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 1 
Supplementary Fig. 1. Models, assumptions and limitations of Coherent Sparse Optimization. 2 
a, Simple example of the class of stochastic models that CoSpar seeks to learn. In such models, 3 
each node represents an observed cell state. In practice, thousands of measured states are included; 4 
here only five are shown. At each state cells self-renew, die, or differentiate with state-specific rates. 5 
The mean fraction of cells in each state evolves according to coupled first-order equations as shown. 6 
See Supplementary Note 1 for details.  7 
b, The empirically-observed finite-time transition map can be interpreted through its relation to the 8 
transition rate matrix K (see panel a). See Supplementary Note 1 for details. 9 
 10 
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c, Schematics illustrating the operational, experimentally-accessible definition of a transition 1 
probability, as the average fraction of progeny derived from an initial cell i at t0 that differentiates into 2 
a target state j at later times. As defined, transition probabilities are sensitive to biases in fate choice, 3 
and to differential rates of cell division and cell loss.  4 
d, Schematics exemplifying that transition maps cannot distinguish fate bias from differences in net 5 
rates of cell expansion (division – loss). Three different underlying dynamics lead to the same 6 
transition maps. 7 
e, Schematics clarifying the robustness of CoSpar to clonal dispersion (demonstrated in Fig. 3).  i), 8 
When cells undergo extensive proliferation prior to fate bifurcation and clonal sampling, each clone 9 
densely samples several differentiation trajectories. By imposing sparsity and coherence, CoSpar re-10 
enforces a minimal number of transitions that explain dynamics across all clones.  ii), At lower rates of 11 
proliferation, fewer cells from each clone are sampled, and it may lead to observing clonally-related 12 
cells at different time-points on different trajectories, as shown (blue clone sampled towards fate A at 13 
t1, and towards fate B at t2). By enforcing coherence between clones rooted in neighboring states, 14 
CoSpar may still recover a correct transition map. In this case, there is a trade-off in the CoSpar cost 15 
function between minimizing the clone transition map error and maximizing coherence. iii), Lacking 16 
proliferation, one cannot establish clonal relationships that constrain dynamic inference. 17 
 18 

19 
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 1 
Supplementary Fig. 2. Evaluating CoSpar performance across parameter sweeps.  2 
a-c, Performance of CoSpar using simulations as in Fig. 3a-d with a range of algorithm parameters 3 
(see Methods for parameter definitions): (a) sparsity threshold "#$ ∈ [0,1]; (b) number of iterations, 4 
showing convergence; (c) smoothing kernel exponent.  5 
d,e, Demonstration of algorithm convergence, seen in the correlation between maps from 6 
consecutive iterations against the number of iterations, for the two algorithms (CoSpar, and Joint 7 
CoSpar, see Methods). The maps analyzed here correspond to those from the down-sampled 8 
hematopoietic dynamics (Fig. 4h).  9 
f, Computational time to convergence, as a function of total cell number.  In the first run, CoSpar will 10 
generate (and save) a similarity matrix, which is very costly (red curve). CoSpar can use similarity 11 
matrices generated previously to speed up computation (blue curve). 12 
 13 
 14 
 15 



 5 

 1 
 2 
Supplementary Fig. 3. Benchmarking CoSpar in hematopoiesis.  3 
a, CoSpar reconstructs transition maps from sub-sampled and dispersed clonal data. Here, we 4 
evaluate the prediction error as the Wasserstein distance between fraction of cell progeny predicted 5 
to occupy a given fate, compared to that obtained from the ‘ground truth’ transition map constructed 6 
using all clonal data rooted in day 2 clones (see main text). In a, the prediction error is assessed for a 7 
decreasing fraction of day 4-6 clones, obtained by progressively excluding less dispersed clones that 8 
contribute the strongest signal (see Fig. 4b). Green curve is obtained by applying the method from 9 
the original paper.  A lower bound on the error (random split distance) is the Wasserstein distance 10 
between random 50% partitions of the ground-truth data.  The largest observed errors are 11 
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comparable to the Wasserstein distance between populations separated by two days of progressive 1 
differentiation (upper grey arrow).   2 
b, The ground truth and predicted fate maps for neutrophils cluster using the 15% most dispersed 3 
clones. These plots illustrate one value on the plot in a. 4 
c, The normalized covariance of clonal barcode abundances between different cell types, calculated 5 
using all data on day 4 of differentiation1. 6 
d, The correlation of predicted transition probabilities of progenitors, inferred with CoSpar using 7 
different data indicated (See Methods). 8 
e, Joint CoSpar optimization is robust to initialization and choice of distance metric. This panel 9 
accompanies Fig. 4g.  Plots show the correlation of progenitor biases calculated from the transition 10 
maps for different initialization choices of the transition map. Optimal transport (OT) is used to 11 
initialize the transition map from state information alone prior to CoSpar. Plots scan the OT entropic 12 
regularization strength +,- .   13 
f, Application of Waddington-OT (WOT) to hematopoiesis dataset. WOT was applied to the same 14 
data in Ref2, where clonal data was used to tune the local cell proliferation rates. When WOT is 15 
applied without access to any clonal information, performance is degraded as seen by comparing the 16 
plots here to the ground truth. Plots are to be compared with those in panels c,d and Fig. 4c. WOT is 17 
applied with default parameters (+,-  =0.05). 18 
g-i, Predicting early fate boundaries in the Gata1+ lineages using the original method from Ref2. g, 19 
Predicted progenitor bias among the Gata1+ cells on the state embedding. h, Comparison of the 20 
number of differentially expressed genes (FDR<0.05) identified from different methods of clonal 21 
analysis. i, Gene expression heat map for all differentially expressed genes identified with the 22 
Weinreb method2. 23 
 24 

25 
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 2 
Supplementary Fig. 4. Benchmarking CoSpar in fibroblast reprogramming.  3 
a, Expression of selected marker genes on UMAP visualizations from day 15, 21 and 28.  4 
b, Reproduction of results in Fig. 5e using a similarity matrix obtained from each sub-sampled 5 
dataset. Results are seen to be robust to sub-sampling strategies. 6 
c-e, Transition maps inferred by CoSpar with access only to end-point clonal information are robust to 7 
the choice of initialization.  These panels accompany Fig. 5h. c, Visualization of the progenitor bias 8 
derived from the initialized transition map and the corresponding CoSpar prediction, for different 9 
entropic regularizations and distance metrics as indicated. d, Parameter sweep quantifying the 10 
stability of the predicted progenitor bias. e, Progenitor bias prediction from Waddington-OT3, which 11 
relies only on state information. Upper panel: the predicted progenitor bias on the state manifold at 12 
+,-=0.05. Lower panel: progenitor bias correlation with ground truth across different +,-  values.  13 
f-h, CoSpar analysis with clonal barcodes integrated at sequential time points. The analysis was done 14 
with clonal data on day 28. f, The cumulative barcoding scheme in the reprogramming experiment. 15 
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Cells were barcoded on day 0, 3, and 13. g, A progenitor bias prediction generated by concatenating 1 
all tags from all three time points into a single clonal barcode for each cell, thus ignoring the nested 2 
clonal structure in the data. h, Equivalent results of CoSpar analysis with nested clonal structure, 3 
carried out by treating Tag0, Tag3 and Tag13 as independent barcodes for a cell, such that each cell 4 
may have up to three barcodes.  Left panel shows the histogram of barcode number per cell.  5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 

 14 
Supplementary Fig. 5. Marker gene expression and clonal structure during differentiation into 15 
alveolar cells and other endodermal cells.  16 
a, Expression of genes associated (in Ref4) with iAEC2 cells, non-lung endoderm (NLE), gut 17 
endoderm, and pulmonary neuroendocrine cells (PNEC).  18 
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b, Leiden clustering of day-27 cell states. Cluster are named based on their corresponding gene 1 
expression.  2 
c, Normalized barcode covariance on day 27 among all clusters, showing evidence of clonal 3 
partitioning of iAEC2 cells.  4 
d, Expression of two representative genes marking proliferating cells (TOP2A and MKI67) on day 17 5 
and 27 state manifold, showing that cells predicted by CoSpar to show low commitment on day 17 6 
appear proliferating (Fig. 6c).  7 
e-g, CoSpar predicts that lineage restriction occurs after day 15, except for a rare fraction of cells 8 
committed to non-iAEC2 fates. e, UMAP visualization of cell states on day 15 and 27. f, CoSpar-9 
predicted progenitor bias among cells on day 15. g, Histogram of the progenitor bias on day 15 10 
(shown in panel f). Unlike on day 17 (Fig. 6c), here progenitor bias is concentrated at 50%. 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
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 28 
Supplementary Fig. 6. Establishing upper bounds for fate prediction after data loss. In this 29 
paper, performance of CoSpar was compared to previously published methods by discarding clonal 30 
data and then examining the fidelity of fate predictions in the face of data loss. Supporting the results 31 
reported in Figs. 4g,i and 5h, we obtain an upper bound for fate prediction, by randomly sampling 32 
50% cells from the full ground-truth dataset in each case to predict the progenitor bias of remaining 33 
cells, with different smoothing exponents n.  Prediction was carried out by first inferring the progenitor 34 
bias ./01  from the training data (denoted by tr) to predict the bias ./0$0  of the test data, by imputation 35 
via graph diffusion: ./0$0 = ∑ 4/5(7).5015 . Results show that, in all the three cases considered, a 36 
smoothing exponent n=3 provided the best correlation between the imputed and actual values of ./0$0 . 37 
These correlation values are indicated by the upper dashed grey lines in Figs. 4g,i and 5h. 38 
 39 
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Supplementary Note 1: Connecting transition maps to models of di↵erentiation8

This note grounds the finite-time transition map in a stochastic model of cell di↵erentiation. In doing so it also9

clarifies what cannot be learnt from the transition map.10

11

We begin by considering a Markov model of di↵erentiation represented by an arbitrary graph of finite size, where12

each node represents a cell state. In this model, each cell probabilistically undergoes proliferation, death, and13

di↵erentiation with rates that are specific to the cell state. A clone is a realization of such a stochastic branching14

process, seeded as a single barcoded cell in some cell state. Starting from a cell state i, kij is the di↵erentiation rate15

to a di↵erent state j; bi is the probability of a cell dividing into two cells; and di is the cell loss rate for cells in state16

i. We assume that these rates are first-order (independent of the number of cells in a state). These rates can vary17

with time to reflect changes in the tissue environment. Supplementary Fig. 1a shows a simplified example of such a18

model.19

20

This model is useful in its simplicity, but it is clearly not general: being a Markov process, it assumes that we have21

a complete measurement of the variables that could a↵ect state dynamics, such as the transcriptome, epigenome,22

and extracellular environment. This is unlikely to be true. Incomplete state measurement leads to a non-Markovian23

dynamics5. Nonetheless, our model may be a useful approximation as it generates predictions of biomarkers and fate24

regulators, and their correlation with fate bias.25

26

Our goal in this paper is to learn the structure of such a graphical model (e.g. Supplementary Fig. 1a) and its rate27

constants, from LT-scSeq data. To learn a model from data, we focus most simply on the mean dynamics of cell number28

at each state. To do so, one could consider a complete stochastic description using the chemical master equation6,29

which gives the distribution evolution over the extended state space N ⇥ X = {(Ni, Xi) 8 i; and Ni = 1, 2, ...},30

where Ni is the number of cells at state i and Xi is the corresponding state. However, because we assume a first-order31

model, there exists a closed-form equation for the dynamics of average cell number N̄i(t) at state i and time t,32

d

dt
N̄i(t) =

X

j

N̄j(t)Kji, (1)

where Kij ⌘ (1 � �ij)kij + �ij(bi � di �
P

k 6=i kik), with �ij = {1 if i = j; otherwise 0}, is the instantaneous33

transition rate from state i to j that includes all cellular processes: division, cell death, and di↵erentiation. This34

mean dynamics only captures the net e↵ect of cell number change (bi � di), and does not distinguish whether it is35

from cell proliferation or loss.36

37

To make contact with experiment, we represent the number of cells at each state as a fraction of the total cell38

number to obtain the cell density:39

Pi(t) ⌘
N̄i(t)

N̄(t)
, (2)

where N̄(t) ⌘
P

j N̄j(t) is the total cell number at time t. The dynamics of the cell density Pi(t) is40

d

dt
Pi(t) =

X

j

PjK̃ji(t), (3)

where K̃ji(t) ⌘ Kji � �ji↵̄(t), and ↵̄(t) ⌘
P

k Pk(t)(bk � dk) is the average growth rate of the population at time t.41

Diagonal elements in K̃ reflect whether net growth in each state is larger (positive) or smaller (negative) than the42

population average.43
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We now can ground the transition map T in terms of the model. Integrating Eq. (3) from time t1 to t2 leads to the44

relation45

Pi(t2) =
X

j

Pj(t1)Tji(t1, t2), (4)

where the intrinsic finite-time transition map46

T = exp
⇣Z t2

t1

K̃dt

⌘
(5)

is obtained from matrix exponentiation of the corrected instantaneous transition rate matrix K̃.47

The transition probability Tij is the fraction of progenies from initial state i that ends at later state j (Supplementary48

Fig. 1b). To see this, we can sum over all states in Eq. (4), and noting that
P

i Pi(t) = 1, we have 1 =
P

j Pj(t1)
P

i Tji.49

This equation is valid for any distribution Pj(t1) and therefore the transition map satisfies the conservation property50

X

j

Tij = 1. (6)

Owing to its normalization (Eq. 6), the transition map that is experimentally accessible captures the most interesting51

property we want: the probability of a cell to di↵erentiate into di↵erent cell types. A certain initial state i can transition52

to multiple states over time window t, i.e., T has multiple non-zero entries associated with the i-th row.53

Nonetheless, it is important to note that Tij is shaped both by di↵erences in transition rates between states, and54

by the collective e↵ect of proliferation and cell death along the trajectories between state i and j. Mathematically,55

although proliferation and cell death only a↵ect the diagonal terms in the instantaneous transition matrix K̃, the56

matrix exponentiation in Eq. (5) will propagate this e↵ect to the o↵-diagonal terms in the finite-time transition57

matrix T . For this reason, empirical transition maps alone obscure di↵erences between biases in proliferation and58

choice towards competing fates, as illustrated in Supplementary Fig. 1d.59

Supplementary Note 2: The e↵ect of noisy measurement on transition map inference60

In Eq. (5), the transition map is seen to emerge from stochastic state transitions accumulating over time. In61

practice, an inferred map is also shaped by sources of noise associated with measurement and subsequent dimen-62

sionality reduction of the data. In this note, we examine the errors propagated from di↵erent technical sources into63

the observed transition map T . As might be expected, we show that technical sources of error lead to a ‘blurred’64

transition map, delocalized over the cell state graph. The smoothing kernels connecting the true and observed transi-65

tion map can be understood as a matrix product of error kernels associated with each individual source of uncertainty.66

67

a. Measurement errors. We will consider the errors associated with correctly assigning transition rates from a
state i at time t1 to state j at time t2. Such a transition contributes to mass at matrix element Tij(t1, t2) of the
transition map. At time t2, errors in measurement re-assign cells from state j to another state k, with a probability ✏jk

normalized such that
P

k ✏jk = 1. With such an error, the observed transition map now becomes T (obs.)
ij =

P
k Tik✏kj .

A similar error may occur at t1. Because technical errors may di↵er between time points, we will denote ✏
(i) as the

error in measuring the state of a cell at time ti. Accounting for errors in two time points, the observed transition map
now becomes:

T
(obs.)
ij =

X

k,l

✏
(1)
ki Tkl✏

(2)
lj .

b. Clonal dispersion. In LT-scSeq experiments, the cells sampled at t1 are clonally related to those that give
rise to cells sampled at t2. But being distinct, they may occupy di↵erent states. As above, we consider the error in
estimating transition rates from state i at t1 to state j at t2. At t1, a clonally-related state, k, is observed instead of
state i, with a probability that we shall denote �ik. This probability satisfies normalization

P
k �ik = 1. Accounting

for this clonal dispersion, the observed transition map relates to the true transition map through the relation:

T
(obs.)
ij =

X

k

�kiTkj .
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Note that because cells divide, more than one cell may be observed in a clone at time t1. In this case, the error68

kernel �ki no longer has a unique definition because choices in constructing the transition map may assign more or69

less weight to particular cells within each clone. By enforcing local coherence, CoSpar strongly weights �ki towards70

states k that are close to i, thus reducing errors in the transition map as compared to using a ‘naive’ clonal analysis71

method such as we have previously reported2, which weights all cells in a clone at t1 equally.72

Compounding clonal dispersion and measurement error, we recognize the the observed transition map has the form:

T
(obs.)(t1, t2) = S

T
1 T (t1, t2)S2,

where S1 = ✏
(1)

� and S2 = ✏
(2).73

Supplementary Note 3: Coherent sparse optimization74

Our goal in dynamic inference is to learn the finite-time transition map, as defined in Eq. (4), for the set of observed75

cell states in a given experiment. After imposing sparsity and coherence constraints (see main text), we obtain the76

cost function,77

min
T

||T ||1 + ↵||LT ||2, s.t.
X

m

||P (t2;m)� P (t1;m)T (t1, t2)||2  ✏; T � 0; Normalization. (7)

Here, P (t1,2;m) is a row-vector representing the distributions of cell states within the m-th clone. Lij = 1 �78

w̄ij/
P

j w̄ij is the normalized graph laplacian, with wij the graph connectivity of the nearest neighbor kNN graph79

of cell states. Defining P(t) as a clone-by-cell matrix resulting from concatenation of individual clonal distribution:80

{P (t;m),m = 0, 1, 2...}, we note that
P

m ||P (t2;m)�P (t1;m)T (t1, t2)||2 = ||P(t2)�P(t1)T (t1, t2)||2, which gives the81

form of the cost function given in the main text. For joint optimization, the cost function is additionally minimized82

over P(t1), i.e. minP(t1)[· · · ].83

Before continuing, we note the relationship of this optimization problem to past literature. Absent the coherence84

constraint (↵ = 0), this optimization problem reduces to sparse optimization by lasso regression. To our knowledge,85

only one study has explored the extension of lasso to enforce coherence with relation to a data embedding, called86

‘fused lasso’ optimization7. Fused lasso is however di↵erent in three important ways from Eq. (7). First, it suppresses87

the first-order derivative of the inference target to promote coherence. Second, fused lasso was developed for 1-d88

or 2-d datasets, assuming a natural ordering for the observed cell states. Third, like lasso, the inference object of89

fused lasso is a vector. In contrast, the coherent sparse optimization in Eq. (7) is generalized to arbitrary graphs;90

it suppresses the second-order derivative (the curvature) to enforce coherence; and it is generalized to matrix inference.91

92

Our goal is now to ground the optimization problem in LT-scSeq data, and to propose an algorithm that approx-93

imates solution of Eq. (7). To make connection with raw clonal data, we approximate the density profile matrices94

P(t) as,95

P(t) = I(t)S(t), (8)

where I(t) is a clone-by-cell matrix observed at time t, and S(t) is a cell-cell similarity matrix at time t. Note that96

Eq. (8) integrates the state information (encoded in S(t)) and clonal information (encoded in I(t)) into P. This local97

smoothing operation indirectly imposes coherent transitions in this system.98

99

We now discuss implementation of the optimization problem. Eq. (7) might be formulated as a quadratic program-100

ming problem, and be solved accordingly as in fussed lasso7. However, this strategy is very expensive computationally7.101

There could be ways to solve the optimization e�ciently and exactly, and we leave it as an open problem. Instead,102

we provide an e�cient yet heuristic way to solve the optimization. Specifically, we break down individual elements of103

the objective function, and propose a simple alternative for each of them.104

1. Sparsification. Instead of including the sparsity term ||T ||1 into the objective function, we directly apply a105

pre-defined thresholding to the transition map at each iteration: T  ✓(T, ⌫), where106

[✓(T, ⌫)]ij =

(
Tij , if Tij � ⌫maxj Tij

0, Otherwise
(9)
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2. Transitions within clones. To enforce Eq. (4) for each observed clone, we consider a clonal transition map ⇡
m

107

for the m-th clone, which allows only intra-clone transitions and conserves the total transition flux within a108

clone. We do so by projecting the transition map T and performing clone-wise normalization: ⇡m  Pm(T ):109

[Pm(T )]ij =
⇡̃
m
ijP

i0j0 ⇡̃
m
i0j0

, (10)

where ⇡̃
m
ij = Tij if the transition i ! j occurs within clone m, and otherwise ⇡̃

m
ij = 0. The composite map110

capturing all intra-clone transitions is then,111

P(T ) =
X

m

Pm(T ) (11)

A map constructed in this way, ⇡ = P(T ), will satisfy the following equation approximately:112

I(t2) ⇡ I(t1)⇡(t1; t2), (12)

which is the clonal constraint for directly observed cell states8. The map ⇡(t1; t2) can be used to specify T , but113

being constrained to clones it is no longer coherent.114

3. Coherence. To enforce coherence, we begin by noting that Eqs. (4), (8) and (12) together lead to the relationship115

T (t1; t2) = S
�1
t1 ⇡(t1; t2)St2 . As similarity matrices S are generally non-invertable, we introduce a pseudo-inverse,116

T (t1; t2) ⇡ S
+
t1⇡(t1; t2)St2 . (13)

Eq. (13) smoothes the transition map learnt within-clones, ⇡, over nearby states to get a transition map T117

across all states. T is now a locally continuous map and satisfies the coherence constraint: similar initial cell118

states have similar fate outcomes.119

This approach to calculating T leads to minimization of the term ↵||LT ||2 in Eq. (7), although the parameter120

↵ establishing the relative weight of coherence is no longer explicitly identifiable in the procedure. It is instead121

reflected in the extent of smoothing.122

These three steps, carried out sequentially and iteratively, define the CoSpar algorithm given in methods. Note that123

normalization is performed clone-wise in Eq. (11). The non-negativity constraint, T � 0, is implicitly satisfied in the124

above steps. In our strategy, Eq. (13) is the most time-consuming step as it involves multiplication of large matrices.125

CoSpar is nonetheless e�cient as it carries out matrix multiplication only at Eq. (13), and we find that it converges126

within a few iterations (Supplementary Fig. 2d).127

Supplementary Note 4: Transition map initialization with HighVar128

The HighVar method provides an approach to initialize the joint optimization of T and I(t1) (see Methods). The129

approach is loosely motivated by the expectation that cells similar in gene expression between time points may share130

clonal origin. This expectation can be violated; we use it only to initialize numerical optimization.131

HighVar consists of three steps: 1) Select highly variable genes that are expressed at both t1 and t2; 2) For each132

highly variable gene (indexed by m), threshold its expression to form a binary expression matrix x̂im 2 {0, 1} for all133

states observed at t1 and t2 to generate pseudo clonal data Î(t1) and Î(t2) from the binary expression matrix; 3) Run134

CoSpar with Î(t1) and Î(t2). The pseudo-clonal data Î(t1) and Î(t2) are discarded, and the resulting map T is used135

to initialize CoSpar with the true clonal data.136

For the first step, we use the SPRING gene filtering function filter genes with an adjustable gene variability percentile137

parameter HighVar gene pctl to select highly variable genes9. For the second step we discretize the gene expression138

of each highly-variable gene, sequentially, with a gene-specific threshold ⌘m:139

Îim = H

⇣
xi(m)� ⌘m

⌘
⇥ Zim,

where H(·) is the Heaviside step function (H(x) = 1 if x > 0; otherwise 0), Zim = [1 � H(
Pm�1

m⇤=0 Îim⇤)] sums140

over previously considered genes to ensure that the same cell is not assigned to more than one pseudo-clone. The141

gene-specific threshold ⌘m is chosen such that every pseudo clone has the same number of cells at each time point142

Nt/M , where Nt is the number of observed cells at time t and M is the total number of highly variable genes (i.e.,143
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pseudo clones). In case Nt/M is not an integer, we use its ceil, i.e., dNt/Me, and stop the clonal matrix update when144

all cells are clonally labeled.145
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