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ABSTRACT

This supplementary file provides additional details for the manuscript titled "Learning Risk Preferences Through Social In-
teraction: An Active Inference Approach". It includes three appendices containing mathematical derivations for equations
presented in the main text, as well as a supplementary figure.

Appendix S1: Simplifying the Variational energy

It is possible to simplify the expression In {1 ) (F(p(k))} in the following manner:
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Substituting the value of In[1 — S (F (p(k) ))] in Variational energy formula and carrying out the necessary operations yields

the following expression:
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Appendix S2: Obtaining a quadratic approximation of the Variational energy /(p¥))

Here one can observe the second order approximation of the Variational energy, resulting in an update equation. The equation
obtained for / (p(k>) contains non-quadratic terms:

<p<k> _lur()kfl))z

1p) =tn [ (F(p))] 4B x (G 1) x F(p®) ~

(
20p

In order to approximate a Gaussian distribution, it is necessary to find a quadratic polynomial / (p(k)) that approximates
1 (p(k)). By doing so, the Gaussian distribution can be accurately represented.
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When the second order Taylor series of function / (p(k)) is expanded around a particular expansion point, an approximate
quadratic function [ (p(")) can be obtained. This technique is referred to as Laplace approximation when the Taylor expansion
is carried out at the peak of / (p(k) )!. An alternative site for the expansion point would be the mean value of p(k) that has been
previously updated, symbolized by /.L[(,kfl)z. The second suggestion is what we are going to use here.

Considering I(p®)) to be the second order Taylor expansion of I(p®*)) about [,L[()k_l), the first and second derivatives of

both I(p®)) and 1(p*)) are equivalent at this point:
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The derivatives of I(p¥)) at the point [,Lﬁ(,k_l)

leads to the following results:
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can be determined from Eq (S2.1). Substituting these values into Eq(S2.2)
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Rearranging Eq(S2.3) yields into an updating equation for /.L‘(,k) and G;(,k):
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The final step to obtain the explicit update equations for (1, and ka is to calculate the first and second derivatives of
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I(p®)) with respect to ,ui(,k_n. We begin by computing the first derivative.
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Using a chain rule, it is possible to derive =% ap {ln [S (F (p(k))ﬂ } as follows:
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where aF?pS( N is:
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Finally we have:
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The following equation for (k) can be calculated by substituting the value achieved for P (k {ln [S (F (p(k)))} } in the
Eq (52.5).
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By differentiating Eq (S2.9), we can obtain the expression for 3 ("3(2[))2 :
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Onmitting the initial term which incorporates the second order derivative % yields a more straightforward formula:
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221 . . . . (k) -
The value of Wy 18 always kept at a negative level due to the presence of negative components. This ensures that 6" is
maintained at a positive value, which is a necessary requirement based on its underlying characteristics.
)i 921 o (k) g, (k1)
3p® and FTGE at the point p'* = 1,5

Lastly, by substituting the values of

for ,u;)k) and o,§k> can be obtained:

into Equation Eq(S2.4), the update equation
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See method section in the main manuscript for the definition of function F'(-).

Appendix S3: Supplementary Figure 1
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Supplementary Figure 1. Variation of y*) across trials. As detailed in the main text, y(¥) is calculated as the
derivative of F(p¥)) with respect to p(*). The value of y*) is a function of the reward amount and the probability of
the proposed gamble for each trial.
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