

1 **SUPPLEMENTARY MATERIALS**

2 Supplementary Texts:

3 1. Evaluation of the a posterior NO_X emissions and the bottom-up emission inventory

4 2. Uncertainty analyses of NO_X emission inversion

5

6 Supplementary Figs. S1 to S18

7

8 Supplementary Tables S1 to S11

9

10 **Supplementary Text 1: Evaluation of the a posterior NO_x emissions and the**
11 **bottom-up emission inventory**

12 With the inversion system combining RETOMI2 constraints and MEIC, the a
13 posterior emissions were estimated to track the short-term variations of NO_x
14 emissions around the events. As shown in Supplementary Table S1, the a posterior
15 emissions of NO_x were 6-29% lower than MEIC, the current best available emission
16 data with the “bottom-up” approach, for the main control periods of all the concern
17 events in YRD. Furthermore, the a posteriori emissions considerably improved the
18 model performance of surface NO₂ and O₃ concentration simulation with WRF-
19 CMAQ (Supplementary Table S2-S3). Specifically, the correlation coefficients (R)
20 between simulation and observation were elevated by about 0.02-0.1 and 0.01-0.41
21 for NO₂ and O₃, respectively. The normalized mean bias (NMB) and normalized mean
22 error (NME) of NO₂ were reduced from 50% to -4% and from 51% to 23%,
23 respectively, and the analogues numbers were from -22% to 18% and from 33% to
24 32% for O₃. Note reductions in NO_x emissions during the concern periods always
25 enhanced O₃ concentrations, attributed to a prevailing “VOC-limited” O₃ formation
26 regime in YRD, under which O₃ is more sensitivity to volatile organic compounds
27 (VOC) and can be removed through “titration reaction” with NO¹⁻³.

28
29 **Reference:**

30 1. Y. M. Liu, T. Wang, Worsening urban ozone pollution in China from 2013 to 2017-
31 Part 2: The effects of emission changes and implications for multi-pollutant control.
32 Atmos. Chem. Phys. **20**, 6323-6337 (2020).

33 2. Y. T. Wang, Y. Zhao, Y. M. Liu, Y. Q. Jiang, B. Zheng, J. Xing, Y. Liu, S. Wang, C.
34 P. Nielsen, Sustained emission reductions have restrained the ozone pollution over
35 China. Nat. Geosci. **16**, 967-974 (2023).

36 3. X. Y. Dong, Y. Gao, J. S. Fu, J. Li, K. Huang, G. S. Zhuang, Y. Zhou, Probe into
37 gaseous pollution and assessment of air quality benefit under sector dependent
38 emission control strategies over megacities in Yangtze River Delta, China. Atmos.
39 Environ. **79**, 841-852 (2013).

42 **Supplementary Text 2: Uncertainty analyses of NO_x emission inversion**

43 **The “smearing” effect**

44 For the “top-down” emission inversion, “smearing” effect exists in the mass
45 balance method when correcting the NO_x emissions according to the difference
46 between observed and simulated NO₂ TVCDs in every single grid. It resulted mainly
47 from the insufficient consideration of the regional transport of NO₂ in the NO_x
48 emission inversion, and possibly leads to underestimation in local emissions and
49 overestimation in downwind emissions.

50 To evaluate the uncertainty from “smearing” effect, we conducted an extra
51 sensitivity test for estimating the a posterior NO_x emissions for the major events, with
52 the same simulation domain as the normal case (Domain 2 in Supplementary Figure
53 S2) but a coarser horizontal resolution of 27×27 km. Supplementary Table S6 shows
54 the comparison of the a posterior NO_x emissions in normal and sensitivity case,
55 indicated by the correlation coefficient (R), NMB and NME between the two
56 estimates. The strong coefficients and small NMEs for all the major events suggest a
57 limited effect of horizontal resolution and thereby “smearing” effect on emission
58 inversion.

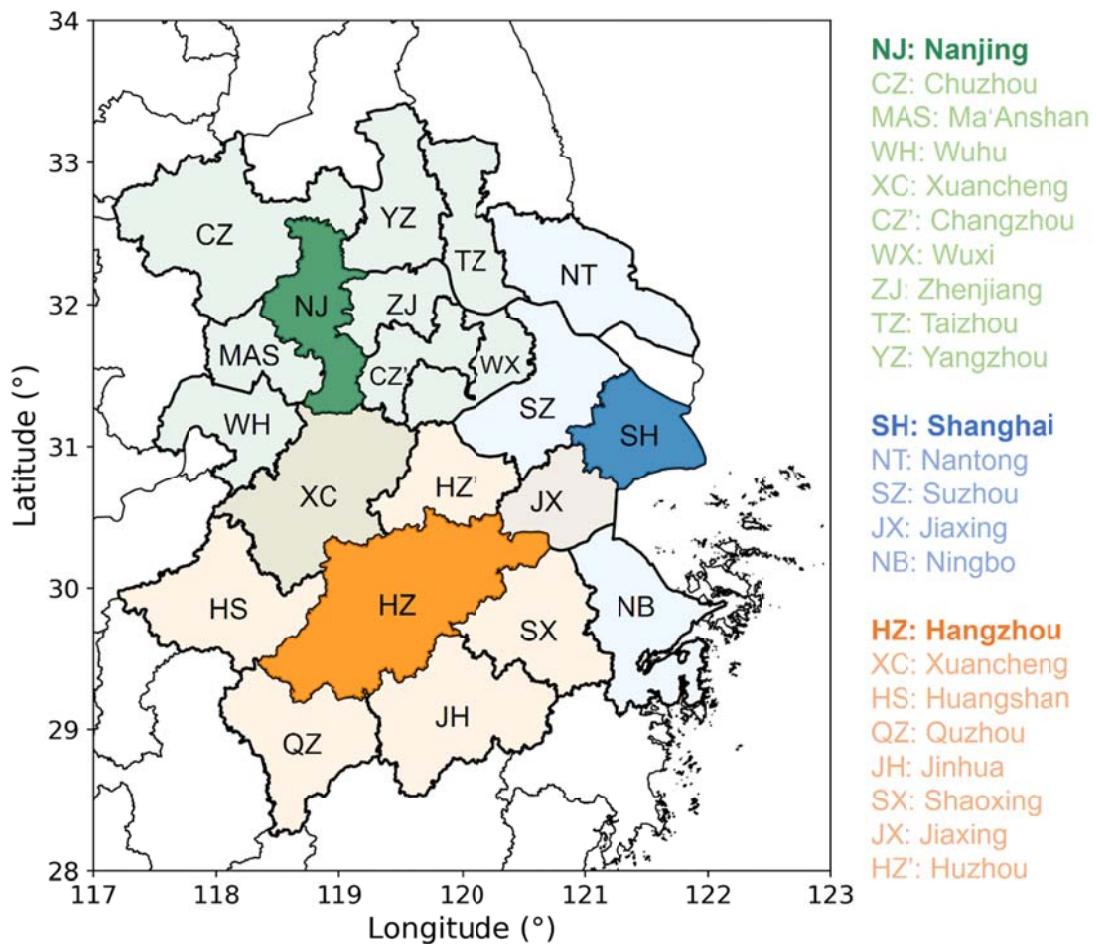
59

60 **The sensitivity test of sector-level emission decomposition**

61 The uncertainty of sector-level emission estimation was tested by changing the
62 criterion of defining the main emission sectors of the grid cells. In the normal case,
63 we defined a sector as the main sector for individual simulation grid cell if it
64 accounted for more than 50% of total emissions (Methods). Here we changed the
65 criterion to 40% and 60%, and repeated the decomposition of sector-level emissions
66 respectively.

67 Supplementary Table S7 shows the comparison of the inversed sector-level
68 emissions with different criteria, indicated by R, NMB and NME between different
69 estimates. The large R (>0.8 for most cases) and small NMEs (<20%) suggest the
70 uncertainty from changing criterion of defining main emission sectors was moderate.

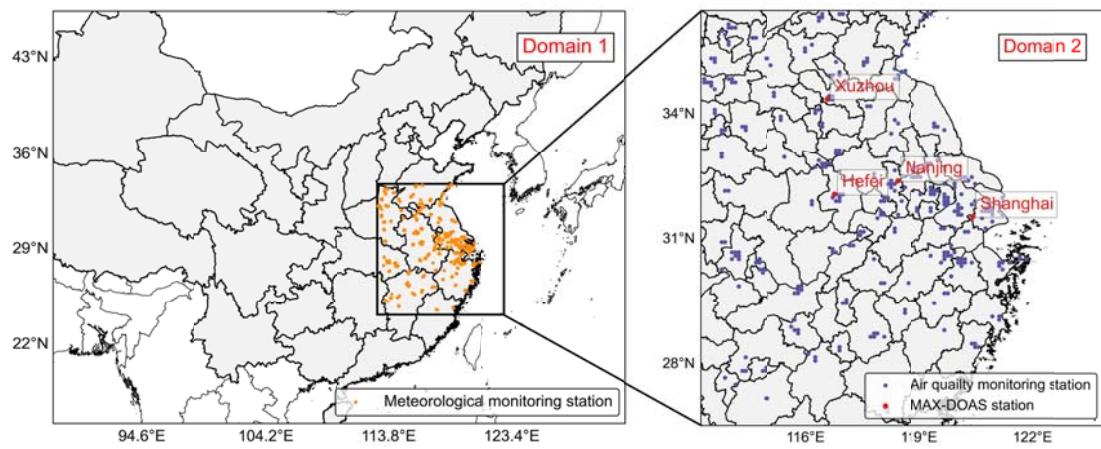
71


72 **The sensitivity test of β (response of NO₂ TVCDs to changing NO_x emissions)**

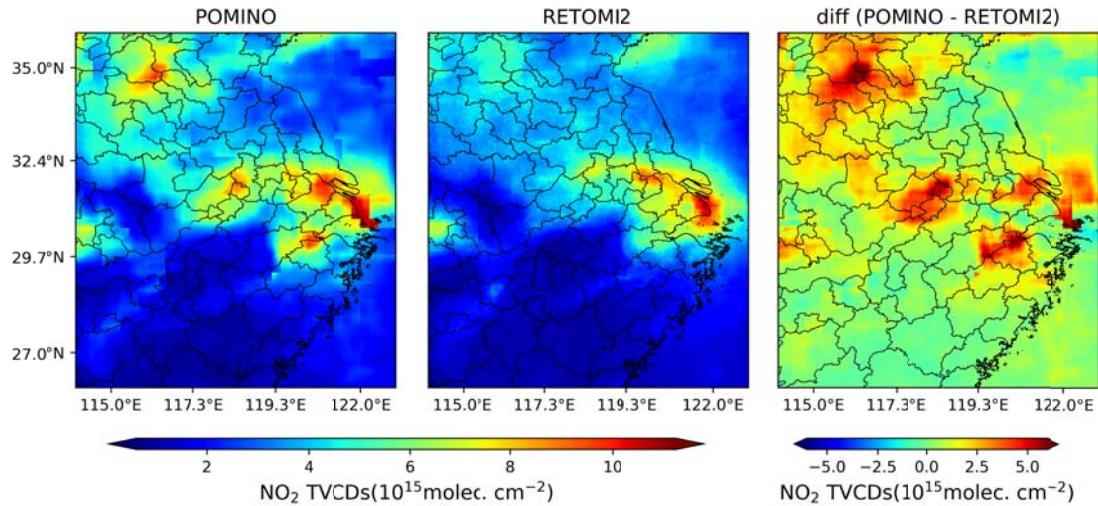
73 When estimating the response of NO₂ TVCDs to changing NO_x emissions, we
74 applied a 10% perturbation in NO_x emissions (Methods and Eq. 6). To test this
75 uncertainty, we changed the NO_x emission perturbation from 20% to 60%, and
76 repeated the NO_x emission inversion for 2014 NMD as an example. As shown in
77 Supplementary Table S11, the variability of β with emission perturbation ranging
78 20%-60% was within 10%, compared to that with emission perturbation of 10%.
79 Therefore, the value of β was not sensitive to varying emission perturbation.

80

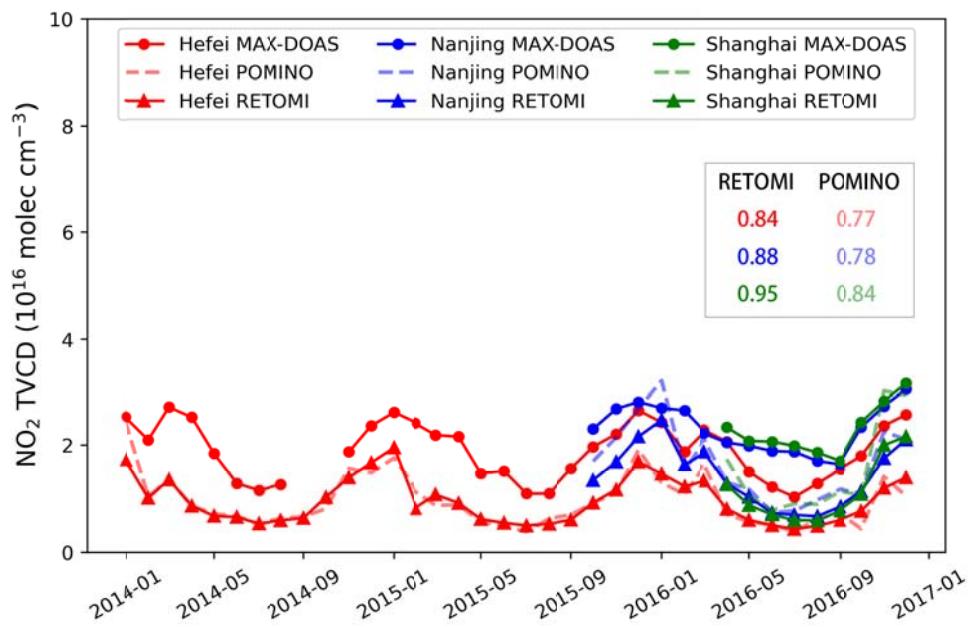
82 **Supplementary Figures**


86 **Fig. S1. Host and neighboring cities of the major events in the YRD region.** We
87 defined neighboring cities as one that borders the host city. The darker colors (green,
88 blue, orange) represent host cities (Nanjing, Shanghai, and Hangzhou), and the lighter
89 colors represent neighboring cities.

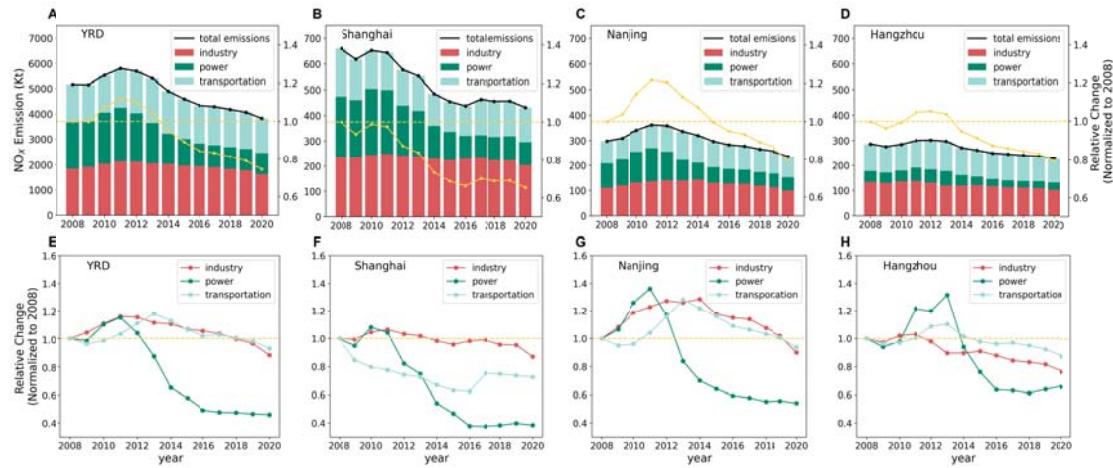
87


88

96 **Fig. S2. Modeling domain of WRF-CMAQ and the locations of meteorological,
97 air quality, and MAX-DOAS measurement stations in YRD.** A nested WRF-
98 CMAQ model is applied at the horizontal resolution of 27×27 km (Domain 1) and 9×9 km (Domain 2). Domain 1 provided initial and boundary fields for Domain 2,
100 where the NO_x emissions were inversed. The MAX-DOAS measurements were
101 available at monthly level in Hefei (117.16°E, 31.91°N), Nanjing (118.95°E,
102 32.118°N) and Shanghai (120.98 °E, 31.09°N), and at daily level in Xuzhou (117.14°
103 E, 34.22° N).

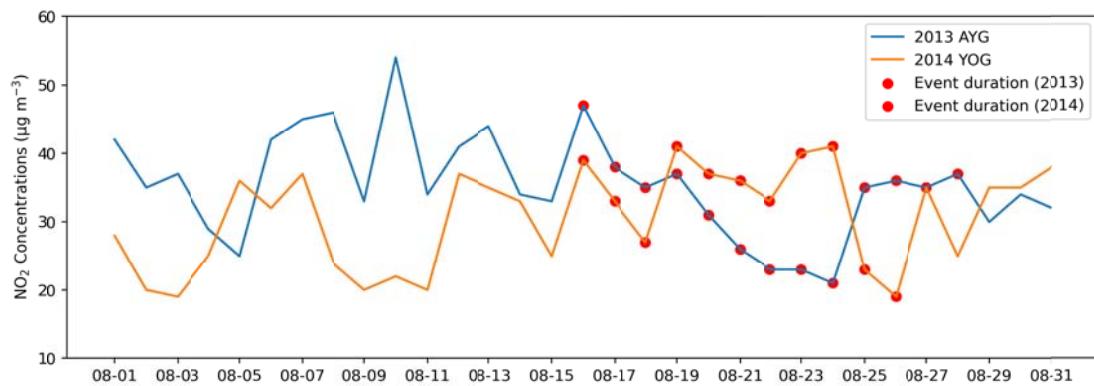

97
98

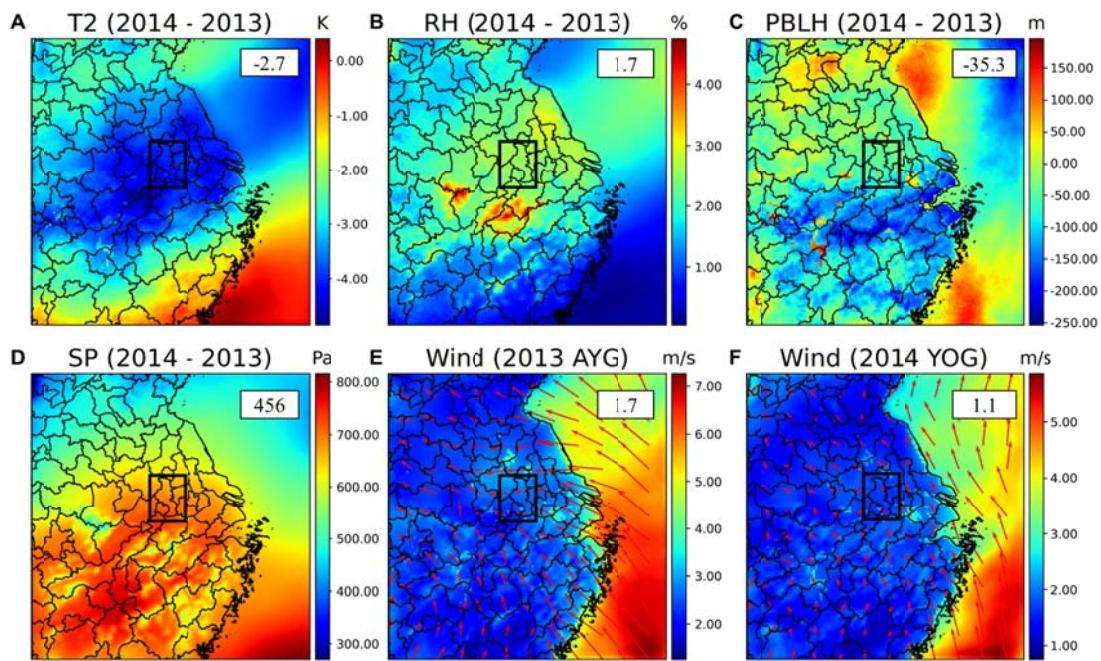
102 **Fig. S3. The spatial distribution of standard deviations of NO₂ TVCDs in**
103 **POMINO and RETOMI2, and the difference between them during the main**
104 **control periods of major events. The horizontal resolution is 0.05°×0.05° (Original**
105 **POMINO data were downscaled by bilinear interpolation).**


103
104

110 **Fig. S4. Monthly temporal variation of NO₂ TVCDs from satellite data**
111 **(RETOMI2 and POMINO) and ground-based observations from MAX-DOAS at**
112 **Hefei (117.16°E, 31.91°N; from January 2014 to December 2016, red curves with**
113 **dots), Nanjing (118.95°E, 32.118°N; from October 2015 to December 2016, blue**
114 **curves with dots) and Shanghai (120.98 °E, 31.09°N; from April to December**
115 **2016, green curves with dots).**

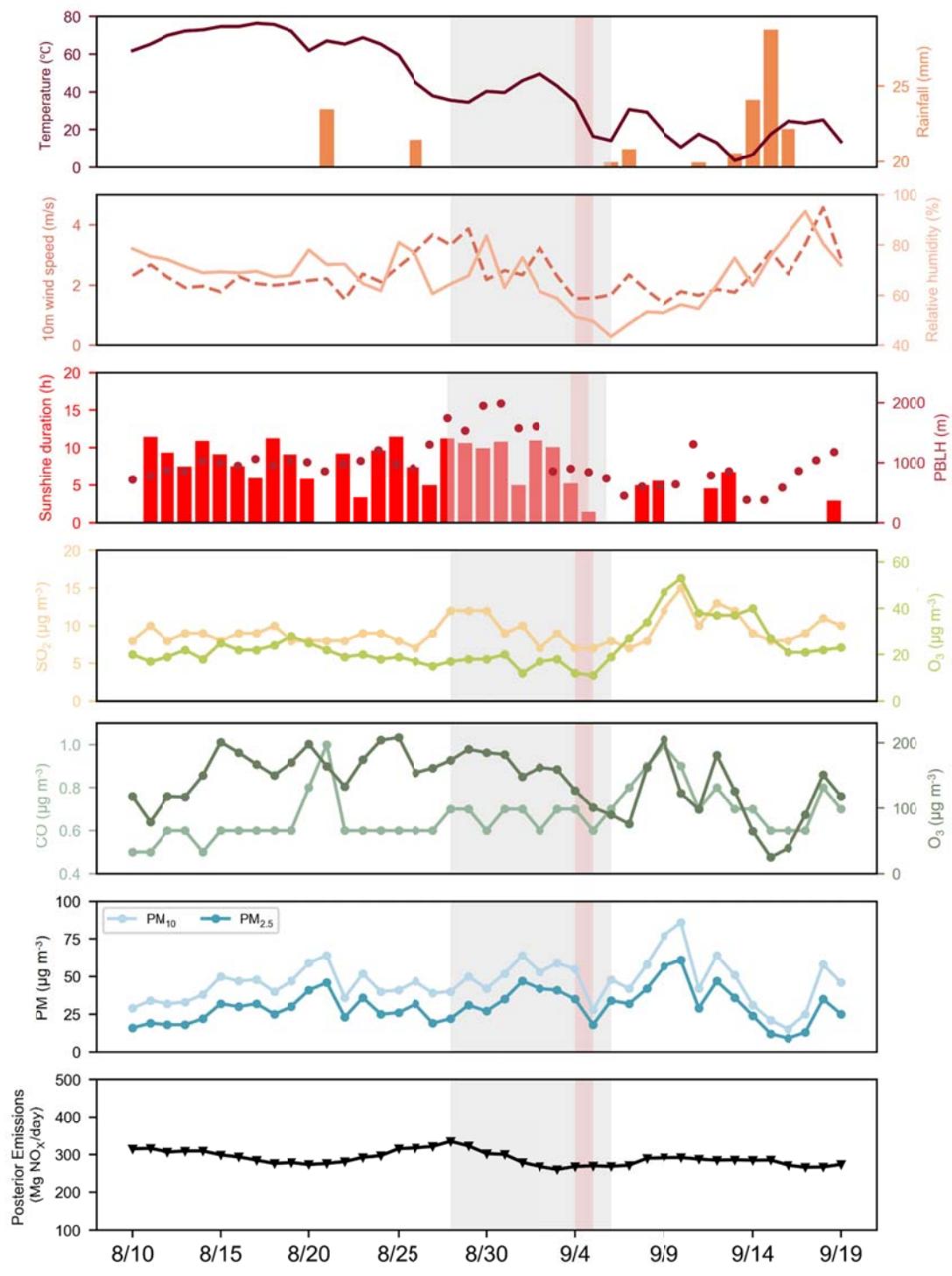
111
112


118 **Fig. S5. Interannual trends of NO_x emissions from MEIC during 2008-2020 for**
 119 **YRD (A, E), Shanghai (B, F), Nanjing (C, G) and Hangzhou (D, H).** The black
 120 dotted lines represent annual total NO_x emissions. The red, green and light blue bars
 121 represent the emissions from industrial, power and transportation sectors, respectively.
 122 The red, green and light blue dotted lines indicate the relative change in emissions
 123 from 2008 for the industry, electricity and transportation sectors, respectively.

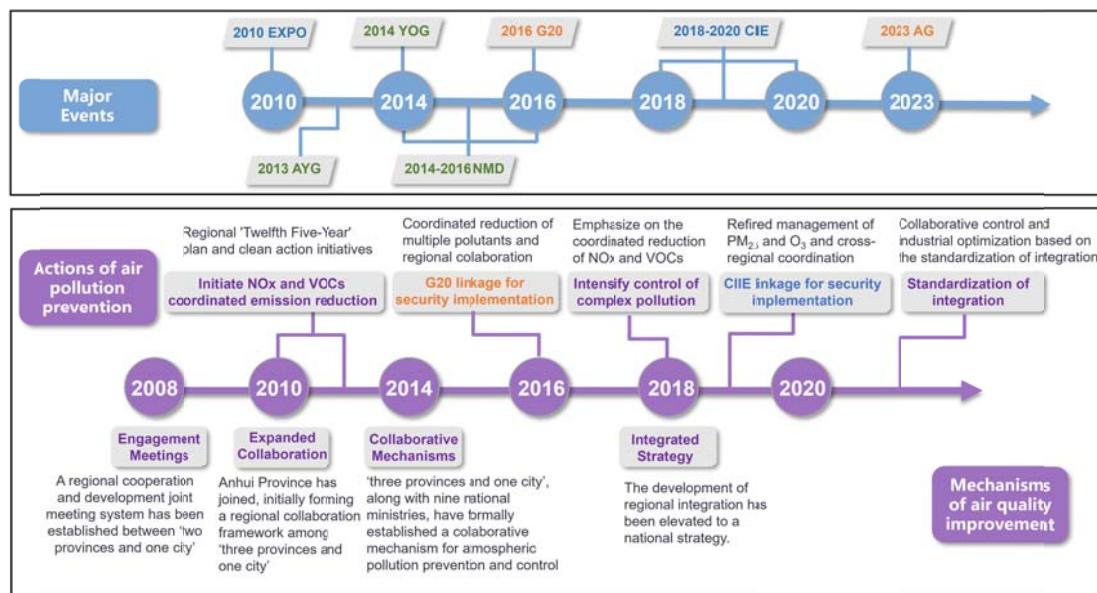

119
 120

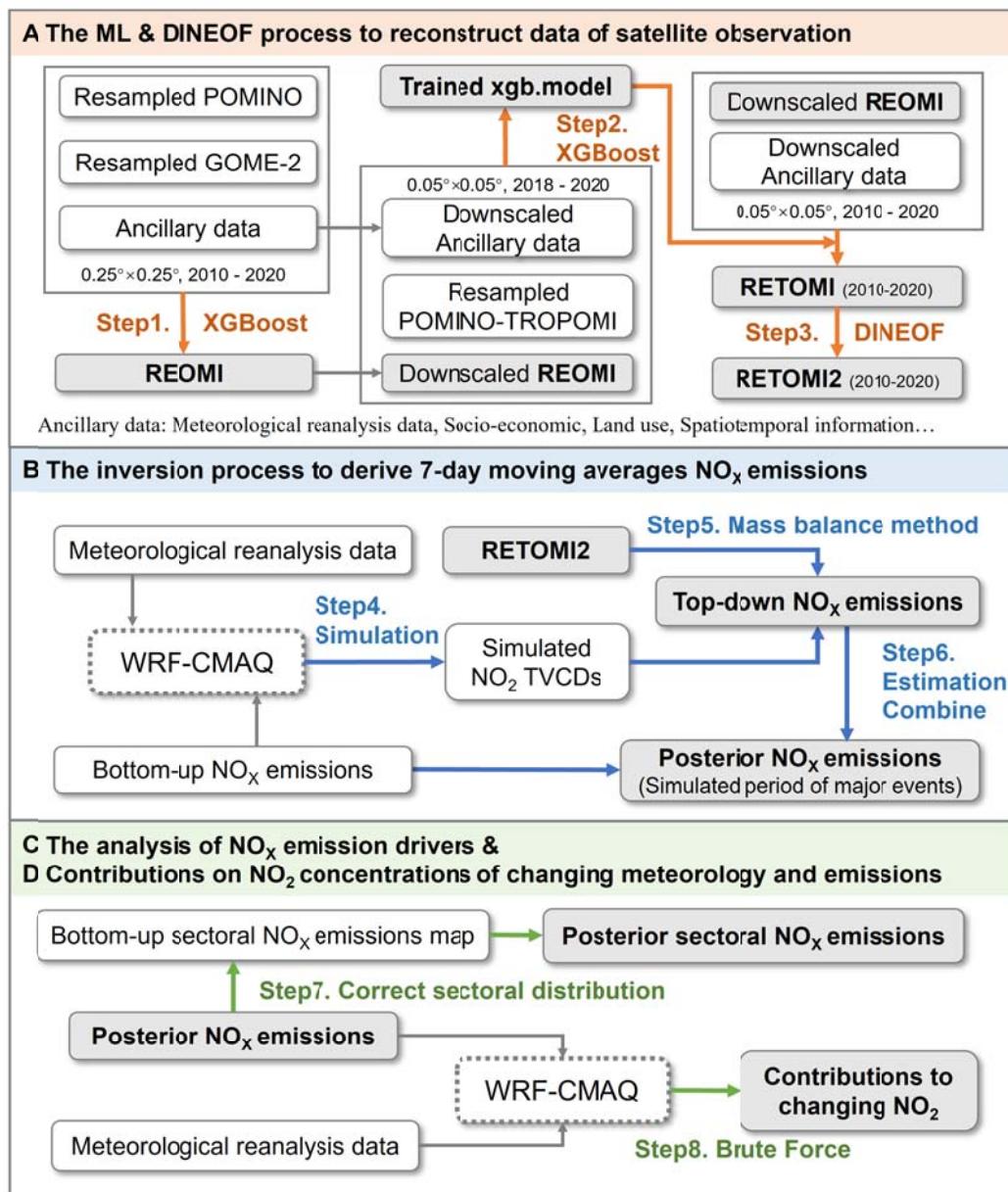
124 **Fig. S6. Daily variation of observed surface NO₂ concentration in Nanjing in**
125 **August 2013 and August 2014.** The data for August 2013 and August 2014 are
126 indicated in blue and orange respectively. Observations during the event are indicated
127 with red dots.

125
126

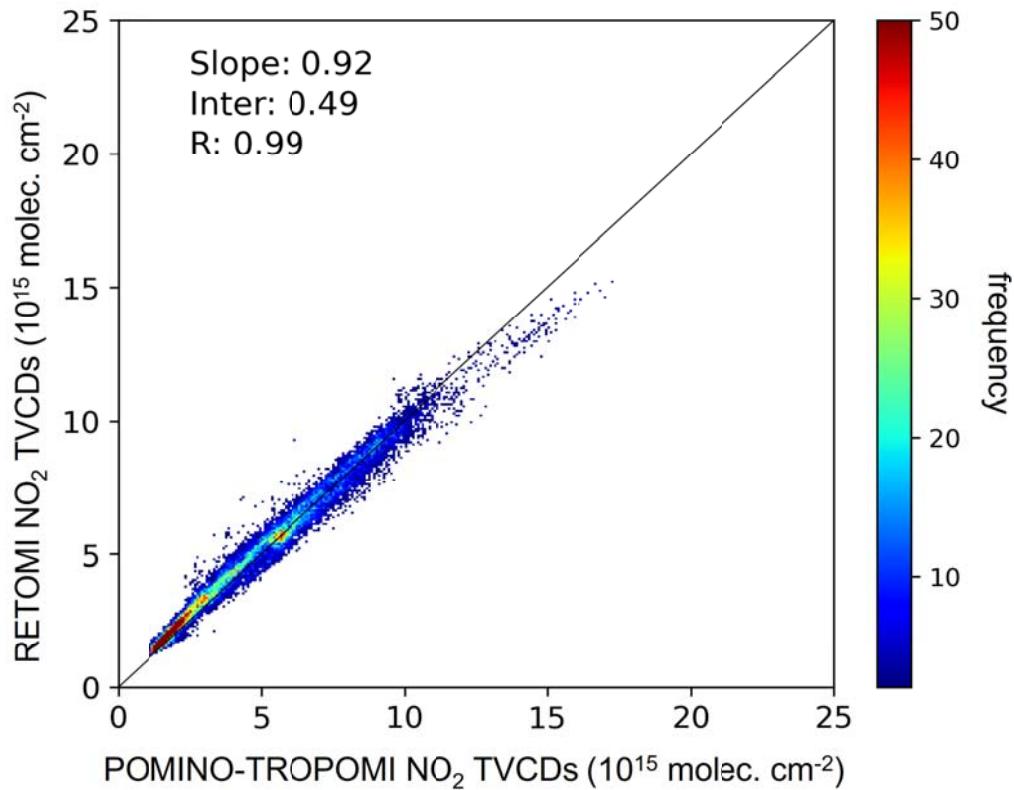


134 **Fig. S7. Difference of simulated hourly mean meteorological conditions during**
 135 **the 2013 AYG and 2014 YOG. Difference is indicated as meteorological factors**
 136 **on 16-28 August 2013 minus meteorological factors on 16-28 August 2014. (A)**
 137 **Temperature at 2m (T2), (B) Relative humidity (RH) at 2m, (C) Planetary boundary**
 138 **layer height (PBLH), (D) Surface pressure (SP), (E) Wind speed and direction at 10-**
 139 **meter in 2013 AYG, (F) Wind speed and direction at 10-meter in 2014 YOG. The**
 140 **boxes in the upper right corner show the bias of mean value (A-D) or the mean value**
 141 **of wind speed (E, F). The black box in each plot shows the location of Nanjing.**



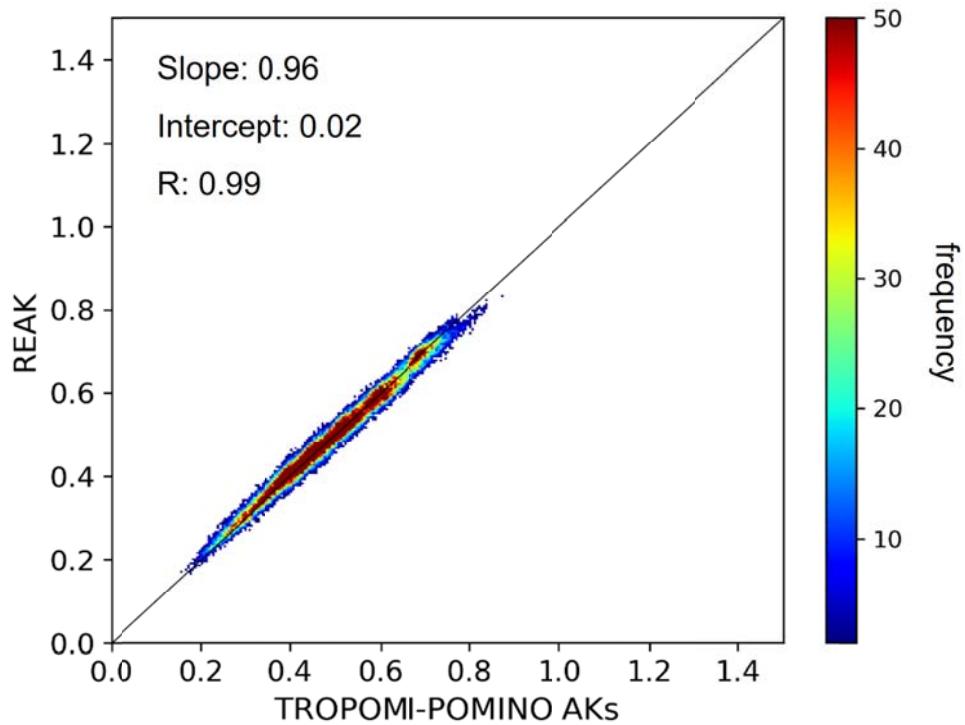

135
 136

142 **Fig. S8. Time series of daily observed concentrations of air pollutants (SO₂, NO₂,
143 CO, O₃, PM_{2.5} and PM₁₀), meteorological parameters (temperature, rainfall,
144 wind speed at 10-meter, relative humidity, sunshine duration and PBLH) and the
145 a NO_x posterior emissions in Hangzhou from August to September 2016. The red
146 shade indicates the G20 summit period (Sep. 4 - Sep. 5, 2016). The grey shade
147 indicates Phase II (Aug. 28 - Sep. 6, 2016) in main control period of 2016 G20.**

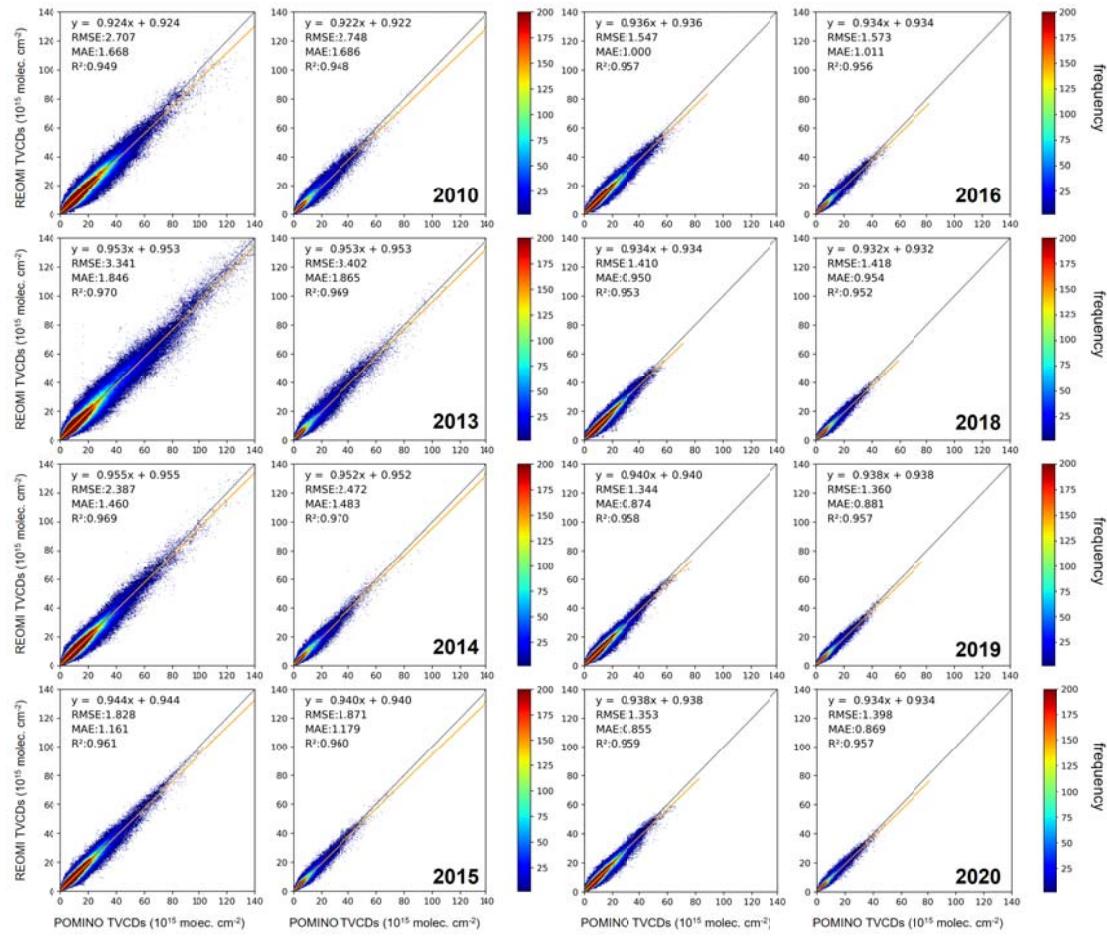


143

Fig. S9. The timeline of major events and long-term air pollution prevention actions and mechanisms.


Fig. S10. The methodological flowchart of the study.

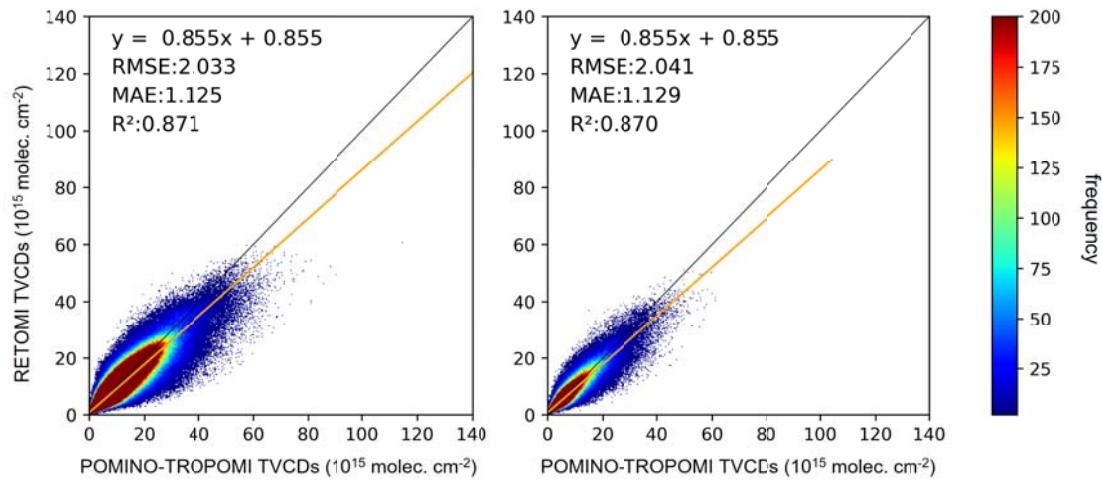
151 **Fig. S11. Scatterplot of historical NO₂ TVCDs from POMINO-TROPOMI and**
152 **RETOMI (Jul.1, 2018 to Dec. 31, 2020).** The slope and intercept were applied to
153 adjust POMINO-TROPOMI data during the simulation period of 2023 AG.


152
153

157 **Fig. S12. Scatterplot of historical averaging kernels of RETOMI (REAK) and**
158 **POMINO-TROPOMI (Jul.1, 2018 - Dec. 31, 2020).** The slope and intercept were
159 applied to adjust the AKs of POMINO-TROPOMI during the simulation period of
160 2023 AG.

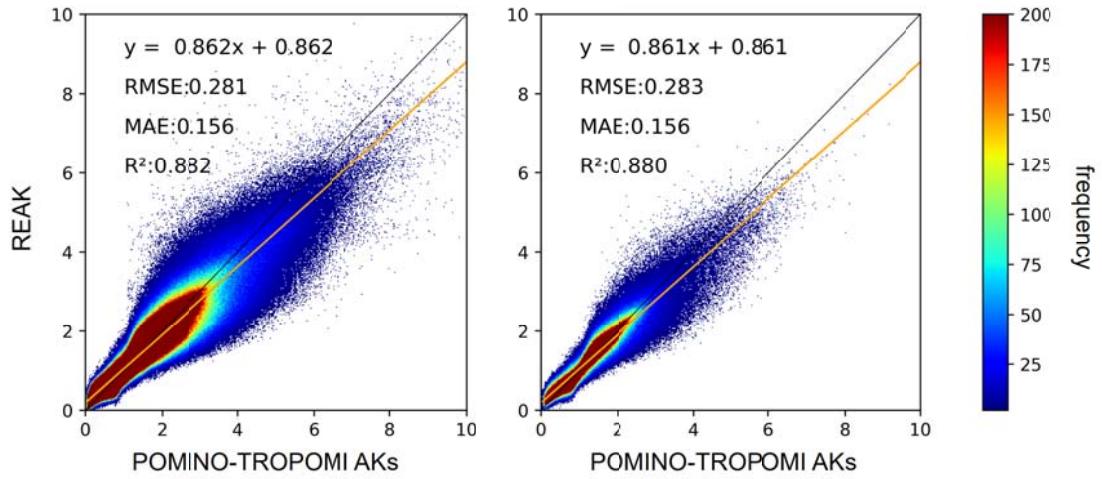
158
159

161 **Fig. S13. Scatterplot of NO₂ TVCDs from REOMI and POMINO (left and right**
 162 **panels for each year indicate the training and validation dataset, respectively).**

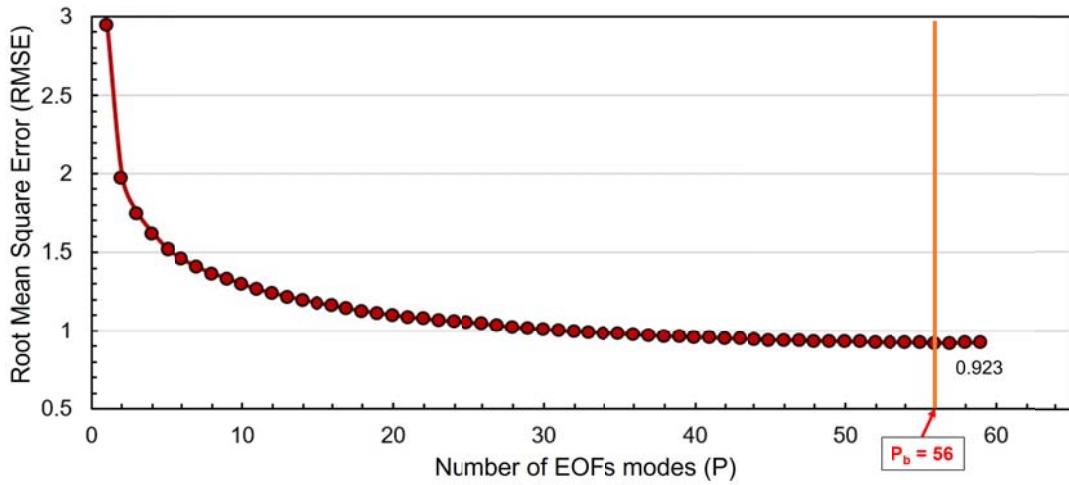


162

163

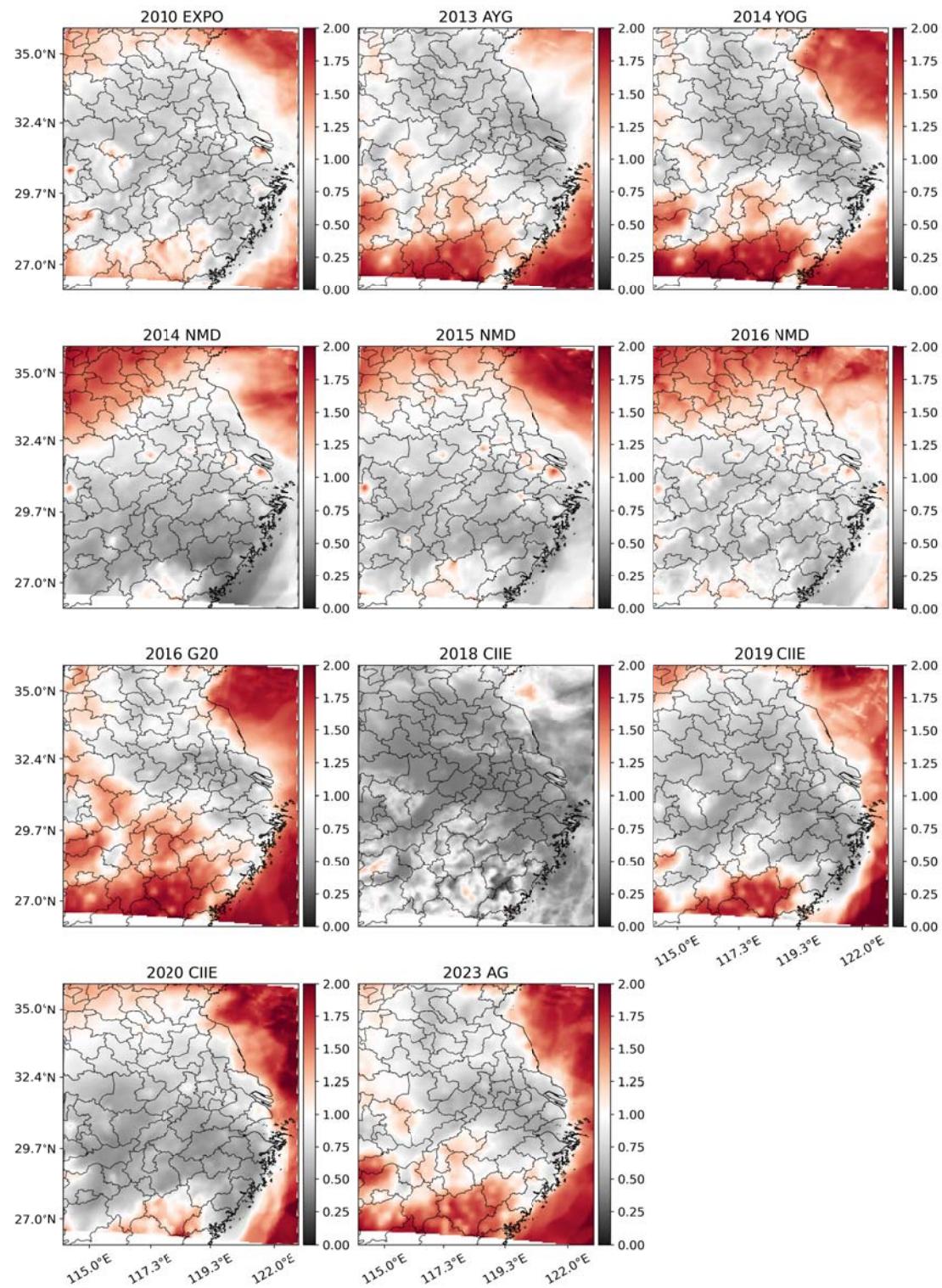

165 **Fig. S14. Scatterplot of NO₂ TVCDs from RETOMI and POMINO-TROPOMI**
166 **(left and right panel indicate the training and validation dataset, respectively).**

166
167

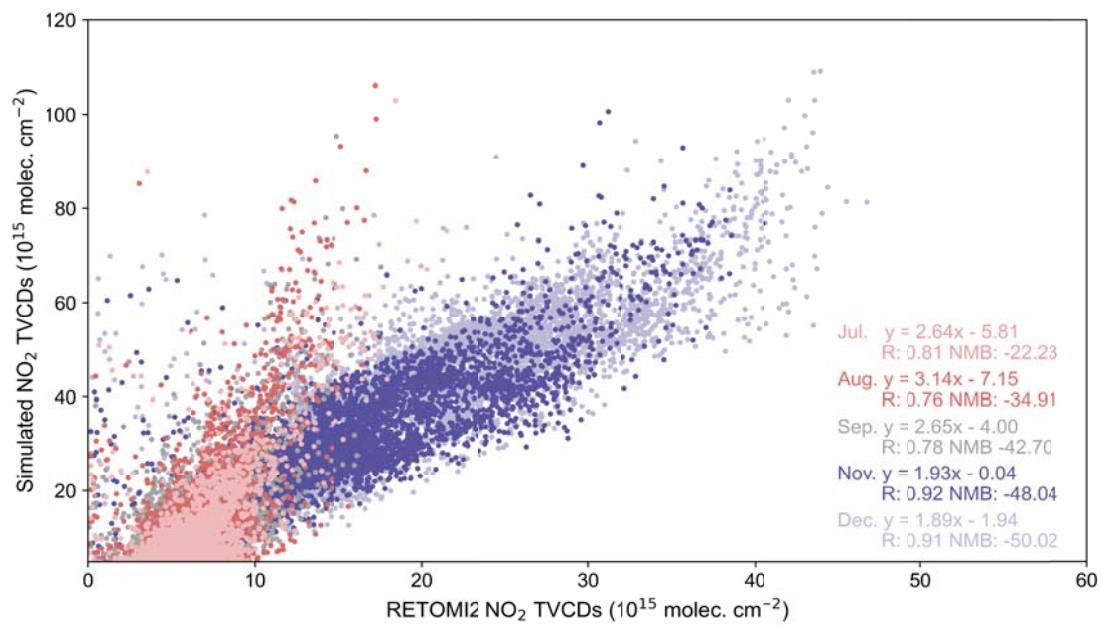


169 **Fig. S15. Scatterplot of REAK and POMINO-TROPOMI AKs (left and right**

170 panels indicate train and test dataset, respectively).



176 **Fig. S16. The influence of Expected Error (RMSE) by number of EOFs modes**
177 **(P) in DINEOF.** Take a specific event (2014 NMD) as an example. P_b is the specific
178 number of EOFs modes set to meet a condition where the RMSE change is less than
179 1%. In this case, P_b was set as 56 (RMSE=0.923), the change in RMSE between $P=56$
180 and $P=55$ is less than 1%.


177
178

180 **Fig. S17. The spatial distribution of β (the sensitivity of NO₂ TVCDs to changing**
181 **NO_x emissions) at YRD region during main control period of major events.**

181
182

184 **Fig. S18. Scatterplot of NO₂ TVCDs from RETOMI2 and WRF-CMAQ**
185 **simulation by month.**

185

185 **Supplementary Tables**186 **Table S1. The bottom-up (MEIC) and the a posterior NO_x emissions (units: Gg NO_x) and the relative difference (Diff) between them in
187 YRD during the simulation period of the 11 major events.**

Event	YRD (Gg NO _x)			Host city (Gg NO _x)			
	MEIC	The a posterior	Diff	City	MEIC	The a posterior	Diff
2010 EXPO	5651	4714	-17%	Shanghai	351	250	-41%
2013 AYG	1798	1608	-11%	Nanjing	48	38	-24%
2014 YOG	1628	1467	-10%	Nanjing	46	34	-33%
2014 NMD	1078	764	-29%	Nanjing	30	20	-47%
2015 NMD	1022	777	-24%	Nanjing	28	18	-53%
2016 G20	980	773	-21%	Hangzhou	27	20	-33%
2016 NMD	1432	1321	-8%	Nanjing	40	34	-17%
2018 CIIE	844	792	-6%	Shanghai	46	40	-15%
2019 CIIE	838	746	-11%	Shanghai	49	34	-46%
2020 CIIE	848	748	-12%	Shanghai	50	35	-44%
2023 AG	1361	1162	-15%	Hangzhou	42	35	-21%

188 **Table S2. The model performance of surface NO₂ concentration with the a**
 189 **posterior emissions and the bottom-up estimates (MEIC).** Numbers in red indicate
 190 that the simulation of the a posteriori emission performed better than MEIC. The
 191 evaluation period was the main control period of major events.

Event	Emission data	Observation mean (YRD)	Simulation Mean (YRD)	R	NMB	NME
2014 YOG	MEIC	29.21	51.16	0.75	76.50	76.73
	Posterior		37.11	0.75	1.05	27.35
2014 NMD	MEIC	48.02	63.81	0.75	32.89	34.11
	Posterior		37.97	0.81	-20.93	23.26
2015 NMD	MEIC	43.13	61.40	0.69	43.86	43.94
	Posterior		38.53	0.67	-10.67	22.28
2016 G20	MEIC	22.62	39.98	0.68	75.98	77.25
	Posterior		24.01	0.70	6.14	34.85
2016 NMD	MEIC	47.08	59.14	0.68	25.62	29.22
	Posterior		38.05	0.62	-19.18	26.43
2018 CIIE	MEIC	37.32	54.54	0.69	46.14	46.89
	Posterior		32.40	0.78	-13.17	19.99
2019 CIIE	MEIC	36.42	52.24	0.80	43.46	44.56
	Posterior		37.74	0.84	3.62	21.04
2020 CIIE	MEIC	34.67	49.86	0.73	43.78	45.21
	Posterior		37.19	0.82	7.24	20.47
2023 AG	MEIC	27.29	43.28	0.84	58.58	59.75
	Posterior		30.20	0.86	10.66	12.42

192

193

194 **Table S3. The same as Table S2 but for O₃ simulation.**

Event	Emission data	Observation mean (YRD)	Simulation mean (YRD)	R	NMB	NME
2014 YOG	MEIC	65.75	56.09	0.87	-14.68	23.15
	Posterior		72.56	0.88	9.68	22.12
2014 NMD	MEIC	70.85	60.15	0.85	-15.11	23.14
	Posterior		70.75	0.85	-0.14	22.36
2015 NMD	MEIC	47.13	22.22	-0.44	-52.84	62.56
	Posterior		47.41	0.85	55.81	56.54
2016 G20	MEIC	30.47	19.20	0.72	-37.00	40.11
	Posterior		44.98	0.74	48.09	52.98
2016 NMD	MEIC	35.85	24.51	0.71	-31.62	38.10
	Posterior		45.84	0.77	27.87	36.77
2018 CIIE	MEIC	44.85	36.54	0.77	-18.53	32.42
	Posterior		44.37	0.72	-1.08	32.81
2019 CIIE	MEIC	46.07	43.99	0.86	-4.53	25.06
	Posterior		54.41	0.88	18.09	27.06
2020 CIIE	MEIC	45.07	33.99	0.84	-24.57	31.94
	Posterior		49.08	0.87	8.90	23.62
2023 AG	MEIC	69.01	68.40	0.84	-0.87	23.13
	Posterior		69.08	0.85	0.10	22.16

195

196

197 **Table S4. The short-term emission control measures for the major events.**

Event	Main control period	Specific measures
2010 EXPO	Apr. 1 - Oct. 1, 2010	<p>Point sources: All coal-fired boilers, power plants and key industrial factories within a 300-kilometer radius of the Expo site were under priority control. Clean power generation took priority during high pollution period.</p> <p>Area sources: Waste straw burning and construction dust emissions were strictly controlled.</p> <p>Mobile sources: High-emission vehicles were eliminated or restricted from entering the Expo venue. Zero-emission public transportation systems and tightened vehicle emission standards were implemented.</p>
2013 AYG	Aug. 1 - Aug. 30, 2013	<p>Point sources: Nearly 60 heavy industrial factories were shut down. Power generation was reduced. The use of coal-fired boilers was prohibited.</p> <p>Area sources: The work at all construction sites was stopped. The control of restaurant fume emissions was strengthened. Road cleaning was strengthened.</p> <p>Mobile sources: High-emission vehicles were banned from the city.</p>
	Phase I: Sep. 15 - Sep. 31, 2014	<p>Point sources: All coal-fired factories were shut down.</p> <p>Area sources: The work on one-third of construction sites was stopped.</p> <p>Mobile sources: The parking fees in downtown increased sevenfold.</p>
2014 YOG	Phase II: Aug. 1 - Aug. 30, 2014	<p>Point sources: Twenty percent of manufacturing was reduced for heavy industrial factories.</p> <p>Area sources: The work at all construction sites was stopped (Aug.16-31). Openair barbecue was stopped</p> <p>Mobile sources: High-emission vehicles were banned from entering the city. In total 900 electric buses and 500 taxis were put into operation.</p>
2014 NMD	Nov. 17 - Dec. 17, 2014	<p>Point sources: The removal efficiencies of air pollutant control facilities were elevated, including gas desulphurization, selective catalytic reduction, and dust collectors. A number of heavy industrial factories were shut down.</p> <p>Area sources: The work at all construction sites was stopped. Road cleaning was strengthened.</p> <p>Mobile sources: All yellow-labeled and high-emission vehicles were banned from entering the city. Thirty percent of government vehicle use was stopped.</p>

198 **Table S4. (Continued Table)**

Event	Main control period	Specific measures
2015 NMD	Dec. 7 - Dec. 15, 2015	<p>Point sources: The removal efficiencies of air pollutant control facilities were elevated. Thirty-one heavy industrial factories were shut down. Key factories reduced manufacturing by 30%.</p> <p>Area sources: The work at all construction sites was stopped. Road cleaning was strengthened.</p> <p>Mobile sources: Heavy-duty trucks were prohibited from entering the city.</p> <p>Emergency Control Measures: Special control measures were implemented during the pollution period. Restrictions on manufacturing were elevated for industries. Further measures were taken to control emissions from vehicles, ships, and dust pollution (Dec. 11 - Dec. 13, 2015).</p>
2016 G20	Phase I: Aug. 1 - Aug. 27, 2016	<p>Point sources: Heavy industrial factories were shut down or required to reduce production.</p> <p>Area sources: The work at all construction sites was stopped (Aug. 25 - Sep. 6).</p>
	Phase II: Aug. 28 - Sep. 6, 2016	<p>Point sources: Same as Phase I.</p> <p>Mobile sources: Vehicles from outside Hangzhou were banned from entering the city. Odd-even traffic rule was implemented (Aug. 28 - Sep. 3).</p>
2016 NMD	Dec. 9 - Dec. 13	The same as 2015 NMD.
2018 CIIE	Oct. 27 - Nov. 10	<p>Point sources: The upgrade of coal-fired boilers and production restrictions for key enterprises were strengthened.</p>
2019 CIIE	Oct. 27 - Nov. 10	<p>Area sources: Waste straw burning and construction dust emissions were strictly controlled. Road cleaning was strengthened.</p>
2020 CIIE	Nov. 1 - Nov. 10	<p>Mobile sources: The number of on-road vehicles was restricted. Pollution prevention and control of high-emission vehicles and non-road machinery was strengthened.</p>
2023 AG	Sep. 10 – Oct. 8	<p>Point sources: The removal efficiencies of air pollutant control facilities were elevated.</p> <p>Area sources: Road cleaning was strengthened.</p> <p>Mobile sources: The number of on-road vehicles was restricted. Pollution prevention and control of high-emission vehicles and non-road machinery was strengthened.</p> <p>Emergency Control Measures: Platform was established to detect and track the hotspot of pollution.</p>

199 **Table S5. The simulation periods used to distinguish between meteorological and**
 200 **emission contributions (P1 and P2).** P2 included the full period of main control for
 201 each event, with an exception of 2010 EXPO, for which April 2010 was selected as
 202 P2 to save computational cost. P1 was the period before P2 with the same duration as
 203 P2.

Event	P1	P2
2010 EXPO	Mar. 2 - Mar. 31, 2010	Apr. 1 - Apr. 30, 2010
2013 AYG	Jul. 2 - Jul. 31, 2013	Aug. 1 - Aug. 30, 2013
2014 YOG	May. 28 - Jul. 14, 2014	Jul. 15 - Aug. 31, 2014
2014 NMD	Oct. 17 - Nov. 16, 2014	Nov. 17 - Dec. 17, 2014
2015 NMD	Nov. 28 - Dec. 6, 2015	Dec. 7 - Dec. 15, 2015
2016 G20	Jun. 25 - Jul. 31, 2016	Aug. 1 - Sep. 6, 2016
2016 NMD	Dec. 4 - Dec. 8, 2016	Dec. 9 - Dec. 13, 2016
2018 CIIE	Oct. 12 - Oct. 26, 2018	Oct. 27 - Nov. 10, 2018
2019 CIIE	Oct. 12 - Oct. 26, 2019	Oct. 27 - Nov. 10, 2019
2020 CIIE	Oct. 22 - Oct. 31, 2020	Nov. 1 - Nov. 10, 2020
2023 AG	Aug. 12 - Sep. 9, 2023	Sep. 10 - Oct. 8, 2023

204

205 **Table S6 Comparison of the a posteriori emissions inversed at two horizontal**
 206 **resolutions (27×27 km and 9×9 km) during the main control periods of the 11**
 207 **major events.**

Event	R	NMB (%)	NME (%)
2010 EXPO	0.86	1.21	4.04
2013 AYG	0.95	-0.20	1.39
2014 YOG	0.91	0.89	2.88
2014 NMD	0.89	-0.07	2.28
2015 NMD	0.87	0.64	4.57
2016 G20	0.91	0.50	3.15
2016 NMD	0.93	0.78	2.93
2018 CIIE	0.98	0.49	2.24
2019 CIIE	0.85	0.99	3.07
2020 CIIE	0.91	-0.28	1.85
2023 AG	0.96	1.36	4.26

208
 209

210 **Table S7. Variability in the a posterior NO_x emissions at the sector level with**
 211 **different criteria to identify the main emissions sector for individual grid cells.**
 212 Comparisons were conducted between the estimates with a criterion of 40% and 50%,
 213 and between the estimates with a criterion of 60% and 50% (see explanation of the
 214 criterion in Supplementary Texts).

Event	Sector	40% versus 50%			60% versus 50%		
		R	NMB (%)	NME (%)	R	NMB (%)	NME (%)
2010 EXPO	Industry	0.91	-3.61	8.64	0.96	-8.25	8.93
	Power	0.95	3.38	9.18	0.96	15.69	15.81
	Transportation	0.98	0.97	3.19	0.97	-8.00	8.95
2013 AYG	Industry	0.93	-1.38	2.57	0.89	0.12	2.56
	Power	1.00	0.08	0.51	0.99	0.25	1.32
	Transportation	0.98	0.64	1.12	0.98	-0.14	1.05
2014 YOG	Industry	0.98	0.43	1.20	0.95	3.69	3.94
	Power	1.00	-0.21	0.45	1.00	0.38	1.16
	Transportation	1.00	-0.21	0.61	0.98	-2.32	2.46
2014 NMD	Industry	0.99	-0.21	2.63	0.98	-3.71	4.72
	Power	1.00	0.13	0.85	0.99	-3.64	3.70
	Transportation	1.00	0.04	1.48	0.99	3.31	3.81
2015 NMD	Industry	0.99	0.87	2.58	0.97	-1.03	5.87
	Power	0.99	1.27	2.24	0.98	-6.35	6.54
	Transportation	1.00	-0.59	1.32	0.99	2.63	4.31
2016 NMD	Industry	0.99	0.04	3.89	0.99	-5.39	6.28
	Power	1.00	-0.76	2.11	1.00	-2.71	3.12
	Transportation	1.00	0.10	2.02	1.00	3.73	3.87
2016 G20	Industry	0.96	0.71	1.53	0.43	17.50	17.50
	Power	0.99	0.48	0.85	0.94	-11.61	11.61
	Transportation	1.00	-1.08	1.46	0.92	-19.10	19.10
2018 CIIE	Industry	0.96	4.25	4.25	0.92	0.12	2.07
	Power	0.99	-3.60	3.60	0.98	0.02	1.42
	Transportation	0.91	-2.77	2.86	0.97	-0.16	1.31
2019 CIIE	Industry	0.90	7.61	8.84	0.92	5.69	7.83
	Power	0.86	-12.04	14.67	0.95	-3.36	4.75
	Transportation	0.92	0.07	6.17	0.97	-3.44	4.67
2020 CIIE	Industry	0.82	14.01	14.52	0.85	1.39	8.40
	Power	0.93	-15.64	15.64	0.92	-0.55	4.00
	Transportation	0.85	-2.35	8.91	0.98	-0.68	3.55
2023 AG	Industry	1.00	1.43	1.48	0.94	4.12	4.39
	Power	1.00	-0.24	0.68	0.96	-1.69	2.76
	Transportation	1.00	-1.33	1.33	0.97	-3.23	3.48

215

216 **Table S8. Summary of data used in REOMI development (Step 1).** POMINO and
 217 GOME-2 data were resampled to $0.25^\circ \times 0.25^\circ$ through Level-2 products. Other
 218 ancillary data in this table were downscaled to the same horizontal resolution of 0.25°
 219 $\times 0.25^\circ$ by bilinear interpolation. POMINO was the target variable of the model
 220 (green shade).

Data type	Variable	Abbreviation	Unit	Period
POMINO	NO ₂ TVCDs	pomino	molec. cm ⁻²	2010, 2013-2016, 2018-2020
GOME-2a	NO ₂ TVCDs	gome	molec. cm ⁻²	2010
GOME-2b	NO ₂ TVCDs	gome	molec. cm ⁻²	2013-2016, 2018-2020
Meteorology	2m temperature	t2m	K	
	Boundary layer height	blh	m	
	100-meter eastward wind	u100	m s ⁻¹	
	100-meter northward wind	v100	m s ⁻¹	
	10-meter eastward wind	u10	m s ⁻¹	
	10-meter northward wind	v10	m s ⁻¹	
	Surface pressure	sp	hPa	
	Total column ozone concentration	tco3	du	
	2-meter dew point temperature	d2m	K	
	Total Trop. column water	tcw	g cm ⁻²	
	Total column water vapor	tcwv	g cm ⁻²	2010, 2013-2016, 2018-2020
Socio-economic	Gridded population	pop	people/grid	
Land use	Proportion of crop	cropland	%	
	Proportion of impervious surface	impervious surface	%	
	Proportion of water	water	%	
	Proportion of forest	forest	%	
Spatiotemporal information	Longitude	lon	°	
	Latitude	lat	°	
	Day of year	doy	-	
	Day of week	dow	-	

221 **Table S9. Summary of data used in RETOMI development (Step 2).** POMINO-
 222 TROPOMI data were resampled to $0.05^\circ \times 0.05^\circ$ through level-2 products. Other data
 223 were downscaled to the same horizontal resolution of $0.05^\circ \times 0.05^\circ$ by bilinear
 224 interpolation. POMINO-TROPOMI was the target variable (green shade).

Data type	Variable	Abbreviation	Unit	Period
POMINO-TROPOMI	NO ₂ TVCDs	tpomino	molec. cm ⁻²	
REOMI	Reconstructed NO ₂ TVCDs	reomi	molec. cm ⁻²	
Meteorology	2m temperature	t2m	K	
	Boundary layer height	blh	m	
	100-meter eastward wind	u100	m s ⁻¹	
	100-meter northward wind	v100	m s ⁻¹	
	10-meter eastward wind	u10	m s ⁻¹	
	10-meter northward wind	v10	m s ⁻¹	
	Surface pressure	sp	hPa	July 2018-Dec.
	Total column ozone concentration	tco3	du	2020 for training
	2-meter dew point temperature	d2m	K	XGBoost model;
	Total Trop. column water	tcw	g cm ⁻²	2010, 2013-2016,
	Total column water vapor	tcwv	g cm ⁻²	and 2018-2020 for
Socio-economic	Gridded population	pop	people/grid	predicting
	Proportion of crop	cropland	%	RETOMI2 based
Land use	Proportion of impervious surface	impervious surface	%	on trained
	Proportion of water	water	%	XGBoost model
	Proportion of forest	forest	%	
	Longitude	lon	°	
Spatiotemporal information	Latitude	lat	°	
	Day of year	doy	-	
	Day of week	dow	-	

225
 226
 227

228 **Table S10. Summary of data used for AKs estimation.** POMINO-TROPOMI data
 229 were resampled to $0.05^\circ \times 0.05^\circ$ through level-2 products. Other data were downsampled
 230 to the same horizontal resolution of $0.05^\circ \times 0.05^\circ$ by bilinear interpolation. POMINO-
 231 TROPOMI was the target variable (green shade).

Data type	Variable	Abbreviation	Unit	Period
POMINO-TROPOMI	Daily averaging kernels	tpomino-ak	Unitless	
POMINO	Daily averaging kernels	pomino-ak	Unitless	
Meteorology	2m temperature	t2m	K	July 2018-Dec. 2020 for training XGBoost model; 2010, 2013-2016, and 2018-2020 for predicting REAK based on trained XGBoost model
	Boundary layer height	blh	m	
	100-meter eastward wind	u100	m/s	
	100-meter northward wind	v100	m/s	
	10-meter eastward wind	u10	m/s	
	10-meter northward wind	v10	m/s	
	Surface pressure	sp	hPa	
	Total column ozone concentration	tco3	du	
	2-meter dew point temperature	d2m	K	
	Total Trop. column water	tcw	g/ cm ²	
Socio-economic	Total column water vapor	tcww	g/ cm ²	
	Gridded population	pop	people/grid	2018-2020 for predicting REAK based on trained XGBoost model
	Proportion of crop	cropland	%	
	Proportion of impervious surface	impervious	%	
	Proportion of water	water	%	
Land use	Proportion of forest	forest	%	
	Longitude	lon	°	
	Latitude	lat	°	
	Day of year	doy	-	
	Day of week	dow	-	
Spatiotemporal information	Relative azimuth angle	relazm	°	
	Solar zenith angle	sza	°	
	Viewing zenith angle	vza	°	
	Aerosol optical depth	aod	Unitless	
	Single scattering albedo	ssa	Unitless	
Satellite variables	Effective cloud fraction	cldf	Unitless	
	Cloud radiation fraction	wcll	Unitless	

232 **Table S10. (Continued Table)**

Data type	Variable	Abbreviation	Unit	Period
Satellite variables	NO ₂ Trop. air quality factor	amf	Unitless	
	NO ₂ Trop. air quality factor (clear-sky)	amfclr	Unitless	July 2018-Dec. 2020 for training
	NO ₂ Trop. air quality factor (cloudy-sky)	amfclld	Unitless	XGBoost model; 2010, 2013-2016, and 2018-2020 for
	Temperature of each layer	temp	K	
	Tropopause pressure	troppt	hPa	
	Effective cloud pressure	cldp	hPa	predicting REAK based on trained XGBoost model
	Air pressure of each layer	pres	hPa	
	Surface pressure	spin	hPa	

233

234

235 **Table S11. The variability of β with different levels of emission perturbation,**
236 **relative to the value with a 10% perturbation of NO_x emissions for 2014 NMD.**

Perturbation of NO _x emissions	The variation of β relative to a 10% perturbation
20%	4.04%
30%	5.82%
40%	6.96%
50%	8.03%
60%	9.34%

237