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Supplementary Fig. 1| Performance of META-SiM in various downstream tasks. a, The area under 
the receiver-operating characteristic curve (ROC AUC) for trace classification by META-SiM and 
DeepFRET compared to manual analysis. b, Representative FRET histograms based on traces curated 
and segmented by META-SiM versus manual analysis. c, A distribution of dwell time predicted by the 
model is fit with single exponential distributions to yield transition rate constants. d, A representative 
confusion matrix comparing the labels from manual counting (“True Label”) to the labels predicted by 
META-SiM. e, Concordance between manual counting and predictions by META-SiM that either match 
exactly or differ by no more than one step. f, Standard curve for T790M generated by META-SiM and 
HMM analysis. g, h, Evaluation of performance in trace idealization for META-SiM (Fine-Tuned), and 
benchmarking against 14 other common analysis tools1, on the basis of measured rate constants (g) and 
FRET efficiencies (h): (1) Pomegranate; (2) Tracy(HMM); (3) FRETboard; (4) Hidden-Markury; (5) 
SMACKS(SS); (6) SMACKS; (7) Correlation; (8) Edge finding(CK); (9) Edge finding(k-means); (10) Step 
finding; (11) STaSI; (12) MASH-FRET(bootstrap); (13) MASH-FRET(prob); (14) postFRET.  
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Supplementary Fig. 2 | Evaluation of UMAP projection on both simulated and experimental data. 
a,b,c, 2D UMAP projections of simulated traces with varying high-FRET value (a), number of FRET states 
(b), and number of photobleaching steps (c). d,e,f,g, 2D UMAP projection of traces from dataset D22, 
D33, D44, D55 that were manually accepted (red) or rejected (blue) for further analysis.  
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Supplementary Fig. 3 | Varying principal projections from the same dataset. a,b,c, 2D UMAP 
projection of dataset D44 based on different attributes: kinetic rate (a), photobleaching steps (b), donor 
and acceptor fluorophore lifetime prior to photobleaching (c). d,e,f, 2D UMAP projection of dataset D76 
based on different attributes: single-channel kinetic rate (d), single-channel photobleaching steps (e), 
single-channel SNR (f). g,h, 2D UMAP projection of dataset D6 with different attributes: single-channel 
kinetic rate (g), single-channel SNR (h). 
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Supplementary Fig. 4 | Quantitative assessment of the alignment of individual data attributes to 
network predictions. a, b, c, d, e, f, Alignment of specific data analysis attributes with the META-SiM 
classifier fine-tuned for the different datasets D2, D3, D4, D5, D6, D7 to achieve the classification task.  
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Supplementary Fig. 5 | Different annotations of the smFRET Atlas. a, An smFRET Atlas constructed 
with 22,000 traces derived from simulation. b,c,d,e,f, the same Atlas where only (b) low-SNR traces, (c) 
traces with a single FRET state, (d) traces with 3 FRET states, (e) traces with two FRET states and slow 
transitions, or (f) traces with two FRET states and fast transitions are plotted. Codes for cluster names 
(1-c-l, etc.) are listed in Supplementary Table 3. 
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Supplementary Fig. 6 | Titration of KCl into the paused transcriptional elongation complex system 
(D4). a,b, 2D UMAP projections of embeddings from uncurated traces under different KCl concentrations 
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in Atlas coordinates (a) and system-specific coordinates (b). c, TODPs of traces from the different KCl 
concentration conditions. d, FRET histogram of traces from the different KCl concentrations. e,f, 2D 
UMAP projections of the 10% of embeddings with lowest LSE from traces under the different KCl 
concentrations in Atlas coordinates (e) and system-specific coordinates (f). g, TODPs of 10% lowest LSE 
traces from the different KCl concentration conditions. h, FRET histograms of the 10% of traces with 
lowest LSE from the different KCl concentrations. i, FRET histograms of manually curated traces from 
the different KCl concentrations. 
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Supplementary Fig. 7 | Full smFRET characterization of the yeast pre-mRNA splicing pathway. a, 
Diagram of the splicing pathway. Experimental conditions used to block any further progress beyond 
specific steps in the pathway are annotated in orange font7. b, c, 2D UMAP projections of trace 
embeddings from the different experimental conditions in Atlas coordinates (b) and system-specific 
coordinates (c). d, TODPs of traces from the different experimental conditions. e, FRET histograms of 
traces from the different experimental conditions. f, g, 2D UMAP projections of the 10% of traces with 
lowest LSE under the different experimental conditions in Atlas coordinates (f) and system-specific 
coordinates (g). h, TODPs of the 10% of traces with lowest LSE from the different experimental conditions. 
i, FRET histogram of the 10% of traces with lowest LSE from the different experimental conditions. 
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Supplementary Fig. 8 | Distribution of the 10% of traces with lowest LSE across the different 
experimental conditions in the splicing study. The total number count and fraction of traces from each 
experimental dataset that are among those with the 10% lowest LSE values is different, indicating that 
certain conditions exhibit a larger fraction of highly condition-specific traces. 
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Supplementary Fig. 9 | Pre-Training results and hyperparameter evaluation. a, Impact of the number 
of transformer layers (N) on training effectiveness. b, Impact of the number of embedding vector 
dimensions (D) on training effectiveness. c, Impact of the number of Attention Heads on training 
effectiveness. d, Impact of the width of trace patches (W) used in tokenization on training effectiveness. 
e, Impact of the number of parameters (M) on training effectiveness. f, Loss of all training tasks as a 
function of pre-training steps.  
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Supplementary Table 1. Definition of training tasks for multi-task pre-training of META-SiM. The main 
data attribute for each task listed in the table was used for grouping the tasks for the principal projection 
and task alignment calculations in Fig. 4. 
 

Index Task Definition Main Data 
Attribute 

Frame-
level or 
Trace-level 

1 FRET state idealization Predict true FRET state for 
each time frame. Prediction 
is FRET value ([0, 1]) 
instead of FRET state index 
(1, 2, 3, etc.). 

Kinetic rate 
constant 

Frame-
level 

2 Counting the number of FRET 
states 

Counting the number of 
distinct FRET states 
presented in a time trace. 

Number of 
states 

Trace-level 

3 Identifying highest FRET state 
frames 

Locating which frames are 
in the FRET state with the 
highest FRET value. 

FRET value Frame-
level 

4 Identifying lowest FRET state 
frames 

Locating which frames are 
in the FRET state with 
lowest FRET value, and 
label it as true. Note that 
blinking and photobleached 
states are not considered 
the lowest FRET state and 
labeled as false. 

FRET value Frame-
level 

5 Identifying highest FRET 
state's FRET value 

Identifying the highest FRET 
value for a time trace. 

FRET value Trace-level 

6 Identifying lowest FRET state's 
FRET value 

Identifying the lowest FRET 
value that is not blinking or 
photobleached for a time 
trace. 

FRET value Trace-level 

7 Extracting mean dwell time Predicting the mean dwell 
time of all the FRET states 
in a time trace. 

Kinetic rate 
constant 

Trace-level 

8 Extracting signal-to-noise ratio  Predicting the signal-to-
noise ratio for a time trace. 

Noise Trace-level 

9 Extracting donor fluorophore 
lifetime  

Predicting the total lifetime 
of the donor fluorophore for 
a time trace. 

FRET donor 
lifetime 

Trace-level 

10 Extracting acceptor fluorophore 
lifetime  

Predicting the total lifetime 
of the acceptor fluorophore 
for a time trace. 

FRET acceptor 
lifetime 

Trace-level 

11 Counting multistep 
photobleaching 

Counting the 
photobleaching steps for 
traces with single- or multi-
step photobleaching (0-4 
steps). 

Photobleaching 
steps 

Trace-level 

12 Selecting segments for active 
FRET states 

Selecting the frames of a 
time trace where the FRET 
state is either static or 
dynamic, but is not blinking 
or photobleached. 

Photobleaching 
steps 

Frame-
level 

13 Extracting the average kinetic 
rate constant 

Predicting the average 
kinetic rate constant for a 

Kinetic rate 
constant 

Trace-level 
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time trace. The ground truth 
is defined as the harmonic 
average of all kinetic rate 
constants that are used in 
the simulator for a particular 
trace. 

14 Identifying re-appearance of 
active FRET states after 
photobleaching 

Identifying frames that are in 
active FRET states but 
occur after one or more 
photobleaching events. This 
behavior is common for 
experimental data where 
more than one fluorophore 
is present.  

Photobleaching 
steps 

Frame-
level 

15 Identifying existence of re-
appearance of active FRET 
states after photobleaching 

Identifying whether a trace 
has active FRET states after 
one or more photobleaching 
events. This behavior is 
common for experimental 
data.  

Photobleaching 
steps 

Trace-level 

16 Counting the number of state 
transitions 

Counting the total number of 
state transitions for a time 
trace. 

Kinetic rate 
constant 

Trace-level 

17 Counting the number of state 
transitions for very fast 
dynamics 

Counting the total number of 
state transitions for a time 
trace with very fast 
dynamics. 

Kinetic rate 
constant 

Trace-level 

18 FRET state idealization for 
very fast dynamics 

Predict true FRET state for 
each time frame with very 
fast dynamics. Prediction is 
FRET value ([0, 1]) instead 
of FRET state index (1, 2, 3, 
etc.) 

Kinetic rate 
constant 

Frame-
level 

19 Extracting average kinetic rate 
constant for very fast dynamics 

Predicting the average 
kinetic rate constant for time 
traces with very fast 
dynamics. 

Kinetic rate 
constant 

Trace-level 

20 Identifying if a frame is in the 
lowest FRET state 

Identifying whether a frame 
in a time trace is in the 
FRET state with the lowest 
FRET value and is an active 
state. This task aims to help 
models distinguish real low 
FRET from photobleached 
states. Note that the 
previous prediction target of 
highest/lowest FRET state 
tasks is the FRET value, 
while this task's prediction 
target is a binary true/false 
label for each frame. 

FRET value Frame-
level 

21 Extracting background intensity Predicting the true 
background intensity after 
the last photobleaching 
event for a time trace. 

Noise Trace-level 
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22 Identifying colocalized pairs of 
fluorophores 

Predicting whether a time 
trace has more than 1 pair 
of fluorophores. This 
phenomenon is common in 
experimental data when two 
or more pairs of 
fluorophores overlap in 
space (i.e., are colocalized). 

Photobleaching 
steps 

Trace-level 

23 State idealization for a single-
channel time trace 

Identifying true states and 
predict de-noised intensity 
for a single-channel time 
trace. 

Single-channel 
kinetic rate 
constant 

Frame-
level 

24 Extract the mean dwell time for 
a single-channel time trace 

Predicting the dwell time 
averaged over all kinetic 
states in a single-channel 
time trace. 

Single-channel 
kinetics rate 
constant 

Trace-level 

25 Extract the average kinetic rate 
constant for a single-channel 
time trace 

Predicting the average 
kinetic rate constant for a 
time trace. The ground truth 
is defined as the harmonic 
average of all kinetic rate 
constants that are used in 
the simulator for a particular 
single-channel trace. 

Single-channel 
kinetics rate 
constant 

Trace-level 

26 Identifying blinking frames for a 
single-channel time trace 

Identifying the frames that 
are in a blinking state for a 
single-channel time trace. 

Single-channel 
noise 

Frame-
level 

27 Extracting fluorophore lifetime 
for a single-channel time trace 

Predicting the total lifetime 
of the fluorophore before the 
first photobleaching event 
for a single-channel time 
trace. 

Single-channel 
lifetime 

Trace-level 

28 Extracting the signal-to-noise 
ratio for a single-channel time 
trace 

Predicting the signal-to-
noise ratio for a single-
channel time trace. 

Single-channel 
noise 

Trace-level 

29 Identifying photobleaching step 
frames for a single-channel 
time trace 

Locating the frames where 
photobleaching steps 
happen for a single-channel 
time trace.  

Single-channel 
photobleaching 
steps 

Frame-
level 

30 Counting photobleaching steps 
for a single-channel time trace 

Counting the total number of 
photobleaching steps for a 
single-channel time trace. 

Single-channel 
photobleaching 
steps 

Trace 

 
 
 
 
 
 
 
  



15 
 

Supplementary Table 2. Description of datasets used in pre-training and downstream tasks. 
 

Dataset 
Index 

Tasks Description 
Data 
Type 

Pre-
Training 
Set Size 
[Trace] 

Fine-tuning 
Set Size 
[Trace] 

Testing 
Set 
Size 

[Trace] 

# of 
Detection 
Channels 

D1 

Trace 
Classification 

& 
Segmentation 

A toehold-
exchange-based 
DNA walker8 

Exp. N/A 

109 642 

Two-color 

D2 
A DNA swinging 
arm2 

82 233 

D3 A preQ1 riboswitch3 215 4628 

D4 
A paused 
transcriptional 
elongation complex4 

137 3770 

D5 A Mn2+ riboswitch5 105 656 

D6 
Stoichiometry 

Analysis 

A photobleaching 
dataset from a 6-
subunit protein 
complex bearing up 
to one HaloTag 
Alexa Fluor 660 
(Alexa660) label per 
monomer 

Exp. N/A 261 231 One-color 

D7 
Kinetic 

Fingerprinting 

A use case involving 
detection of the 
EGFR point 
mutation T790M in 
DNA6 

Exp. N/A 
3904 (not 
manually 
curated*) 

5720 One-color 

D8 
Trace 

Idealization 

ACTR-NCBD 
Binding at 10-ms 
binning1,9 

Exp. N/A N/A** 19*** Two-color 

D9 
Biological 
Discovery 

Pre-mRNA 
conformational 
changes during 
yeast splicing7 

Exp. N/A N/A 6805 Two-color 

D10 
META-SiM 

Pre-Training 

A synthetic dataset 
of smFRET traces 
representing diverse 
dynamics to train 
META-SiM 

Simulated 
1.5 

million 
N/A N/A 

Two-color 
& 

One-color 

D11 

smFRET 
Atlas 

Training 
& 

Annotation 

A synthetic dataset 
of smFRET traces 
representing diverse 
dynamics to train 
and annotate a 
global 2D UMAP 
with META-SiM 

Simulated 
1.02 

million 
N/A N/A Two-color 

*  For the dataset D7, the labels for the fine-tuning set was not manually curated, but generated based on the 
experimental conditions, whereas true for mutant only condition and false for wild-type only condition, same 
strategy used in our previous work in ref10. 
** D8, D9 use cases didn’t involve any fine-tuning. META-SiM foundation model was directly applied in these 
tasks. 
*** The full experiment dataset used in the benchmark study of 14 tools1, with n(traces) = 19, n(datapoints) = 
226,100, using 10 ms time bins resulting in 100 Hz sampling. 
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Supplementary Table 3. Description and parameter range for generating traces to build the smFRET 
Atlas, 1 million traces for training and 22,000 traces for annotation. (All ranges in the table represent 
uniform distributions.) 
 

Code Description Number of 
States 

SNR FRET Values Kinetic Rate 
Constant [Frame-

1] 
1-c-l 1 FRET state, clean, 

low FRET value 
1 [4, 8] State 1: [0.05, 0.35] N/A 

1-c-m 1 FRET state, clean, 
middle FRET value 

1 [4, 8] State 1: [0.4, 0.6] N/A 

1-c-h 1 FRET state, clean, 
high FRET value 

1 [4, 8] State 1: [0.65, 0.95] N/A 

1-n-l 1 FRET state, noisy, 
low FRET value 

1 [1.5, 4] State 1: [0.05, 0.35] N/A 

1-n-m 1 FRET state, noisy, 
middle FRET value 

1 [1.5, 4] State 1: [0.4, 0.6] N/A 

1-n-h 1 FRET state, noisy, 
high FRET value 

1 [1.5, 4] State 1: [0.65, 0.95] N/A 

2-c-lm-s 2 FRET states, clean, 
middle and low FRET 
values, slow transition 

2 [4, 8] State 1: [0.05, 0.35] 
State 2: [0.4, 0.6] 

[0.005, 0.025] 

2-c-lm-f 2 FRET states, clean, 
middle and low FRET 
values, fast transition 

2 [4, 8] State 1: [0.05, 0.35] 
State 2: [0.4, 0.6] 

[0.05, 0.2]  

2-c-lh-s 2 FRET states, clean, 
low and high FRET 
values, slow transition 

2 [4, 8] State 1: [0.05, 0.35] 
State 2: [0.65, 0.95] 

[0.005, 0.025] 

2-c-lh-f 2 FRET states, clean, 
low and high FRET 
values, fast transition 

2 [4, 8] State 1: [0.05, 0.35] 
State 2: [0.65, 0.95] 

[0.05, 0.2] 

2-c-mh-s 2 FRET states, clean, 
middle and high FRET 
values, slow transition 

2 [4, 8] State 1: [0.4, 0.6] 
State 2: [0.65, 0.95] 

[0.005, 0.025] 

2-c-mh-f 2 FRET states, clean, 
middle and high FRET 
values, fast transition 

2 [4, 8] State 1: [0.4, 0.6] 
State 2: [0.65, 0.95] 

[0.05, 0.2] 

2-n-lm-s 2 FRET states, noisy, 
middle and low FRET 
values, slow transition 

2 [1.5, 4] State 1: [0.05, 0.35] 
State 2: [0.4, 0.6] 

[0.005, 0.025] 

2-n-lm-f 2 FRET states, noisy, 
middle and low FRET 
values, fast transition 

2 [1.5, 4] State 1: [0.05, 0.35] 
State 2: [0.4, 0.6] 

[0.05, 0.2]  

2-n-lh-s 2 FRET states, noisy, 
low and high FRET 
values, slow transition 

2 [1.5, 4] State 1: [0.05, 0.35] 
State 2: [0.65, 0.95] 

[0.005, 0.025] 

2-n-lh-f 2 FRET states, noisy, 
low and high FRET 
values, fast transition 

2 [1.5, 4] State 1: [0.05, 0.35] 
State 2: [0.65, 0.95] 

[0.05, 0.2] 

2-n-mh-s 2 FRET states, noisy, 
middle and high FRET 
values, slow transition 

2 [1.5, 4] State 1: [0.4, 0.6] 
State 2: [0.65, 0.95] 

[0.005, 0.025] 

2-n-mh-f 2 FRET states, noisy, 
middle and high FRET 
values, fast transition 

2 [1.5, 4] State 1: [0.4, 0.6] 
State 2: [0.65, 0.95] 

[0.05, 0.2] 
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3-c-lmh-s 3 FRET states, clean, 
low and middle and 
high FRET values, 
slow transition 

3 [4, 8] State 1: [0.01, 0.35] 
State 2: [0.4, 0.6] 
State 3: [0.65, 0.95] 

[0.002, 0.025] 

3-c-lmh-f 3 FRET states, clean, 
low and middle and 
high FRET values, 
slow transition 

3 [4, 8] State 1: [0.01, 0.35] 
State 2: [0.4, 0.6] 
State 3: [0.65, 0.95] 

[0.05, 0.2] 

3-n-lmh-s 3 FRET states, noisy, 
low and middle and 
high FRET values, 
slow transition 

3 [1.5, 4] State 1: [0.01, 0.35] 
State 2: [0.4, 0.6] 
State 3: [0.65, 0.95] 

[0.002, 0.025] 

3-n-lmh-f 3 FRET states, noisy, 
low and middle and 
high FRET values, 
slow transition 

3 [1.5, 4] State 1: [0.01, 0.35] 
State 2: [0.4, 0.6] 
State 3: [0.65, 0.95] 

[0.05, 0.2] 
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