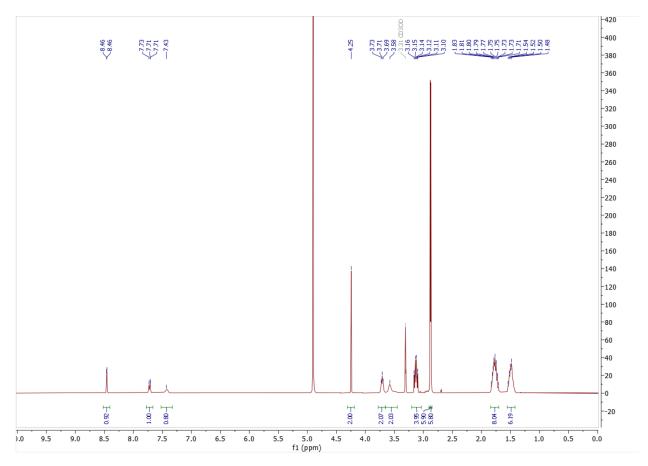
UNC10013 was obtained by following General Procedure 2 using **Intermediate 4** and (*E*)-4-(dimethylamino)but-2-enoic acid hydrochloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) followed by semi-prep HPLC purification (5% to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a brown oil (11 mg, 29%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.53 (d, J = 2.2 Hz, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.43 (s, 1H), 6.92 (dt, J = 15.0, 7.2 Hz, 1H), 6.60 (dd, J = 15.0, 1.3 Hz, 1H), 4.01 (dd, J = 7.2, 1.2 Hz, 2H), 3.72 (t, J = 7.0 Hz, 2H), 3.58 (s, 2H), 3.18 – 3.07 (m, 4H), 2.93 (s, 6H), 2.88 (s, 6H), 2.86 (s, 6H), 1.85 – 1.68 (m, 8H), 1.56 – 1.40 (m, 6H). ¹³C NMR (176 MHz, MeOD) δ 162.95, 160.98 (q, TFA), 160.28, 153.17, 136.01, 134.79, 132.35, 131.45, 127.98, 118.91 (TFA) 117.25, 117.11 (TFA), 115.59 (TFA), 113.97, 109.81, 57.53, 57.45, 57.39, 42.00, 41.97, 41.86, 41.53, 40.55, 28.32, 28.07, 26.29, 25.87, 24.21, 23.92, 23.35. MS(ES+) m/z 527.4 [M + H]⁺.

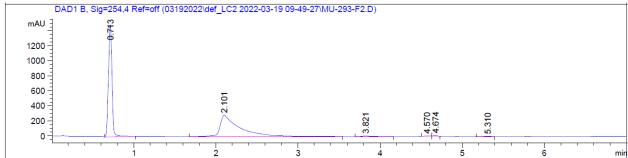




N-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)acrylamide • 3 TFA salts (UNC10015 (5))

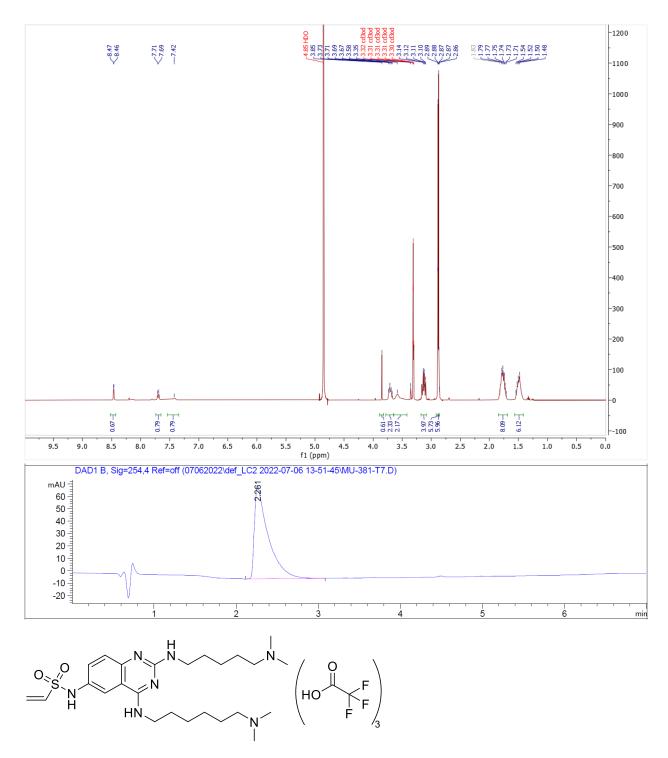
UNC10015 was obtained by following General Procedure 1 using **Intermediate 4** and acryloyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) followed by semi-prep HPLC purification (5% to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a light brown oil (1.4 mg, 4%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.58 (d, J = 2.2 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.43 (s, 1H), 6.51 – 6.40 (m, 2H), 5.84 (dd, J = 8.1, 3.7 Hz, 1H), 3.73 (t, J = 6.5 Hz, 2H), 3.58 (m, 2H), 3.16 – 3.09 (m, 4H), 2.89 (s, 6H), 2.87 (s, 6H), 1.86 – 1.70 (m, 8H), 1.56 – 1.43 (m, 6H). MS(ES+) m/z 470.3 [M + H]⁺.



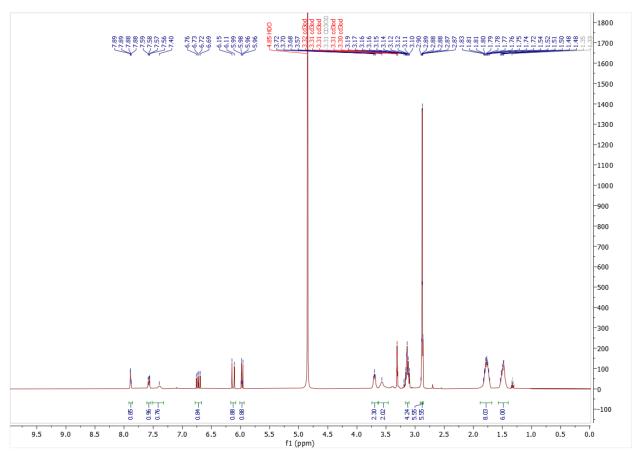


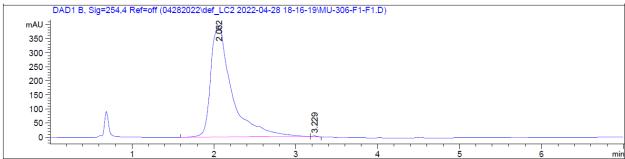
$$\begin{array}{c|c} O & & & \\$$

2-chloro-*N*-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)acetamide • 3 TFA salts (UNC9569 (6))


UNC9569 was obtained by following General Procedure 1 using **Intermediate 4** and 2-chloroacetyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a brown oil (14 mg, 17%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.46 (d, J = 2.2 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.52 – 7.33 (m, 1H), 4.25 (s, 2H), 3.71 (t, J = 7.0 Hz, 2H), 3.58 (s, 2H), 3.18 – 3.07 (m, 4H), 2.88 (s, 6H), 2.87 (s, 6H), 1.84 – 1.70 (m, 8H), 1.56 – 1.42 (m, 6H). MS(ES+) m/z 492.3 [M + H]⁺.

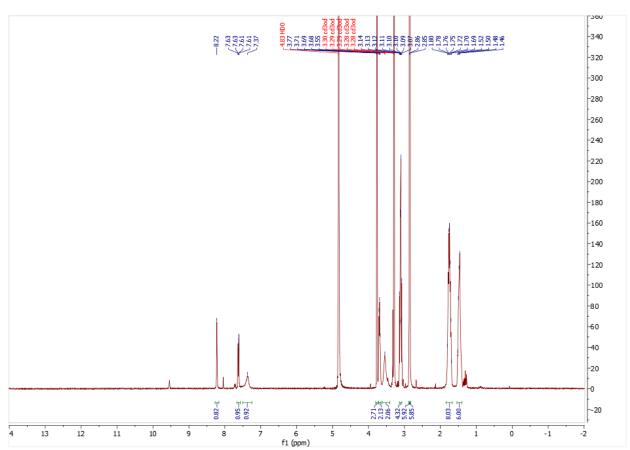
N-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)propiolamide • 3 TFA salts (UNC9970 (7))

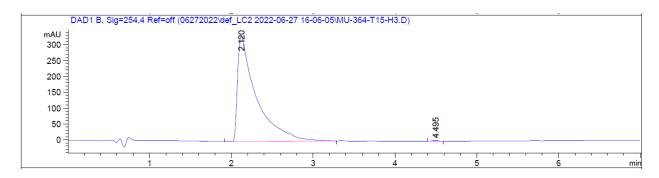

UNC9970 was obtained by following General Procedure 2 using **Intermediate 4** and propiolic acid. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a yellow oil (2 mg, 5%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.46 (d, J = 2.1 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.42 (s, 1H), 3.85 (s, 1H), 3.78 – 3.64 (m, 2H), 3.58 (s, 2H), 3.18 – 3.08 (m, 4H), 2.89 (s, 6H), 2.87 (s, 6H), 1.85 – 1.69 (m, 8H), 1.57 – 1.41 (m, 6H). MS(ES+) m/z 468.3 [M + H]⁺.



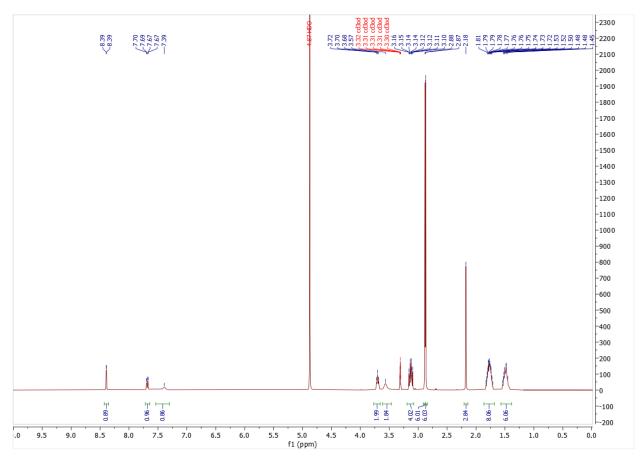
N-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)ethenesulfonamide • 3 TFA salts (UNC9773 (8))

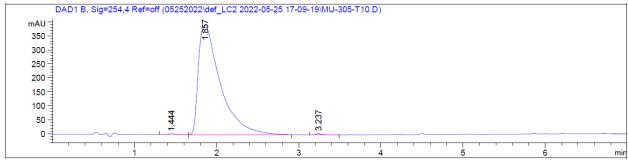
UNC9773 was obtained by following General Procedure 1 using **Intermediate 4** and chloromethanesulfonyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H_2O) yielded the desired product as a light yellow oil (16 mg, 29%) as a TFA salt. ¹H NMR


 $(400 \text{ MHz}, \text{ MeOD}) \delta 7.88 \text{ (d, } J = 2.1 \text{ Hz}, \text{ 1H)}, 7.57 \text{ (dd, } J = 8.8, 2.3 \text{ Hz}, \text{ 1H)}, 7.40 \text{ (s, 1H)}, 6.72 \text{ (dd, } J = 16.5, 10.0 \text{ Hz}, \text{ 1H)}, 6.13 \text{ (d, } J = 16.5 \text{ Hz}, \text{ 1H)}, 5.97 \text{ (d, } J = 10.0 \text{ Hz}, \text{ 1H)}, 3.70 \text{ (t, } J = 7.2 \text{ Hz}, \text{ 2H)}, 3.57 \text{ (s, 2H)}, 3.17 - 3.10 \text{ (m, 4H)}, 2.88 \text{ (s, 6H)}, 2.87 \text{ (s, 6H)}, 1.88 - 1.68 \text{ (m, 8H)}, 1.57 - 1.40 \text{ (m, 6H)}. MS(ES+) m/z 506.3 \text{ [M + H]}^+.$



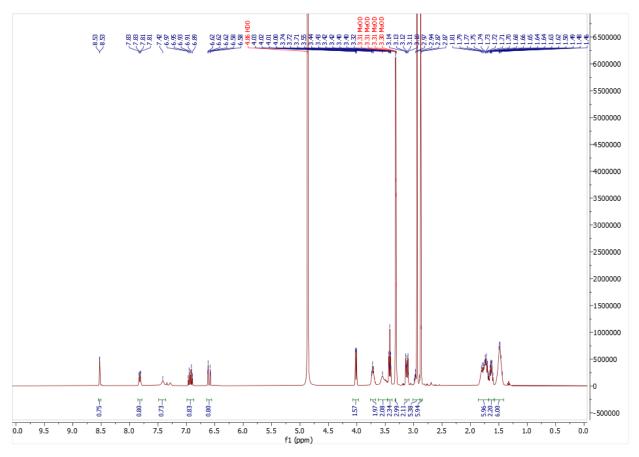
Methyl (4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)carbamate • 3 TFA salts (UNC9847 (9))

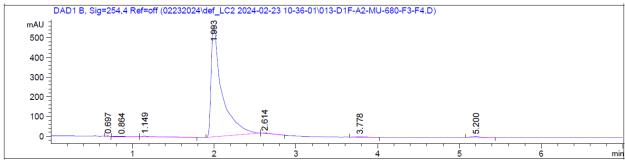

UNC9847 was obtained by following General Procedure 1 using **Intermediate 4** and methyl chloroformate. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H_2O) yielded the desired product as a light yellow oil (10.2 mg, 17%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.22 (s, 1H), 7.62 (dd, J = 8.9, 2.2 Hz, 1H), 7.37 (s, 1H), 3.77 (s, 3H), 3.72 – 3.65 (m, 2H), 3.55 (s, 2H), 3.14 – 3.07 (m, 4H), 2.86 (s, 6H), 2.85 (s, 6H), 1.84 – 1.67 (m, 8H), 1.54 – 1.40 (m, 6H). MS(ES+) m/z 474.4 [M + H]⁺.



N-(4-((6-(dimethylamino)hexyl)amino)-2-((5-(dimethylamino)pentyl)amino)quinazolin-6-yl)acetamide • 3 TFA salts (UNC9774 (10))

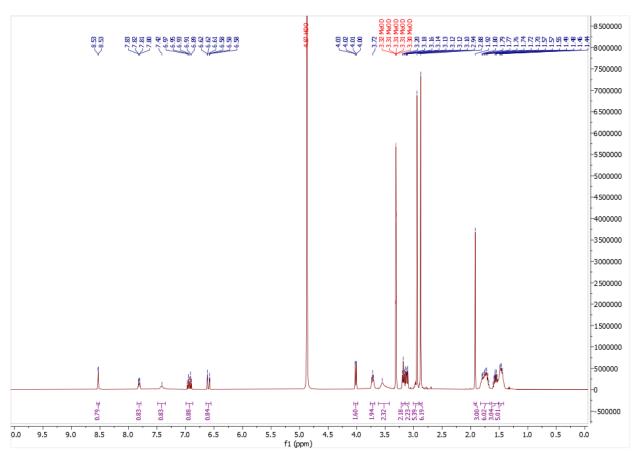
UNC9774 was obtained by following General Procedure 1 using **Intermediate 4** and acetyl chloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a yellow oil (31 mg, 30%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.39 (d, J = 2.2 Hz, 1H), 7.68 (dd, J = 8.9, 2.2 Hz, 1H), 7.39 (s, 1H), 3.70 (t, J = 7.0 Hz, 2H), 3.57 (s, 2H), 3.19 – 3.08 (m, 4H), 2.88 (s, 6H), 2.87 (s, 6H), 2.18 (s, 3H), 1.86 – 1.68 (m, 8H), 1.57 – 1.39 (m, 6H). MS(ES+) m/z 458.3 [M + H]⁺.

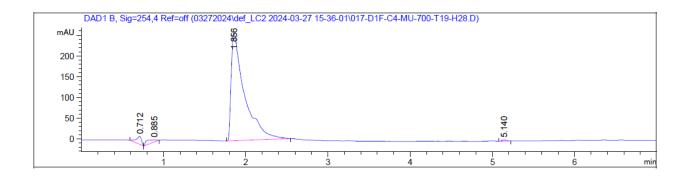



$$\begin{array}{c|c}
 & O \\
 & N \\$$

(E)-4-(dimethylamino)-N-(4-((6-(dimethylamino)hexyl)amino)-2-((5-methoxypentyl)amino)quinazolin-6-yl)but-2-enamide • 3 TFA salts (UNC11277 (11))

UNC11277 was obtained by following General Procedure 2 using **Intermediate 9** and (E)-4-(dimethylamino)but-2-enoic acid hydrochloride. Flash chromatography (10 to 50% MeOH in 0.1% TFA in H₂O) followed by semi-prep HPLC purification (5% to 50% MeOH in 0.1% TFA in H₂O) yielded the desired product as a dark brown oil (8.2 mg, 12%) as a


TFA salt. 1 H NMR (400 MHz, MeOD) δ 8.53 (d, J = 2.2 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.42 (s, 1H), 6.93 (dt, J = 14.8, 7.3 Hz, 1H), 6.60 (dt, J = 15.2, 1.3 Hz, 1H), 4.01 (dd, J = 7.3, 1.3 Hz, 2H), 3.76 – 3.67 (m, 2H), 3.55 (s, 2H), 3.42 (t, J = 6.4 Hz, 2H), 3.16 – 3.08 (m, 2H), 2.94 (s, 6H), 2.87 (s, 6H), 1.86 – 1.68 (m, 6H), 1.68 – 1.59 (m, 2H), 1.58 – 1.42 (m, 6H). MS(ES+) m/z 514.4 [M + H]⁺.



(E)-N-(2-((5-acetamidopentyl)amino)-4-((6-(dimethylamino)hexyl)amino)quinazolin-6-yl)-4-(dimethylamino)but-2-enamide • 3 TFA salts (UNC11366 (12))

UNC11366 was obtained by following General Procedure 2 using **Intermediate 11** and (*E*)-4-(dimethylamino)but-2-enoic acid hydrochloride. Flash chromatography (10 to 80% MeOH in 0.1% TFA in H₂O) followed by semi-prep HPLC purification (5% to 80% MeOH in 0.05% TFA in H₂O) yielded the desired product as a dark brown oil (9.0 mg, 9%) as a TFA salt. ¹H NMR (400 MHz, MeOD) δ 8.53 (d, J = 2.2 Hz, 1H), 7.82 (dd, J = 9.0, 2.2 Hz, 1H), 7.42 (s, 1H), 6.93 (dt, J = 14.8, 7.3 Hz, 1H), 6.60 (dt, J = 15.3, 1.3 Hz, 1H), 4.02 (dd, J = 7.3, 1.3 Hz, 2H), 3.72 (t, J = 7.4 Hz, 2H), 3.55 (s, 2H), 3.18 (t, J = 7.0 Hz, 2H), 3.15 – 3.08 (m, 2H), 2.94 (s, 6H), 2.88 (s, 6H), 1.92 (s, 3H), 1.83 – 1.66 (m, 6H), 1.63 – 1.51 (m, 3H), 1.51 – 1.42 (m, 5H). MS(ES+) m/z 541.4 [M + H]⁺.

2. Crystallography

Table 1. Data collection and refinement statistics.

	SETDB1-UNC10013	SETDB1-UNC10016	SETDB1-UNC6535			
PDB code	9CUW	9CUX	8G5E			
Data collection						
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁			
Cell dimensions						
a, b, c (Å)	37.15, 55.13, 118.37	52.83,60.66,70.01	54.01,62.00,69.34			
a, b, g (°)	90.0, 90.0, 90.0	90.0,90.0,90.0	90.0,90.0,90.0			
Resolution (Å)	50.0-1.53 (1.56-1.53) *	50.0-1.27 (1.29-1.27)	50.0-1.98 (2.01-1.98) *			
R _{sym} or R _{merge}	0.087 (0.938)	0.052(0.916)	0.102(0.677)			
CC1/2	0.996(0.832)	1.000(0.719)	0.993(0.724)			
l/sl	30.3(2.0)	43.4(2.0)	16.0(1.8)			
Completeness (%)	100.0(100.0)	100.0(99.9)	97.2(90.0)			
Redundancy	12.2(11.2)	11.7(8.5)	5.0(3.9)			
Refinement						
Resolution (Å)	40.37-1.53 (1.57-1.53)	45.89-1.27 (1.30-1.27)	31.02-1.98 (2.03-1.98)			
No. reflections	36104	57040	15452			
Rwork / Rfree(%)	16.2/19.5	15.9/18.1	20.0/24.9			
No. atoms	2058	2174	1874			
Protein	1783	1831	1734			
Ligand/ion	38	35	33			
Water	237	308	100			
B-factors	26.7	16.5	28.2			
Protein	24.9	14.1	27.9			
Ligand/ion	29.9	12.6	37.5			
Water	38.7	29.4	29.7			
R.m.s. deviations						
Bond lengths (Å)	0.005	0.005	0.010			
Bond angles (°)	1.22	1.269	1.368			

^{*}Values in parentheses are for highest-resolution shell.

3. Biological Evaluation

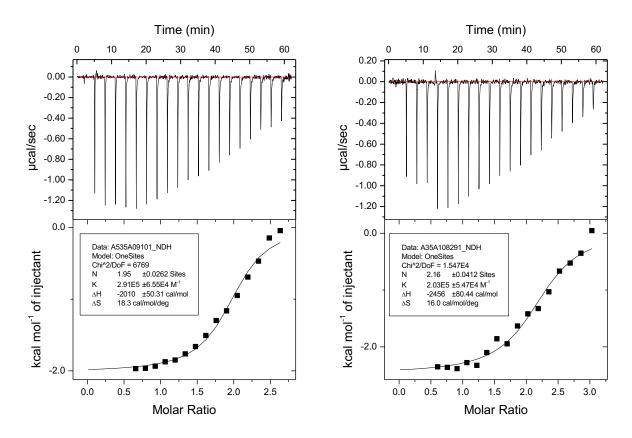


Figure S1. Isothermal titration calorimetry results for UNC6535 and SETDB1 3TD.

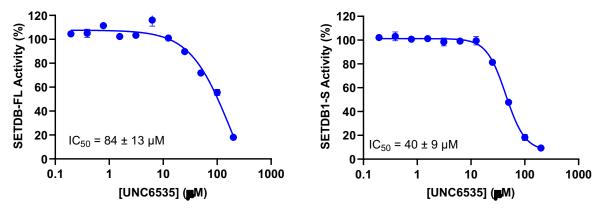


Figure S2. Radiometric methyltransferase activity assay for UNC6535 using SETDB1-FL (aa 1-1291) or SETDB1-S (aa 570-1291). Values are reported as the average of three independent experiments ± s.d.

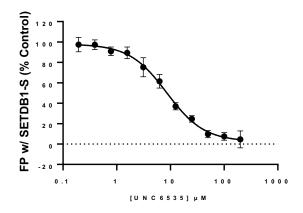


Figure S3. Fluorescence polarization results for UNC6535 using SETDB1-S (aa 570-1291). Values are reported as the average of three independent experiments ± s.d.

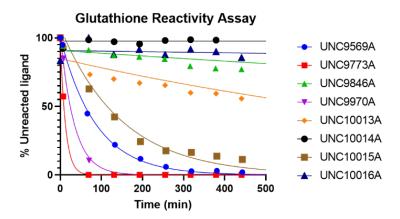


Figure S4. Evaluation of the intrinsic reactivity of 1-8 towards glutathione using LC-MS quantification.

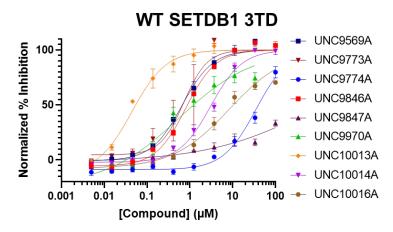


Figure S5. TR-FRET displacement of H3K9Me2K14Ac for 1-8 using the WT SETDB1 3TD.

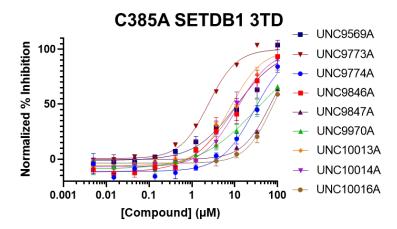


Figure S6. TR-FRET displacement of H3K9Me2K14Ac for 1-8 using C385A SETDB1 3TD.

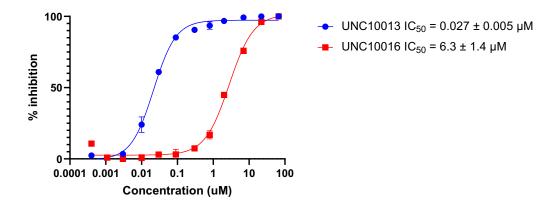


Figure S7. TR-FRET displacement of H3K9Me2K14Ac-modified nucleosome for UNC10013 (4) and UNC10016 (2) using the WT SETDB1 3TD. Values are reported as the average of three independent experiments \pm s.e.m.

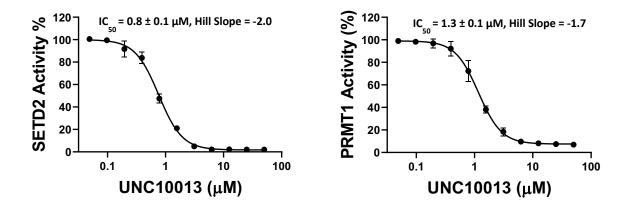


Figure S8. Dose-response evaluation of UNC10013 (4) ability to inhibit the methyltransferase ability of of SETD2 (left) and PRMT1 (right). Values are reported as the average of three independent experiments ± s.d.

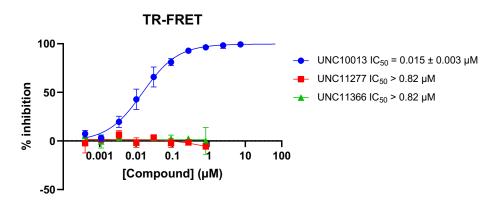


Figure S9. TR-FRET displacement of H3K9Me2K14Ac peptide for UNC10013 (4), UNC11277 (11) and UNC11366 (12) using the WT SETDB1 3TD. Values are reported as the average of three independent experiments \pm s.e.m.

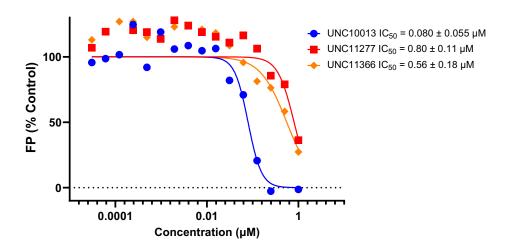


Figure S10. FP displacement of FITC-H3K9Me2K14Ac peptide for UNC10013 (4), UNC11277 (11) and UNC11366 (12) using the WT SETDB1 3TD. Values are reported as the average of three independent experiments \pm s.d.

	% inhibition							
MTase	UNC10	013 (4)	UNC10016 (2)					
	10 μM	50 μM	10 μM	50 μM				
G9A	63	88	25	55				
GLP	57	84	20	53				
SETDB1	2	62	-4	15				
SUV39H1	48	76	32	65				
SUV39H2	5	19	-4	1				
SUV420H1	66	86	28	67				
SUV420H2	42	79	20	57				
SETD7	24	59	17	62				
SETD8	0	3	1	5				
MLL1	7	52	3	16				
MLL3	1	35	12	28				
PRDM9	61	84	47	80				
SETD2	89	97	65	95				
PRC2	52	84	35	72				
SMYD2	48	77	32	63				
SMYD3	2	31	1	2				
PRMT1	93	97	65	93				
PRMT3	79	92	34	86				
PRMT4	52	79	57	78				
PRMT5	8	11	3	3				
PRMT7	46	85	30	69				
PRMT6	80	89	55	82				
PRMT8	51	87	37	73				
PRMT9	57	81	42	70				
DNMT1	3	2	3	1				
BCDIN3D	76	91	53	71				
DNMT3A/3L	-69	6	-80	6				
DNMT3B/3L	-30	-10	-26	-21				
NSD1	-631	-740	-619	-727				
NSD2	-485	-1397	-456	-1497				
NSD3	-920	-1559	-935	-1536				
ASH1L	-708	-1923	-600	-2012				
DOT1L	-613	-4797	-645	-2154				

Table S1. Methyltransferase selectivity evaluation of UNC10013 (**4**) and UNC10016 (**2**). Compounds were tested at 10 and 50 μ M. Light orange shows proteins with 60-80% inhibition, dark orange shows proteins with over 80% inhibition.

Gene Symbol	Site	Protei	Description	Motif	Max Score	Redun dancy	Sequence	Num Quant	Summed S/N, Column Normalized, Scaled to 100 per Site					Site	Ratio
	Positio n	n ID							spike_d mso_1	spike_d mso_2	spike_d mso_3	spike_ 13a_1	spike_ 13a_2	spike_ 13a_3	dmso/13
SETDB1	53	Q150 47	Histone-lysine N- methyltransferase SETDB1	ELEKMDCV QQRKK	5000	R	K.M*DC#VQQR.K	17	9.876776 339	9.610613 557	9.955246 641	10.3504 1232	10.2631 3246	10.3747 6095	0.950120 888
SETDB1	1207	Q150 47	Histone-lysine N- methyltransferase SETDB1	YDGEESCY IIDAK	5000	R	R.QFYDGEESC#YIIDAK.L	13	9.077856 367	9.556721 149	10.28106 705	10.4605 8615	10.1742 2095	10.2643 7786	0.935806 061
SETDB1	773	Q150 47	Histone-lysine N- methyltransferase SETDB1	YKRLEECL PTGVY	361	R	R.LEEC#LPTGVYECNKR.C	12	8.772255 103	8.961067 856	9.605256 119	10.4753 9963	10.3434 8602	10.3331 5177	0.877585 588
SETDB1	92	Q150 47	Histone-lysine N- methyltransferase SETDB1	SRAVTNCE SLVKD	5000	R	R.AVTNC#ESLVK.D	11	9.080563 86	8.770898 737	9.310676 071	9.92169 3944	10.0134 8126	9.67811 8032	0.917227 897
SETDB1	968	Q150 47	Histone-lysine N- methyltransferase SETDB1	SIPVGGCN PPSSE	5000	R	K.DSHPPDLGPPHIPVPPSIPVG GC#NPPSSEETPK.N	11	9.053456 776	9.438923 095	10.10998 795	9.67417 0922	9.80671 6651	9.24318 89	0.995762 835
SETDB1	1226	Q150 47	Histone-lysine N- methyltransferase SETDB1	RYLNHSCS PNLFV	5000	R	R.YLNHSC#SPNLFVQNVFVDT HDLR.F	8	8.581681 042	8.974633 332	9.776665 395	9.05806 2035	9.83156 0861	8.99665 3548	0.980158 818
SETDB1	987	Q150 47	Histone-lysine N- methyltransferase SETDB1	VASWLSCN SVSEG	5000	R	K.VASWLSC#NSVSEGGFADSD SHSSFK.T	7	9.320393 09	9.725080 877	10.02624 672	10.1930 0494	10.5105 2921	9.61984 9844	0.958722 835
SETDB1	1279	Q150 47	Histone-lysine N- methyltransferase SETDB1	EGKELLCC CGAIE	91	R	K.ELLC#CCGAIECR.G	7	7.255197 52	7.481946 682	7.622081 283	8.26742 4393	7.96802 2422	7.77410 9227	0.931263 595
SETDB1	781	Q150 47	Histone-lysine N- methyltransferase SETDB1	PTGVYECN KRCKC	527	R	K.RLEECLPTGVYEC#NK.R	6	8.366958 91	8.094644 555	9.614661 456	9.44607 5842	9.89098 9754	9.56586 0357	0.902201 561
SETDB1	819	Q150 47	Histone-lysine N- methyltransferase SETDB1	KGWGIRCL DDIAK	5000	R	R.C#LDDIAK.G	5	9.838606 155	10.17719 606	10.42702 545	10.5486 9033	10.7684 5894	10.4343 3753	0.958784
SETDB1	385	Q150 47	Histone-lysine N- methyltransferase SETDB1	FLDDKRCE WIYRG	5000	R	K.RC#EWIYR.G	4	21.40699 098	20.51604	20.81732	2.95889 2641	2.86480 8523	2.41045 6234	7.619524 47
SETDB1	876	Q150 47	Histone-lysine N- methyltransferase SETDB1	YESDAPCS SDSSG	5000	R	K.EGYESDAPC#SSDSSGVDLK.	4	9.732942 18	10.39063 026	10.41475 016	10.4520 5187	10.6966 1648	11.0104 557	0.949600 572
SETDB1	753	Q150 47	Histone-lysine N- methyltransferase SETDB1	TIQATACTP GGQI	434	R	K.CACHQLTIQATAC#TPGGQIN PNSGYQYK.R	4	9.618806 929	9.637234 771	11.38156 163	10.8982 2566	11.2378 2446	11.2623 0717	0.917338 63
SETDB1	634	Q150 47	Histone-lysine N-	KTPCGLCL	5000	R	K.TPC#GLC#LR.T	3	8.346620	8.235053	9.565492	8.73478	8.82589 4746	8.24946	1.013057
SETDB1	830	Q150 47	methyltransferase SETDB1 Histone-lysine N- methyltransferase SETDB1	RTMQE AKGSFVCI YAGKI	5000	R	K.GSFVC#IYAGK.I	3	9.166606 848	483 8.581447 717	267 9.799886 743	1537 9.74139 7416	10.4717 1642	9.88363 2825	887 0.915312 928
SETDB1	1281	Q150	Histone-lysine N-	KELLCCCG	76	R	K.ELLCCC#GAIECR.G	3	7.517963	8.455586	9.251699	9.27633	8.77622	8.65602	0.944461
SETDB1	631	47 Q150	methyltransferase SETDB1 Histone-lysine N-	AIECR VIYKTPCG	5000	R	K.TPC#GLC#LR.T	2	9.517943	9.632194	9.951012	9009	9132 10.8190	962 10.7415	759 0.889785
SETDB1	731	47 Q150	methyltransferase SETDB1 Histone-lysine N-	LCLRT FLVGCDCK	104	R	K.GVFINTGPEFLVGCDC#K.D	2	481 8.531805	546 8.053124	462 8.997989	2332 8.27618	6525 8.73971	9.17446	523 0.976806
SETDB1	582	47 Q150	methyltransferase SETDB1 Histone-lysine N-	DGCRD HVCSYTCL	78	R	K.LFYLPHVCSYTC#LSR.V	2	392 7.771469	491 6.965090	086 8.666341	0702 6.64989	3473 7.79831	4798 7.72274	732 1.055565
SETDB1	1280	47 Q150	methyltransferase SETDB1 Histone-lysine N-	SRVRP GKELLCCC	32	R	K.ELLCC#CGAIECR.G	2	48 8.279173	7.914782	9.176674	6095 8.67052	5651 9.13973	865 8.84822	522 0.951690
SETDB1	329	47 Q150	methyltransferase SETDB1 Histone-lysine N-	GAIEC DIEDISCRD	5000	R	K.TWEDIEDISC#R.D	1	78 8.583336	314 8.859819	953 8.484298	0231 7.54480	664 6.86116	3467 6.76487	821 1.224676
SETDB1	693	47 Q150	methyltransferase SETDB1 Histone-lysine N-	FIEE EDVPLSCV	5000	R	K.EDVPLSC#VNEIDTTPPPQVA	1	772 8.397421	255 6.856039	271 9.019210	8044 6.42405	7279 8.53159	9847 8.75740	759 1.023599
SETDB1	578	47 Q150	methyltransferase SETDB1 Histone-lysine N-	NEIDT FYLPHVCS	79	R	YSK.E K.LFYLPHVC#SYTCLSR.V	1	213 9.668985	533 8.849204	001 10.25095	9954 12.6246	6688 11.2332	4195 11.1711	227 0.821294
SEIDBI	9/0	47	methyltransferase SETDB1	YTCLS	19	ĸ	N.LFTLPHVU#3TTCL3R.V	1	687	591	641	2888	1664	7916	539

Table S2. Cysteine-targeted activity-based protein profiling data for the detected 23 cysteines of SETDB1.