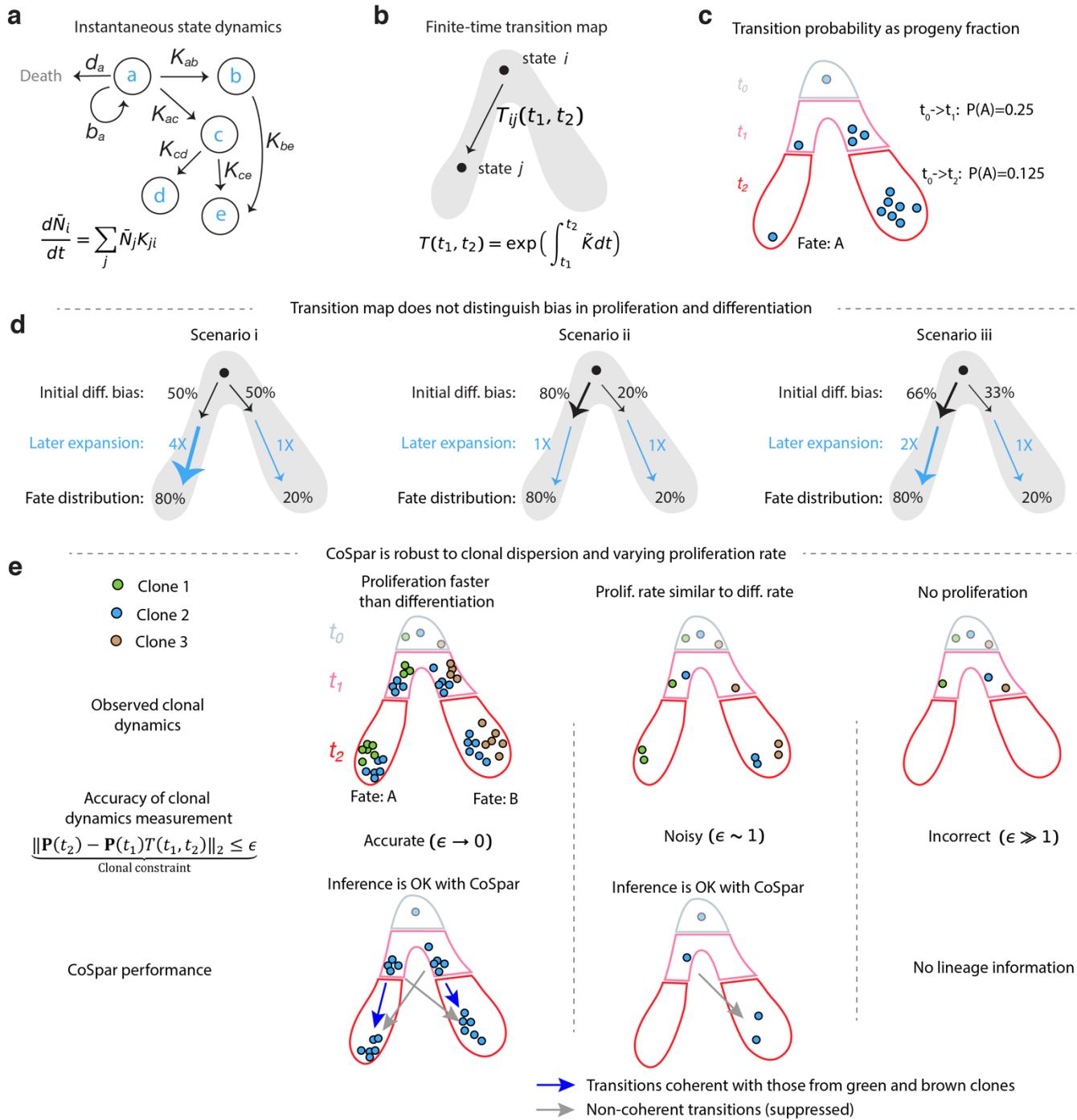


1
2 *Supplementary Information for*

**Learning dynamics by computational integration of single cell genomic and lineage
information**

Shou-Wen Wang* and Alon M. Klein*

*Corresponding authors: shouwen_wang@hms.harvard.edu (S.W.W.), alon_klein@hms.harvard.edu (A.M.K.)



1

Supplementary Fig. 1. Models, assumptions and limitations of Coherent Sparse Optimization.

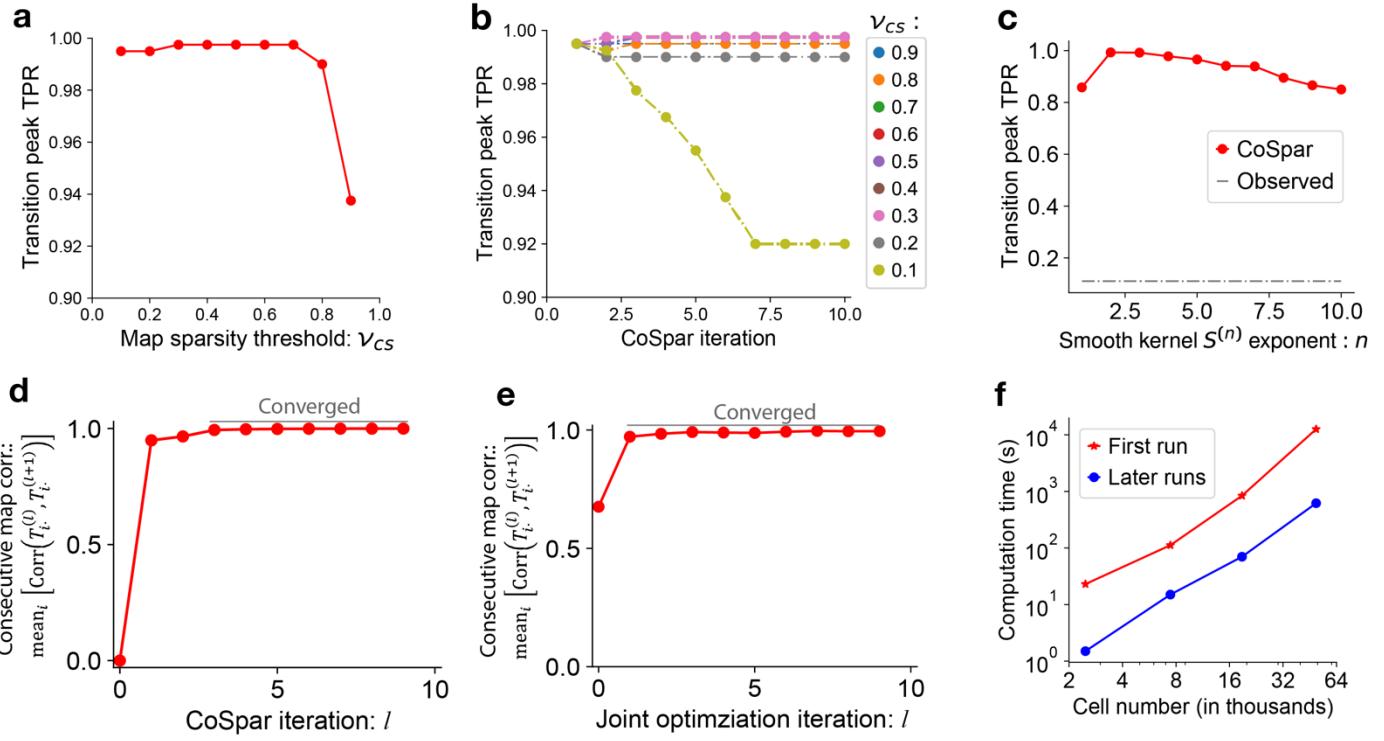
2 **a**, Simple example of the class of stochastic models that CoSpar seeks to learn. In such models, 3 each node represents an observed cell state. In practice, thousands of measured states are included; 4 here only five are shown. At each state cells self-renew, die, or differentiate with state-specific rates. 5 The mean fraction of cells in each state evolves according to coupled first-order equations as shown. 6 See Supplementary Note 1 for details.

7 **b**, The empirically-observed finite-time transition map can be interpreted through its relation to the 8 transition rate matrix K (see panel **a**). See Supplementary Note 1 for details.

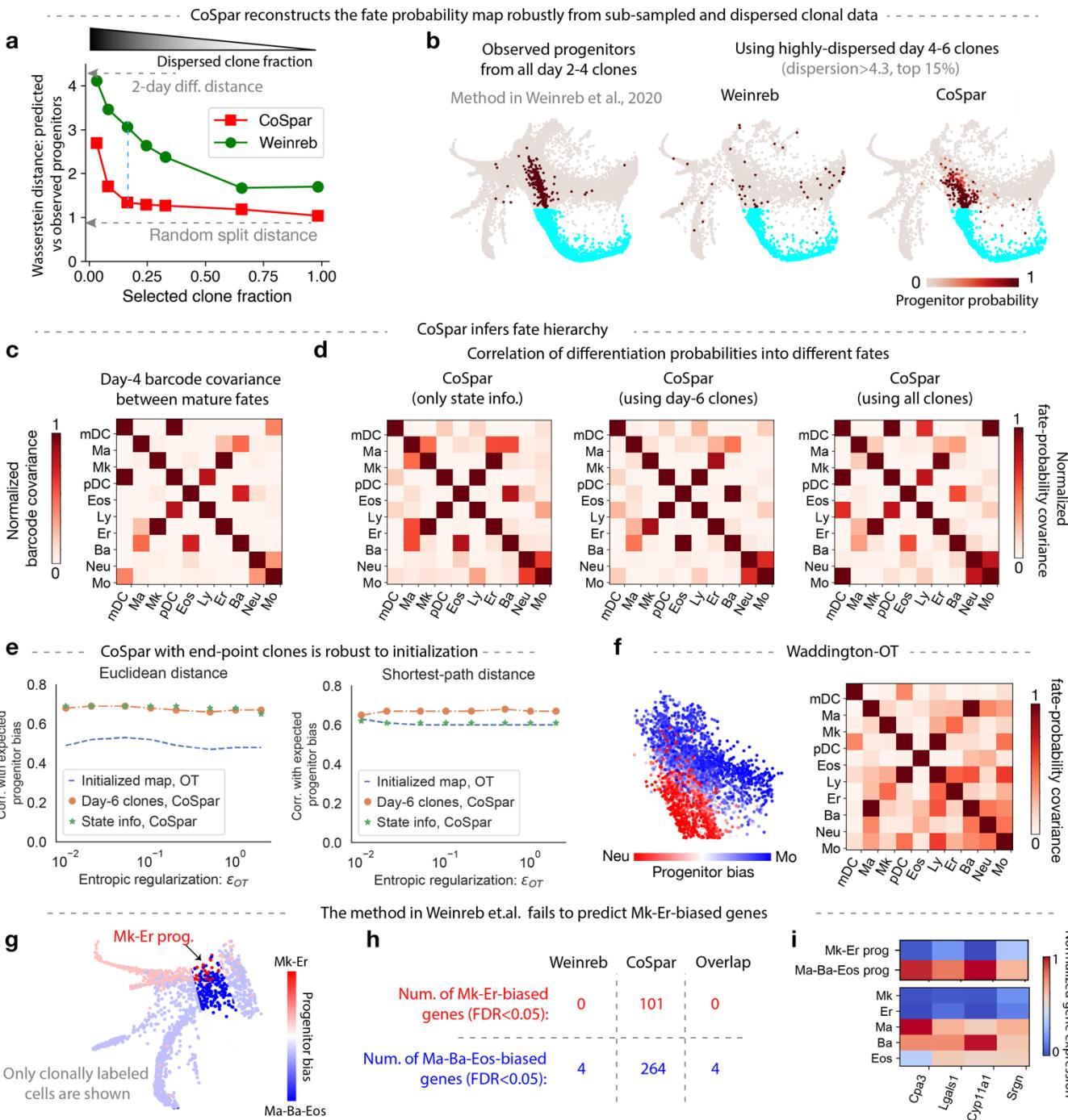
0

1 **c**, Schematics illustrating the operational, experimentally-accessible definition of a transition
2 probability, as the average fraction of progeny derived from an initial cell i at t_0 that differentiates into
3 a target state j at later times. As defined, transition probabilities are sensitive to biases in fate choice,
4 and to differential rates of cell division and cell loss.
5 **d**, Schematics exemplifying that transition maps cannot distinguish fate bias from differences in net
6 rates of cell expansion (division – loss). Three different underlying dynamics lead to the same
7 transition maps.
8 **e**, Schematics clarifying the robustness of CoSpar to clonal dispersion (demonstrated in Fig. 3). i),
9 When cells undergo extensive proliferation prior to fate bifurcation and clonal sampling, each clone
0 densely samples several differentiation trajectories. By imposing sparsity and coherence, CoSpar re-
1 enforces a minimal number of transitions that explain dynamics across all clones. ii), At lower rates of
2 proliferation, fewer cells from each clone are sampled, and it may lead to observing clonally-related
3 cells at different time-points on different trajectories, as shown (blue clone sampled towards fate A at
4 t_1 , and towards fate B at t_2). By enforcing coherence between clones rooted in neighboring states,
5 CoSpar may still recover a correct transition map. In this case, there is a trade-off in the CoSpar cost
6 function between minimizing the clone transition map error and maximizing coherence. iii), Lacking
7 proliferation, one cannot establish clonal relationships that constrain dynamic inference.

8
9



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 75510 75511 75512 75513 75514 75515 75516 75517 75518 75519 75520 75521 75522 75523 75524 75525 75526 75527 75528 75529 75530 75531 75532 75533 75534 75535 75536 75537 75538 75539 75540 75541 75542 75543 75544 75545 75546 75547 75548 75549 75550 75551 75552 75553 75554 75555 75556 75557 75558 75559 75560 75561 75562 75563 75564 75565 75566 75567 75568 75569 75570 75571 75572 75573 75574 75575 75576 75577 75578 75579 75580 75581 75582 75583 75584 75585 75586 75587 75588 75589 75590 75591 75592 75593 75594 75595 75596 75597 75598 75599 755100 755101 755102 755103 755104 755105 755106 755107 755108 755109 755110 755111 755112 755113 755114 755115 755116 755117 755118 755119 755120 755121 755122 755123 755124 755125 755126 755127 755128 755129 755130 755131 755132 755133 755134 755135 755136 755137 755138 755139 755140 755141 755142 755143 755144 755145 755146 755147 755148 755149 755150 755151 755152 755153 755154 755155 755156 755157 755158 755159 755160 755161 755162 755163 755164 755165 755166 755167 755168 755169 755170 755171 755172 755173 755174 755175 755176 755177 755178 755179 755180 755181 755182 755183 755184 755185 755186 755187 755188 755189 755190 755191 755192 755193 755194 755195 755196 755197 755198 755199 755200 755201 755202 755203 755204 755205 755206 755207 755208 755209 755210 755211 755212 755213 755214 755215 755216 755217 755218 755219 755220 755221 755222 755223 755224 755225 755226 755227 755228 755229 755230 755231 755232 755233 755234 755235 755236 755237 755238 755239 755240 755241 755242 755243 755244 755245 755246 755247 755248 755249 755250 755251 755252 755253 755254 755255 755256 755257 755258 755259 755260 755261 755262 755263 755264 755265 755266 755267 755268 755269 755270 755271 755272 755273 755274 755275 755276 755277 755278 755279 755280 755281 755282 755283 755284 755285 755286 755287 755288 755289 755290 755291 755292 755293 755294 755295 755296 755297 755298 755299 755300 755301 755302 755303 755304 755305 755306 755307 755308 755309 755310 755311 755312 755313 755314 755315 755316 755317 755318 755319 755320 755321 755322 755323 755324 755325 755326 755327 755328 755329 755330 755331 755332 755333 755334 755335 755336 755337 755338 755339 755340 755341 755342 755343 755344 755345 755346 755347 755348 755349 755350 755351 755352 755353 755354 755355 755356 755357 755358 755359 755360 755361 755362 755363 755364 755365 755366 755367 755368 755369 755370 755371 755372 755373 755374 755375 755376 755377 755378 755379 755380 755381 755382 755383 755384 755385 755386 755387 755388 755389 755390 755391 755392 755393 755394 755395 755396 755397 755398 755399 755400 755401 755402 755403 755404 755405 755406 755407 755408 755409 755410 755411 755412 755413 755414 755415 755416 755417 755418 755419 755420 755421 755422 755423 755424 755425 755426 755427 755428 755429 755430 755431 755432 755433 755434 755435 755436 755437 755438 755439 755440 755441 755442 755443 755444 755445 755446 755447 755448 755449 755450 755451 755452 755453 755454 755455 755456 755457 755458 755459 755460 755461 755462 755463 755464 755465 755466 755467 755468 755469 755470 755471 755472 755473 755474 755475 755476 755477 755478 755479 755480 755481 755482 755483 755484 755485 755486 755487 755488 755489 755490 755491 755492 755493 755494 755495 755496 755497 755498 755499 755500 755501 755502 755503 755504 755505 755506 755507 755508 755509 755510 755511 755512 755513 755514 755515 755516 755517 755518 755519 755520 755521 755522 755523 755524 755525 755526 755527 755528 755529 755530 755531 755532 755533 755534 755535 755536 755537 755538 755539 755540 755541 755542 755543 755544 755545 755546 755547 755548 755549 755550 755551 755552 755553 755554 755555 755556 755557 755558 755559 755560 755561 755562 755563 755564 755565 755566 755567 755568 755569 755570 755571 755572 755573 755574 755575 755576 755577 755578 755579 755580 755581 755582 755583 755584 755585 755586 755587 755588 755589 755590 755591 755592 755593 755594 755595 755596 755597 755598 755599 755600 755601 755602 755603 755604 755605 755606 755607 755608 755609 755610 755611 755612 755613 755614 755615 755616 755617 755618 755619 755620 755621 755622 755623 755624 755625 755626 755627 755628 755629 755630 755631 755632 755633 755634 755635 755636 755637 755638 755639 755640 755641 755642 755643 755644 755645 755646 755647 755648 755649 755650 755651 755652 755653 755654 755655 755656 755657 755658 755659 755660 755661 755662 755663 755664 755665 755666 755667 755668 755669 755670 755671 755672 755673 755674 755675 755676 755677 755678 755679 755680 755681 755682 755683 755684 755685 755686 755687 755688 755689 755690 755691 755692 755693 755694 755695 755696 755697 755698 755699 755700 755701 755702 755703 755704 755705 755706 755707 755708 755709 755710 755711 755712 755713 755714 755715 755716 755717 755718 755719 755720

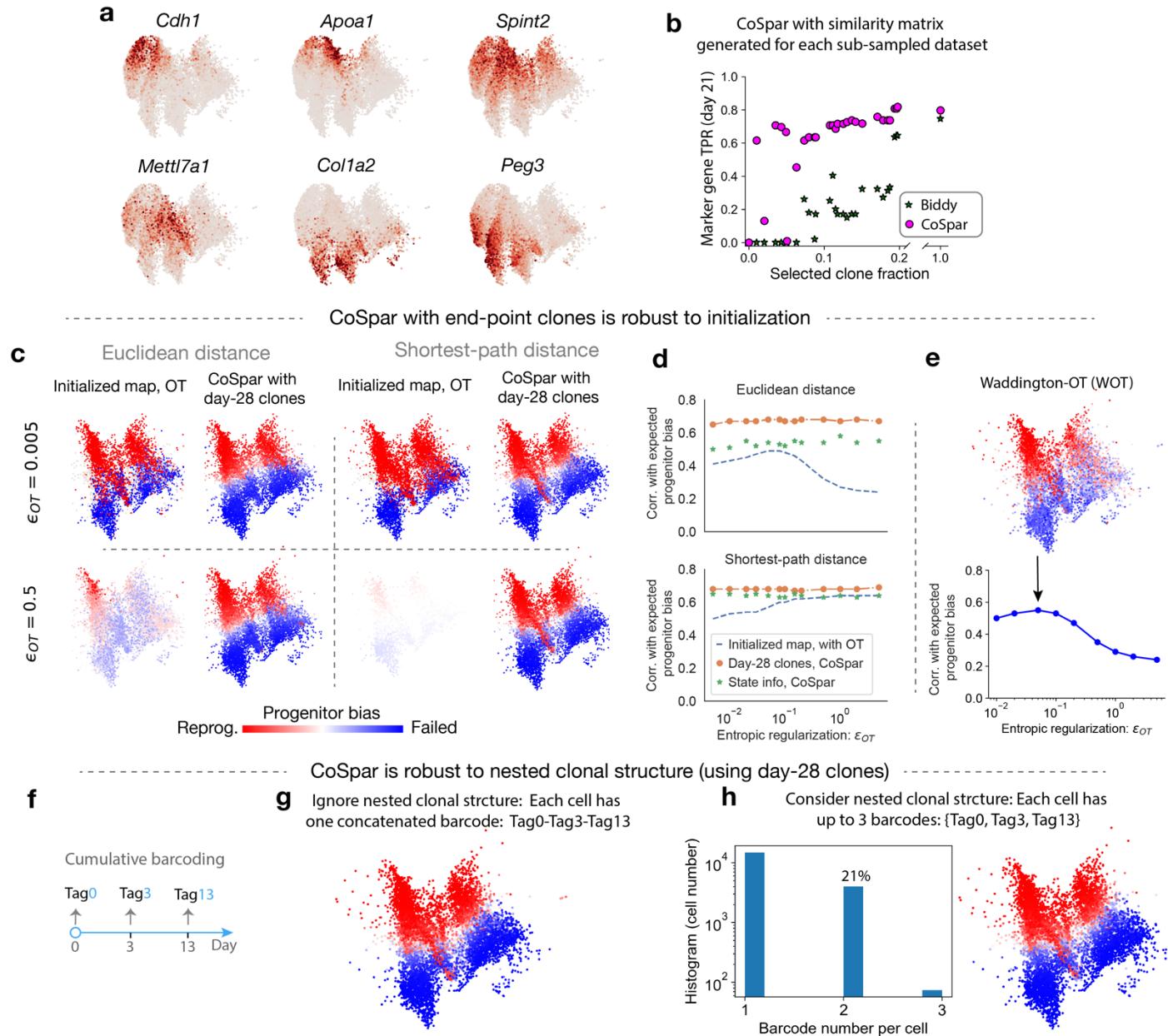


Supplementary Fig. 3. Benchmarking CoSpar in hematopoiesis.

a, CoSpar reconstructs transition maps from sub-sampled and dispersed clonal data. Here, we evaluate the prediction error as the Wasserstein distance between fraction of cell progeny predicted to occupy a given fate, compared to that obtained from the ‘ground truth’ transition map constructed using all clonal data rooted in day 2 clones (see main text). In **a**, the prediction error is assessed for a decreasing fraction of day 4-6 clones, obtained by progressively excluding less dispersed clones that contribute the strongest signal (see Fig. 4**b**). Green curve is obtained by applying the method from the original paper. A lower bound on the error (random split distance) is the Wasserstein distance between random 50% partitions of the ground-truth data. The largest observed errors are

1 comparable to the Wasserstein distance between populations separated by two days of progressive
2 differentiation (upper grey arrow).
3 **b**, The ground truth and predicted fate maps for neutrophils cluster using the 15% most dispersed
4 clones. These plots illustrate one value on the plot in **a**.
5 **c**, The normalized covariance of clonal barcode abundances between different cell types, calculated
6 using all data on day 4 of differentiation¹.
7 **d**, The correlation of predicted transition probabilities of progenitors, inferred with CoSpar using
8 different data indicated (See Methods).
9 **e**, Joint CoSpar optimization is robust to initialization and choice of distance metric. This panel
0 accompanies Fig. 4g. Plots show the correlation of progenitor biases calculated from the transition
1 maps for different initialization choices of the transition map. Optimal transport (OT) is used to
2 initialize the transition map from state information alone prior to CoSpar. Plots scan the OT entropic
3 regularization strength ϵ_{OT} .
4 **f**, Application of Waddington-OT (WOT) to hematopoiesis dataset. WOT was applied to the same
5 data in Ref², where clonal data was used to tune the local cell proliferation rates. When WOT is
6 applied without access to any clonal information, performance is degraded as seen by comparing the
7 plots here to the ground truth. Plots are to be compared with those in panels **c,d** and Fig. 4c. WOT is
8 applied with default parameters ($\epsilon_{OT} = 0.05$).
9 **g-i**, Predicting early fate boundaries in the Gata1+ lineages using the original method from Ref². **g**,
0 Predicted progenitor bias among the Gata1+ cells on the state embedding. **h**, Comparison of the
1 number of differentially expressed genes (FDR<0.05) identified from different methods of clonal
2 analysis. **i**, Gene expression heat map for all differentially expressed genes identified with the
3 Weinreb method².

4
5



Supplementary Fig. 4. Benchmarking CoSpar in fibroblast reprogramming.

a, Expression of selected marker genes on UMAP visualizations from day 15, 21 and 28.

b, Reproduction of results in Fig. 5e using a similarity matrix obtained from each sub-sampled dataset. Results are seen to be robust to sub-sampling strategies.

c-e, Transition maps inferred by CoSpar with access only to end-point clonal information are robust to the choice of initialization. These panels accompany Fig. 5h. c, Visualization of the progenitor bias derived from the initialized transition map and the corresponding CoSpar prediction, for different entropic regularizations and distance metrics as indicated. d, Parameter sweep quantifying the stability of the predicted progenitor bias. e, Progenitor bias prediction from Waddington-OT³, which relies only on state information. Upper panel: the predicted progenitor bias on the state manifold at $\epsilon_{OT}=0.05$. Lower panel: progenitor bias correlation with ground truth across different ϵ_{OT} values.

f-h, CoSpar analysis with clonal barcodes integrated at sequential time points. The analysis was done with clonal data on day 28. f, The cumulative barcoding scheme in the reprogramming experiment.

1 Cells were barcoded on day 0, 3, and 13. **g**, A progenitor bias prediction generated by concatenating
 2 all tags from all three time points into a single clonal barcode for each cell, thus ignoring the nested
 3 clonal structure in the data. **h**, Equivalent results of CoSpar analysis with nested clonal structure,
 4 carried out by treating Tag0, Tag3 and Tag13 as independent barcodes for a cell, such that each cell
 5 may have up to three barcodes. Left panel shows the histogram of barcode number per cell.

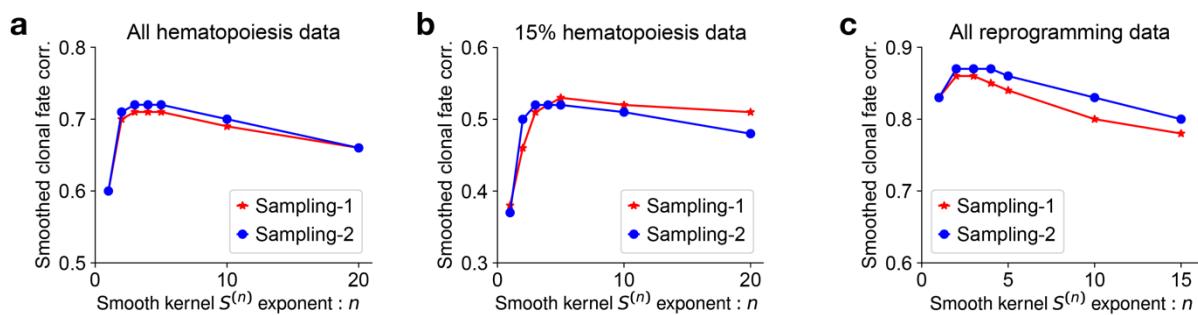


4

5 **Supplementary Fig. 5. Marker gene expression and clonal structure during differentiation into**
 6 **alveolar cells and other endodermal cells.**

7 **a**, Expression of genes associated (in Ref⁴) with iAEC2 cells, non-lung endoderm (NLE), gut
 8 endoderm, and pulmonary neuroendocrine cells (PNEC).

1 **b**, Leiden clustering of day-27 cell states. Cluster are named based on their corresponding gene
 2 expression.
 3 **c**, Normalized barcode covariance on day 27 among all clusters, showing evidence of clonal
 4 partitioning of iAEC2 cells.
 5 **d**, Expression of two representative genes marking proliferating cells (*TOP2A* and *MKI67*) on day 17
 6 and 27 state manifold, showing that cells predicted by CoSpar to show low commitment on day 17
 7 appear proliferating (Fig. 6c).
 8 **e-g**, CoSpar predicts that lineage restriction occurs after day 15, except for a rare fraction of cells
 9 committed to non-iAEC2 fates. **e**, UMAP visualization of cell states on day 15 and 27. **f**, CoSpar-
 0 predicted progenitor bias among cells on day 15. **g**, Histogram of the progenitor bias on day 15
 1 (shown in panel f). Unlike on day 17 (Fig. 6c), here progenitor bias is concentrated at 50%.



7 **Supplementary Fig. 6. Establishing upper bounds for fate prediction after data loss.** In this
 8 paper, performance of CoSpar was compared to previously published methods by discarding clonal
 9 data and then examining the fidelity of fate predictions in the face of data loss. Supporting the results
 0 reported in Figs. 4g,i and 5h, we obtain an upper bound for fate prediction, by randomly sampling
 1 50% cells from the full ground-truth dataset in each case to predict the progenitor bias of remaining
 2 cells, with different smoothing exponents n . Prediction was carried out by first inferring the progenitor
 3 bias Q_i^{tr} from the training data (denoted by tr) to predict the bias Q_i^{tst} of the test data, by imputation
 4 via graph diffusion: $Q_i^{tst} = \sum_j S_{ij}^{(n)} Q_j^{tr}$. Results show that, in all the three cases considered, a
 5 smoothing exponent $n=3$ provided the best correlation between the imputed and actual values of Q_i^{tst} .
 6 These correlation values are indicated by the upper dashed grey lines in Figs. 4g,i and 5h.

2

CONTENTS

3	Supplementary Note 1: Connecting transition maps to models of differentiation	10
4	Supplementary Note 2: The effect of noisy measurement on transition map inference	11
5	Supplementary Note 3: Coherent sparse optimization	12
6	Supplementary Note 4: Transition map initialization with HighVar	13
7	References	14

8 **Supplementary Note 1: Connecting transition maps to models of differentiation**

9 This note grounds the finite-time transition map in a stochastic model of cell differentiation. In doing so it also
10 clarifies what cannot be learnt from the transition map.

11 We begin by considering a Markov model of differentiation represented by an arbitrary graph of finite size, where
12 each node represents a cell state. In this model, each cell probabilistically undergoes proliferation, death, and
13 differentiation with rates that are specific to the cell state. A clone is a realization of such a stochastic branching
14 process, seeded as a single barcoded cell in some cell state. Starting from a cell state i , k_{ij} is the differentiation rate
15 to a different state j ; b_i is the probability of a cell dividing into two cells; and d_i is the cell loss rate for cells in state
16 i . We assume that these rates are first-order (independent of the number of cells in a state). These rates can vary
17 with time to reflect changes in the tissue environment. Supplementary Fig. 1a shows a simplified example of such a
18 model.

20
21 This model is useful in its simplicity, but it is clearly not general: being a Markov process, it assumes that we have
22 a complete measurement of the variables that could affect state dynamics, such as the transcriptome, epigenome,
23 and extracellular environment. This is unlikely to be true. Incomplete state measurement leads to a non-Markovian
24 dynamics⁵. Nonetheless, our model may be a useful approximation as it generates predictions of biomarkers and fate
25 regulators, and their correlation with fate bias.

26 Our goal in this paper is to learn the structure of such a graphical model (e.g. Supplementary Fig. 1a) and its rate
27 constants, from LT-scSeq data. To learn a model from data, we focus most simply on the mean dynamics of cell number
28 at each state. To do so, one could consider a complete stochastic description using the chemical master equation⁶,
29 which gives the distribution evolution over the extended state space $N \times X = \{(N_i, X_i) \ \forall i; \text{ and } N_i = 1, 2, \dots\}$,
30 where N_i is the number of cells at state i and X_i is the corresponding state. However, because we assume a first-order
31 model, there exists a closed-form equation for the dynamics of average cell number $\bar{N}_i(t)$ at state i and time t ,

$$\frac{d}{dt} \bar{N}_i(t) = \sum_j \bar{N}_j(t) K_{ji}, \quad (1)$$

33 where $K_{ij} \equiv (1 - \delta_{ij})k_{ij} + \delta_{ij}(b_i - d_i - \sum_{k \neq i} k_{ik})$, with $\delta_{ij} = \{1 \text{ if } i = j; \text{ otherwise } 0\}$, is the instantaneous
34 transition rate from state i to j that includes all cellular processes: division, cell death, and differentiation. This
35 mean dynamics only captures the net effect of cell number change ($b_i - d_i$), and does not distinguish whether it is
36 from cell proliferation or loss.

37 To make contact with experiment, we represent the number of cells at each state as a fraction of the total cell
38 number to obtain the cell density:
39

$$P_i(t) \equiv \frac{\bar{N}_i(t)}{\bar{N}(t)}, \quad (2)$$

40 where $\bar{N}(t) \equiv \sum_j \bar{N}_j(t)$ is the total cell number at time t . The dynamics of the cell density $P_i(t)$ is

$$\frac{d}{dt} P_i(t) = \sum_j P_j \tilde{K}_{ji}(t), \quad (3)$$

41 where $\tilde{K}_{ji}(t) \equiv K_{ji} - \delta_{ji}\bar{\alpha}(t)$, and $\bar{\alpha}(t) \equiv \sum_k P_k(t)(b_k - d_k)$ is the average growth rate of the population at time t .
42 Diagonal elements in \tilde{K} reflect whether net growth in each state is larger (positive) or smaller (negative) than the
43 population average.

44 We now can ground the transition map T in terms of the model. Integrating Eq. (3) from time t_1 to t_2 leads to the
 45 relation

$$P_i(t_2) = \sum_j P_j(t_1) T_{ji}(t_1, t_2), \quad (4)$$

46 where the intrinsic finite-time transition map

$$T = \exp \left(\int_{t_1}^{t_2} \tilde{K} dt \right) \quad (5)$$

47 is obtained from matrix exponentiation of the corrected instantaneous transition rate matrix \tilde{K} .

48 The transition probability T_{ij} is the fraction of progenies from initial state i that ends at later state j (Supplementary
 49 Fig. 1b). To see this, we can sum over all states in Eq. (4), and noting that $\sum_i P_i(t) = 1$, we have $1 = \sum_j P_j(t_1) \sum_i T_{ji}$.
 50 This equation is valid for any distribution $P_j(t_1)$ and therefore the transition map satisfies the conservation property

$$\sum_j T_{ij} = 1. \quad (6)$$

51 Owing to its normalization (Eq. 6), the transition map that is experimentally accessible captures the most interesting
 52 property we want: the probability of a cell to differentiate into different cell types. A certain initial state i can transition
 53 to multiple states over time window t , i.e., T has multiple non-zero entries associated with the i -th row.

54 Nonetheless, it is important to note that T_{ij} is shaped both by differences in transition rates between states, and
 55 by the collective effect of proliferation and cell death along the trajectories between state i and j . Mathematically,
 56 although proliferation and cell death only affect the diagonal terms in the instantaneous transition matrix \tilde{K} , the
 57 matrix exponentiation in Eq. (5) will propagate this effect to the off-diagonal terms in the finite-time transition
 58 matrix T . For this reason, empirical transition maps alone obscure differences between biases in proliferation and
 59 choice towards competing fates, as illustrated in Supplementary Fig. 1d.

60 Supplementary Note 2: The effect of noisy measurement on transition map inference

61 In Eq. (5), the transition map is seen to emerge from stochastic state transitions accumulating over time. In
 62 practice, an inferred map is also shaped by sources of noise associated with measurement and subsequent dimen-
 63 sionality reduction of the data. In this note, we examine the errors propagated from different technical sources into
 64 the observed transition map T . As might be expected, we show that technical sources of error lead to a ‘blurred’
 65 transition map, delocalized over the cell state graph. The smoothing kernels connecting the true and observed transi-
 66 tion map can be understood as a matrix product of error kernels associated with each individual source of uncertainty.
 67

a. *Measurement errors.* We will consider the errors associated with correctly assigning transition rates from a state i at time t_1 to state j at time t_2 . Such a transition contributes to mass at matrix element $T_{ij}(t_1, t_2)$ of the transition map. At time t_2 , errors in measurement re-assign cells from state j to another state k , with a probability ϵ_{jk} normalized such that $\sum_k \epsilon_{jk} = 1$. With such an error, the observed transition map now becomes $T_{ij}^{(\text{obs.})} = \sum_k T_{ik} \epsilon_{kj}$. A similar error may occur at t_1 . Because technical errors may differ between time points, we will denote $\epsilon^{(i)}$ as the error in measuring the state of a cell at time t_i . Accounting for errors in two time points, the observed transition map now becomes:

$$T_{ij}^{(\text{obs.})} = \sum_{k,l} \epsilon_{ki}^{(1)} T_{kl} \epsilon_{lj}^{(2)}.$$

b. *Clonal dispersion.* In LT-scSeq experiments, the cells sampled at t_1 are clonally related to those that give rise to cells sampled at t_2 . But being distinct, they may occupy different states. As above, we consider the error in estimating transition rates from state i at t_1 to state j at t_2 . At t_1 , a clonally-related state, k , is observed instead of state i , with a probability that we shall denote σ_{ik} . This probability satisfies normalization $\sum_k \sigma_{ik} = 1$. Accounting for this clonal dispersion, the observed transition map relates to the true transition map through the relation:

$$T_{ij}^{(\text{obs.})} = \sum_k \sigma_{ki} T_{kj}.$$

68 Note that because cells divide, more than one cell may be observed in a clone at time t_1 . In this case, the error
 69 kernel σ_{ki} no longer has a unique definition because choices in constructing the transition map may assign more or
 70 less weight to particular cells within each clone. By enforcing local coherence, CoSpar strongly weights σ_{ki} towards
 71 states k that are close to i , thus reducing errors in the transition map as compared to using a ‘naive’ clonal analysis
 72 method such as we have previously reported², which weights all cells in a clone at t_1 equally.

Compounding clonal dispersion and measurement error, we recognize the the observed transition map has the form:

$$T^{(\text{obs.})}(t_1, t_2) = S_1^T T(t_1, t_2) S_2,$$

73 where $S_1 = \epsilon^{(1)} \sigma$ and $S_2 = \epsilon^{(2)}$.

74 Supplementary Note 3: Coherent sparse optimization

75 Our goal in dynamic inference is to learn the finite-time transition map, as defined in Eq. (4), for the set of observed
 76 cell states in a given experiment. After imposing sparsity and coherence constraints (see main text), we obtain the
 77 cost function,

$$\min_T \|T\|_1 + \alpha \|LT\|_2, \text{ s.t. } \sum_m \|P(t_2; m) - P(t_1; m)T(t_1, t_2)\|_2 \leq \epsilon; T \geq 0; \text{ Normalization.} \quad (7)$$

78 Here, $P(t_{1,2}; m)$ is a row-vector representing the distributions of cell states within the m -th clone. $L_{ij} = 1 -$
 79 $\bar{w}_{ij} / \sum_j \bar{w}_{ij}$ is the normalized graph laplacian, with w_{ij} the graph connectivity of the nearest neighbor kNN graph
 80 of cell states. Defining $\mathbf{P}(t)$ as a clone-by-cell matrix resulting from concatenation of individual clonal distribution:
 81 $\{P(t; m), m = 0, 1, 2, \dots\}$, we note that $\sum_m \|P(t_2; m) - P(t_1; m)T(t_1, t_2)\|_2 = \|\mathbf{P}(t_2) - \mathbf{P}(t_1)T(t_1, t_2)\|_2$, which gives the
 82 form of the cost function given in the main text. For joint optimization, the cost function is additionally minimized
 83 over $\mathbf{P}(t_1)$, i.e. $\min_{\mathbf{P}(t_1)} [\dots]$.

84 Before continuing, we note the relationship of this optimization problem to past literature. Absent the coherence
 85 constraint ($\alpha = 0$), this optimization problem reduces to sparse optimization by lasso regression. To our knowledge,
 86 only one study has explored the extension of lasso to enforce coherence with relation to a data embedding, called
 87 ‘fused lasso’ optimization⁷. Fused lasso is however different in three important ways from Eq. (7). First, it suppresses
 88 the first-order derivative of the inference target to promote coherence. Second, fused lasso was developed for 1-d
 89 or 2-d datasets, assuming a natural ordering for the observed cell states. Third, like lasso, the inference object of
 90 fused lasso is a vector. In contrast, the coherent sparse optimization in Eq. (7) is generalized to arbitrary graphs;
 91 it suppresses the second-order derivative (the curvature) to enforce coherence; and it is generalized to matrix inference.

92 Our goal is now to ground the optimization problem in LT-scSeq data, and to propose an algorithm that approx-
 93 imates solution of Eq. (7). To make connection with raw clonal data, we approximate the density profile matrices
 94 $\mathbf{P}(t)$ as,

$$\mathbf{P}(t) = I(t)S(t), \quad (8)$$

96 where $I(t)$ is a clone-by-cell matrix observed at time t , and $S(t)$ is a cell-cell similarity matrix at time t . Note that
 97 Eq. (8) integrates the state information (encoded in $S(t)$) and clonal information (encoded in $I(t)$) into \mathbf{P} . This local
 98 smoothing operation indirectly imposes coherent transitions in this system.

99 We now discuss implementation of the optimization problem. Eq. (7) might be formulated as a quadratic program-
 100 ming problem, and be solved accordingly as in fussed lasso⁷. However, this strategy is very expensive computationally⁷.
 101 There could be ways to solve the optimization efficiently and exactly, and we leave it as an open problem. Instead,
 102 we provide an efficient yet heuristic way to solve the optimization. Specifically, we break down individual elements of
 103 the objective function, and propose a simple alternative for each of them.

105 1. *Sparsification*. Instead of including the sparsity term $\|T\|_1$ into the objective function, we directly apply a
 106 pre-defined thresholding to the transition map at each iteration: $T \leftarrow \theta(T, \nu)$, where

$$[\theta(T, \nu)]_{ij} = \begin{cases} T_{ij}, & \text{if } T_{ij} \geq \nu \max_j T_{ij} \\ 0, & \text{Otherwise} \end{cases} \quad (9)$$

107 2. *Transitions within clones.* To enforce Eq. (4) for each observed clone, we consider a clonal transition map π^m
 108 for the m -th clone, which allows only intra-clone transitions and conserves the total transition flux within a
 109 clone. We do so by projecting the transition map T and performing clone-wise normalization: $\pi^m \leftarrow \mathcal{P}_m(T)$:

$$[\mathcal{P}_m(T)]_{ij} = \frac{\tilde{\pi}_{ij}^m}{\sum_{i'j'} \tilde{\pi}_{i'j'}^m}, \quad (10)$$

110 where $\tilde{\pi}_{ij}^m = T_{ij}$ if the transition $i \rightarrow j$ occurs within clone m , and otherwise $\tilde{\pi}_{ij}^m = 0$. The composite map
 111 capturing all intra-clone transitions is then,

$$\mathcal{P}(T) = \sum_m \mathcal{P}_m(T) \quad (11)$$

112 A map constructed in this way, $\pi = \mathcal{P}(T)$, will satisfy the following equation approximately:

$$I(t_2) \approx I(t_1)\pi(t_1; t_2), \quad (12)$$

113 which is the clonal constraint for directly observed cell states⁸. The map $\pi(t_1; t_2)$ can be used to specify T , but
 114 being constrained to clones it is no longer coherent.

115 3. *Coherence.* To enforce coherence, we begin by noting that Eqs. (4), (8) and (12) together lead to the relationship
 116 $T(t_1; t_2) = S_{t_1}^{-1}\pi(t_1; t_2)S_{t_2}$. As similarity matrices S are generally non-invertable, we introduce a pseudo-inverse,

$$T(t_1; t_2) \approx S_{t_1}^+ \pi(t_1; t_2) S_{t_2}. \quad (13)$$

117 Eq. (13) smoothes the transition map learnt within-clones, π , over nearby states to get a transition map T
 118 across all states. T is now a locally continuous map and satisfies the coherence constraint: similar initial cell
 119 states have similar fate outcomes.

120 This approach to calculating T leads to minimization of the term $\alpha||LT||_2$ in Eq. (7), although the parameter
 121 α establishing the relative weight of coherence is no longer explicitly identifiable in the procedure. It is instead
 122 reflected in the extent of smoothing.

123 These three steps, carried out sequentially and iteratively, define the CoSpar algorithm given in methods. Note that
 124 normalization is performed clone-wise in Eq. (11). The non-negativity constraint, $T \geq 0$, is implicitly satisfied in the
 125 above steps. In our strategy, Eq. (13) is the most time-consuming step as it involves multiplication of large matrices.
 126 CoSpar is nonetheless efficient as it carries out matrix multiplication *only* at Eq. (13), and we find that it converges
 127 within a few iterations (Supplementary Fig. 2d).

128 Supplementary Note 4: Transition map initialization with HighVar

129 The HighVar method provides an approach to initialize the joint optimization of T and $I(t_1)$ (see Methods). The
 130 approach is loosely motivated by the expectation that cells similar in gene expression between time points may share
 131 clonal origin. This expectation can be violated; we use it only to initialize numerical optimization.

132 HighVar consists of three steps: 1) Select highly variable genes that are expressed at both t_1 and t_2 ; 2) For each
 133 highly variable gene (indexed by m), threshold its expression to form a binary expression matrix $\hat{x}_{im} \in \{0, 1\}$ for all
 134 states observed at t_1 and t_2 to generate pseudo clonal data $\hat{I}(t_1)$ and $\hat{I}(t_2)$ from the binary expression matrix; 3) Run
 135 CoSpar with $\hat{I}(t_1)$ and $\hat{I}(t_2)$. The pseudo-clonal data $\hat{I}(t_1)$ and $\hat{I}(t_2)$ are discarded, and the resulting map T is used
 136 to initialize CoSpar with the true clonal data.

137 For the first step, we use the SPRING gene filtering function filter_genes with an adjustable gene variability percentile
 138 parameter HighVar_gene_pctl to select highly variable genes⁹. For the second step we discretize the gene expression
 139 of each highly-variable gene, sequentially, with a gene-specific threshold η_m :

$$\hat{I}_{im} = H(x_i(m) - \eta_m) \times Z_{im},$$

140 where $H(\cdot)$ is the Heaviside step function ($H(x) = 1$ if $x > 0$; otherwise 0), $Z_{im} = [1 - H(\sum_{m^*=0}^{m-1} \hat{I}_{im^*})]$ sums
 141 over previously considered genes to ensure that the same cell is not assigned to more than one pseudo-clone. The
 142 gene-specific threshold η_m is chosen such that every pseudo clone has the same number of cells at each time point
 143 N_t/M , where N_t is the number of observed cells at time t and M is the total number of highly variable genes (i.e.,

¹⁴⁴ pseudo clones). In case N_t/M is not an integer, we use its ceil, i.e., $\lceil N_t/M \rceil$, and stop the clonal matrix update when
¹⁴⁵ all cells are clonally labeled.

¹⁴⁶ [1] C. Weinreb and A. M. Klein, Proceedings of the National Academy of Sciences **117**, 17041 (2020).
¹⁴⁷ [2] C. Weinreb, A. Rodriguez-Fraticelli, F. D. Camargo, and A. M. Klein, Science **367** (2020).
¹⁴⁸ [3] G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu, S. Lin, P. Berube, *et al.*, Cell
¹⁴⁹ **176**, 928 (2019).
¹⁵⁰ [4] K. Hurley, J. Ding, C. Villacorta-Martin, M. J. Herriges, A. Jacob, M. Vedaie, K. D. Alysandratos, Y. L. Sun, C. Lin, R. B.
¹⁵¹ Werder, *et al.*, Cell Stem Cell **26**, 593 (2020).
¹⁵² [5] S.-W. Wang, K. Kawaguchi, S.-i. Sasa, and L.-H. Tang, Phys. Rev. Lett. **117**, 070601 (2016).
¹⁵³ [6] D. T. Gillespie, The journal of physical chemistry **81**, 2340 (1977).
¹⁵⁴ [7] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Journal of the Royal Statistical Society: Series B (Statistical
¹⁵⁵ Methodology) **67**, 91 (2005).
¹⁵⁶ [8] One can appreciate that this equation is approximately satisfied because $I(t_1)\pi(t_1; t_2)$ gives a matrix with non-zero values
¹⁵⁷ on at clonally observed states at t_2 . Therefore $I(t_1)\pi(t_1; t_2)$ has the same sparse structure as $I(t_2)$ but will differ in the
¹⁵⁸ exact non-zero values because $I(t_2)$ is strictly binary.
¹⁵⁹ [9] C. Weinreb, S. Wolock, and A. M. Klein, Bioinformatics **34**, 1246 (2018).