SUPPLEMENTARY INFORMATION

RESULTS
CRC subtypes based on gut microbiota composition
Each of the 10 bacteria used for SHAP values was individually examined for prognostic associations. P. stomatis was a significant prognostic factor for overall survival among CRC patients in the Discovery cohort (P = 0.047) (Extended Data Figure 11). However, Cox multivariate analysis showed a tendency for a worse prognosis when stage was included (P = 0.080), although this tendency did not reach statistical significance. In the Validation cohort, there was a significant correlation between P. stomatis (P = 0.0094) and F. nucleatum (P = 1.9 × 10-4) and overall survival. However, only F. nucleatum showed a statistically significant difference in overall survival in the stage-adjusted Cox multivariate analysis (P = 0.043).

Immune cell composition in CRC subtypes based on gut microbiota
The gut microbiota influences both the local gut immune environment and the broader systemic immune system. The immune cell profiles for the four CRC subtypes, determined using CIBERSORTx, are shown in Fig. 5A. In summary, no significant differences in the absolute score or inflammatory cell composition were observed between any of the subtypes. Statistical analysis revealed that the absolute scores showed no significant difference across all subtypes. The results of the multivariate analysis (i.e., age, sex, stage [1/2 vs. 3/4], SHAP cluster [Subtype 1 vs. others, Subtype 2 vs. others, Subtype 3 vs. others, and Subtype 4 vs. others], location of CRC [right-sided colon vs. left-sided colorectum], Brinkman index, alcohol consumption, and multiple CRC lesions) showed a significant association between Subtype 3 and plasma cells (P = 0.0013) (Extended Data Table 23), and Subtype 3 was significantly correlated with an increase of plasma cells (absolute value, P = 0.0013: ratio as a percentage of the total, P = 0.0019) (Extended Data Figure 12). Conversely, Subtype 2 showed significant associations with resting NK cells, activated mast cells, M0 macrophages, and neutrophils (P = 0.019, 0.021, 0.025, and 0.025, respectively).

Structural somatic abnormalities between microbiome-based subtypes
We employed an in-house structural variant (SV) caller (callall SV) to detect SVs1. A total of 12,545 SVs were identified, including 5,580 deletions, 2,707 tandem duplications, 2,285 inversions, and 1,973 translocations in the 138 CRC genomes (Extended Data Figure 13A, Extended Data Tables 24, 25). The characteristics of SVs were analyzed by subtype in relation to the gut microbiome, and it was found that L1-retrotransposition tended to be less frequent in Subtype 1 (P = 0.095, Wilcoxon rank sum test) which lacks CRC-associated bacteria (Extended Data Figure 13B). Exposure to microbiota has been reported to induce global DNA hypomethylation, which correlates with LINE-1 retrotransposon activation2. Furthermore, LINE1 hypomethylation has also been reported in F. nucleatum-predominant CRC3. Our result is in agreement with the previous reports. No additional statistically significant variations in SVs were observed between subtypes. The analysis of this CRC cohort did not reveal the presence of any recurrent fusion genes.

Analyzing the relationship between the hypermutated phenotype and the gut microbiome in fecal specimens
We analyzed the gut bacteria characteristic of CRC with the hypermutated phenotype. The results revealed the presence of several bacterial species, including F. nucleatum. Analysis of the relationship between CRC with the hypermutated phenotype (n = 13) and the gut microbiome revealed that the two most significant bacteria were Selenomonas sputigena4 and Fretibacterium fastidiosum5 (P = 1.3 × 10-5 and 5.6 × 10-5, respectively, Wilcoxon rank sum test) (Extended Data Table 26). Notably, these bacteria are indigenous to the oral cavity and are associated with periodontal disease. To our knowledge, there are no published findings suggesting an association between these bacteria and CRC.

Investigation into the relationship between gut microbiota and significantly mutated genes (SMGs) in CRC
We next explored the relationship between genetic variants identified as SMGs in this CRC cohort (Extended Data Tables 27, 28) and the relative abundance of gut microbiota (Extended Data Table 29). In hypermutated cases, mutations in the APC gene, commonly found in traditional CRCs, were found to have an inverse relationship with the presence of F. nucleatum and P. stomatis. Conversely, a strong association (P < 0.001) was observed between BRAF mutations and an increase in Prevotella spp. (i.e., Prevotella denticola, Prevotella buccae) in all cases (Extended Data Figure 14).

DISCUSSION
Based on the explainable AI analysis of the gut microbiome in our CRC patients, we have identified four distinct subtypes. The clinicopathologic, genetic, and immune characteristics of each subtype are summarized in Table 1. The proposed classification, although deviating from the traditional CMS, has the potential to predict genetic characteristics and prognosis6.
	An interesting observation was made regarding alterations in driver genes and CRC-related bacteria, including F. nucleatum and P. stomatis. In a previous report, we highlighted the dynamic changes of CRC-associated bacteria during multistep CRC progression7. Our immunogenomic analyses have illuminated the link between the gut microbiota and the immune ecosystem. The prevalence of subtype 3 patients was higher in categories other than immune-hot status (TMBhigh/GEPhigh). Furthermore, patients with a high colibactin-associated mutational signature showed a decrease in immune cells and an increased proportion of regulatory T cells in tumor tissue. Lopez et al. reported that colibactin-producing E. coli caused a decrease in tumor-infiltrating T cells, including cytotoxic CD8+ T cells, and a reduced response to anti-PD-1 immunotherapy in a mouse model8. Although the underlying molecular mechanism remains to be elucidated, colibactin exposure may also suppress the anti-tumor immune environment, which would also promote tumor formation.
	Our metagenomic analysis showed that the amount of the colibactin gene, clbP, in tumor tissue or stool did not correlate with the degree of colibactin-associated mutational signature in the tumor genome. In line with our findings, Shimpoh et al.9 found no colibactin gene (clbB) variations between patients with CRC, patients with colorectal adenoma, and healthy individuals. The mutational signature represents the cumulative maximum number of mutations over time, whereas colibactin gene clusters can vary from birth to the present10,11.
	Of particular concern, the occurrence of colibactin-related mutation patterns, arranged by year of birth, shows a significant increase in individuals born after 1943 (Extended Data Figure 15). Shimpoh et al.25 also reported a high prevalence of pks-positive E. coli in Japanese born after the 1940s. This trend raises important questions about the potential health implications and further investigation is needed. 
The higher incidence of colibactin-associated mutational signatures in young-onset CRC in Japan could be attributed to long-term exposure to colibactin from soon after birth to the present. Sequencing analysis of normal colonic crypts has shown that a colibactin-associated mutational signature can appear before the age of 10 years12. In addition, the transmission of colibactin through breast milk has been reported in Japan13. Further research is needed to elucidate the exposure routes and factors associated with bacterial colonization. 
	There are several limitations to this study. First, the sample size was relatively small, which may have introduced bias and hindered the ability to conduct a thorough statistical analysis, especially after the sample was divided into subgroups for comparison. In addition, the samples were all collected from the National Cancer Center Hospital, which may have introduced a referral bias. Therefore, future collaborative studies involving multicenter collaborative collection of stool samples and CRC tissues are essential. Furthermore, considering that the present fecal sample was obtained as a snapshot sample primarily from patients diagnosed with CRC prior to undergoing surgery, it is not possible to eliminate the potential influence of the patient's preoperative condition. Additionally, a recent report indicates that two of the four significant bacteria (P. stomatis and F. nucleatum) identified in this study show variability influenced by confounding factors14. Consequently, the correlation of their abundance with CRC may require further confirmation.

METHODS
Structural variant calling
We employed an internally developed pipeline called callallSV to identify various types of structural variations (SVs), such as deletions, tandem duplications, inversions, and translocations. The pipeline received paired-end (PE) reads of 150 bp from paired tumor and non-tumor samples, with fragment lengths ranging from 450–700 bp. All PE reads were aligned to the hg19 human reference genome using BWA-MEM with the -T 0 option. Reads with low alignment quality were excluded if they had > 20% mismatched bases or lacked unique end alignments following the removal of PCR duplications. Two independent algorithms were used to process the datasets after filtering. In the first round of analysis, the PE reads were found to be mapped discordantly, with both ends uniquely aligning to the reference genome but with incorrect spacing, orientation, or both15. After removing unreliable alignments (mapping quality score < 37 or more than 2 mismatches), we grouped these conflicting reads by their orientation and pair-mate positions. Rearrangements were then identified using the following analytical procedures: (i) forward clusters and reverse clusters were constructed from the end sequences aligned with forward and reverse directions, respectively; (ii) two reads were allocated to the same cluster if their end positions were not farther apart than the maximum insert distance of the pair end library; (iii) clusters with a distance between the leftmost and rightmost reads that was greater than the maximum insert distance were discarded; (iv) PE reads were selected if one end sequence fell within the forward cluster and the other end fell within the reverse cluster (we hereafter called this pair of forward and reverse clusters as paired clusters); (v) if paired clusters overlapped with other paired clusters, all of the overlapping paired clusters were discarded; (vi) for the tumor genome, rearrangements predicted from paired clusters which included at least four pairs of end reads and at least one pair of end reads perfectly matched to the human reference genome were selected; (vii) for the non-tumor genome, rearrangements predicted by at least one pair of end reads were selected. By comparing the predicted rearrangements in the tumor and non-tumor genomes, somatic rearrangements that were only detected in the tumor genome were identified. The second method used single reads that were split and mapped apart (so-called “soft-clipped reads”) to identify SV breakpoints. All soft-clipped reads were extracted as SV candidates if they satisfied the following conditions: alignment score > 20, number of mismatches < 10, the difference in score between the best alignment and the second one > 1, and no breakpoint observed from control samples (allowing one read or < 1% of the detected reads in the tumor sample). The sequences of the upstream and downstream regions of each breakpoint were reconstructed to obtain a rearrangement sequence. All input reads were realigned to the reconstructed sequences, and the ones better mapped to the reconstructed sequence were counted as SV-supporting reads. The remaining reads aligned better with the reference genome were counted as reference-supporting reads. The numbers of SV- and reference-supporting reads from tumor and non-tumor samples were evaluated using Fisher’s exact test.
           Finally, the outputs from the two algorithms, using PE and soft-clipped reads, were integrated. False-positive SVs were filtered out based on the following cut-off values: (i) for translocation SVs, the number of support reads was ≥ 8 with ≥ 4 PE reads, and for other SV types, it was ≥ 4 with ≥ 2 PE reads; (ii) read depth at the SV breakpoint was ≥ 10; (iii) SV allele frequency was ≥ 0.07; (iv) the total length of the alignment region of soft-clipped reads supporting an SV was at least 1.6 times the read length. Using with these conditions, 12,545 SV (5,580 deletions, 2,707 tandem duplications, 2,285 inversions and 1,973 translocations) were obtained.
The callallSV software is freely available for non-commercial use at https://github.com/ma9606/callallSV. All researchers and technicians involved in academic genomic analysis can re-use or adapt the callallSV code (released under the GPL-3.0 license) to implement similar tasks.
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