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Fig. S2. Characterization of building blocks. (a) TEM image of TizC.Tx MXene nanosheets,
with an average lateral dimension of 1 x 1 um?. (b) TEM image of single-walled carbon nanotubes
(SWNTs), with an average diameter of 1 nm and an average length of 10 um. (¢) Tyndall effect of
SWNT dispersion that contained sodium dodecyl sulfate (SDS). No SWNT aggregation was
observed after ambient storage for 60 days. (d) TEM image of gold nanoparticles (AuNPs), with

an average diameter of 20 nm.



l Transfer l Transfer 1 Transfer l Transfer

Biaxial Shrink
Film

«— Uniaxially Pre- _N
Stretched VHB Tape

Biaxially Pre- =\
Stretched VHB Tape

Uniaxial Biaxial Uniaxial Biaxial
Thermal Thermal Deformation Deformation

Shrinkage Shrinkage

G,—1D Coated G;—2D Coated G,—2D1D Stretchable G,—2D2D Stretchable
Shrink Film Shrink Film Nanocomposite Nanocomposite
Dissolve Dissolve
Shrink Film & Shrink Film &
Transfer to Transfer to

VHB Substrate

G,—1D Stretchable G,—2D Stretchable
Nanocomposite Nanocomposite

VHB Substrate

Fig. S3. Fabrication of G1/G: stretchable nanocomposites. (a) Fabrication of Gi—1D stretchable
nanocomposites using uniaxial shrink films. (b) Fabrication of G;—2D stretchable nanocomposites
using biaxial shrink films. (¢) Fabrication of G>—2D1D stretchable nanocomposites using biaxial
shrink films and uniaxially pre-stretched VHB substrates sequentially. (d) Fabrication of G>—2D2D
stretchable nanocomposites using biaxial shrink films and biaxially pre-stretched VHB substrates

sequentially.
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Fig. S4. Tunable wavelengths of G>—2D1D and G,-2D2D stretchable nanocomposites. (a)—(c)
Wavelengths of G>—2DID stretchable nanocomposites were tunable from 90 to 48 pm by
controlling the applied pre-strains of VHB substrates from 100% to 300%, respectively. (d)—(f)
Wavelengths of G>—2D2D stretchable nanocomposites were tunable from 162 to 67 um by

controlling the applied pre-strains of VHB substrates from 100% to 300%, respectively.
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Fig. S5. Effect of thickness on the resistance—elongation curves of Gi/G: stretchable
nanocomposites. Resistance—elongation curves of various G>—2D1D stretchable nanocomposites
with  different thicknesses. All G;-2D1D nanocomposites were at the same
MXene/SWNT/AuNP/PVA ratio of 45/45/8/2, and the applied pre-strain was controlled to be the

same at 100%.



Fig. S6. Fabrication of Go nanocomposites with controlled thicknesses. During the SVM model
construction, the thicknesses of all Go nanocomposites were controlled to be ~800 nm. The
MXene/SWNT/AuNP/PVA ratios of three Go nanocomposites were (a) 10.1/79.5/5.7/4.7, (b)

40.3/41.2/8.7/9.8, and (¢) 61.2/25.3/12.4/1.1.
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Fig. S7. Determination of a feasible parameter space. (a) Feasible parameter space of Go
nanocomposites with high electrical conductance values >6.67 mS. (b) By selecting the iso-
surfaces with different electrical conductance values, the volume of a feasible parameter space
changed accordingly. By setting the electrical conductance value of 6.67 mS as the threshold, a

feasible parameter space was defined and held ~34% of the entire parameter space.
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Fig. S8. Response labels of G1/G: stretchable nanocomposites. A resistance—elongation profile
of a G2-2D1D stretchable nanocomposite was used as an example. €5, represents the uniaxial
elongation that increases the initial resistance (R) by 5%. €7 59, represents the uniaxial elongation

that increases Ry by 7.5%. €19, represents the uniaxial elongation that increases R, by 10%.
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Fig. S9. Performance of Gi/G: stretchable nanocomposites upon slight composition

variations. With slight variations in the MXene/SWNT/AuNP/PVA ratio (22.0/66.1/7.8/4.1 vs.

21.6/69.7/5.5/3.2), two G1—2D stretchable nanocomposites were fabricated and demonstrated

similar (a) electrical conductance values (i.e., Sy), (b) resistance—elongation curves, and (c)

response labels (i.e., €50y, £7.504, €10%)-
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Fig. S10. Measurement variations across G1/G: stretchable nanocomposite replicates. A set
of fabrication parameters was used to prepare three Gi—2D replicates, including the
MXene/SWNT/AuNP/PVA ratio of 45/45/8/2, the nanocomposite thickness of 1,200 nm, and the
deformation sequence of Gi—2D. (a) Electrical labels (i.e., Sy) of three G1—2D replicates. (b)

Response labels (i.e., €504, €7.50, €109 ) Of three Gi—2D replicates.
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Fig. S11. Cumulative numbers of G1/G: stretchable nanocomposites fabricated across active
learning loops. 146 Gi/G2 stretchable nanocomposites were fabricated across 7 active learning

loops, including 24 G1—1D, 23 G1-2D, 51 G>-2D1D, and 48 G,—2D2D stretchable nanocomposites.
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Fig. S12. Spatial distributions of G1/G: stretchable nanocomposites in the feasible parameter

space. (a) After 2 loops. (b) After 4 loops. (¢) After 6 loops.
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Fig. S13. Comparison between model-predicted and actual electrical conductance. (a) Gi—1D
and G1—2D stretchable nanocomposites. (b) G>—2D1D stretchable nanocomposites. (¢) G2—2D2D
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Fig. S14. Statistical analyses between fabrication parameters and nanocomposite properties.
Spearman’s p of MXene loading, SWNT loading, AuNP loading, and PVA loading,
nanocomposite thickness, deformation sequence, and applied pre-strain on (a) the electrical label
(i.e., Sp) and (b) the response labels (i.e., €504, €7.50, €10%)- Fig. S14a shows that the PV A loading
was negatively correlated with S,. Fig. S14b shows that the deformation sequence and applied

pre-strain were positively correlated with three response labels.
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Fig. S16. SHAP interpretation on the Sy of G1/G: stretchable nanocomposites. Normalized
SHAP values of MXene loading, SWNT loading, AuNP loading, PVA loading, nanocomposite
thickness, deformation sequence, and applied pre-strain on the S, of Gi/G: stretchable

nanocomposites.
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Fig. S17. Violin plots of G1/G: stretchable nanocomposites. (a) The electrical label (i.e., Sy) was
less responsive to the deformation sequence and applied pre-strain during the fabrication of G1/Ga
stretchable nanocomposites. (b) The response labels (e.g., €190,) Was highly responsive to the
deformation sequence and applied pre-strain during the fabrication of Gi/Gz stretchable

nanocomposites.
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Fig. S18. Two-scale FE models of G1/G: stretchable nanocomposites. (a) FE model of a Gi—2D
stretchable nanocomposite. The checkerboard mode was utilized to describe the isotropic crumples.
(b) FE model of a G>—2D1D stretchable nanocomposite. (¢) FE model of a G>—2D1D stretchable
nanocomposite. On the small scale, the checkerboard mode was utilized to describe the isotropic
crumples. At the large scale, cylindrical (wavy) mode was utilized to depict the parallel wrinkles.
(d) FE model of a G>—2D2D stretchable nanocomposite. On the small scale, the checkerboard
mode was utilized to describe the isotropic crumples. At the large scale, undulating (S-shape) mode

was utilized to depict the curvy wrinkles.
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Fig. S19. SEM images of a G>—2D2D gold conductor during a continuous elongation loading
process from 0% to 1,300%. (a) 100%. (b) 200%. (¢) 400%. (d) 600%. (e) 800%. (f) 1,000%. (g)

1,200%. (h) 1,300%.
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Fig. S20. Crack density and area measurement of a G>—2D2D stretchable gold conductor. (a)
The SEM image of a G2—2D2D stretchable gold conductor under 800% elongation. Crack length
(L,) 1s defined as the distance between the two furthest points along the perimeter of the crack.
Crack width (L,) is defined as the furthest distance of the crack perpendicular to L;. (b) Crack

densities under different elongations. (¢) Sum of crack areas under different elongations.
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Fig. S21. Photographs of stretchable Zn and MnQ: electrodes. (a) As-prepared stretchable Zn

anode. (b) Stretchable Zn anode after 3,000 stretching—relaxation cycles. (¢) As-prepared MnO:

cathode. (d) Stretchable MnO; cathode after 3,000 stretching—relaxation cycles.
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Note S1. Rationale of building block selection and model expansion strategy for Gi/G:

stretchable nanocomposites.

In this work, four building blocks were selected to fabricate G1/G: stretchable nanocomposites
with high electrical conductance and insensitive strain responses. Four building blocks include
three electrically conductive nanomaterials, including TisC>Tx MXene nanosheets, SWNTs, and
AuNPs, and polyvinyl alcohol (PVA). First, Ti3C,Tx MXene nanosheets, an emerging class of two-
dimensional (2D) transition metal carbides, present superior electrical conductivity, intrinsic
hydrophilicity, and high aspect ratios!. Second, SWNTs, a class of one-dimensional (1D) materials
made of a single rolled graphene sheet with a cylindrical nanostructure, demonstrate high tensile
strength and superior electrical conductivity?. Third, AuNPs, a class of zero-dimensional (0D)
materials with an average diameter of 20 nm, can be integrated with the 2D/1D building blocks,
which facilitate nanoscale contacts and boost overall electrical conductivity®. Last, PVA, as a
polymeric binder, is introduced to enhance the structural stability of Gi/G2 stretchable

nanocomposites.

To augment the model’s predictive power, we can adopt a model expansion method to
incorporate more building blocks into G1/G: stretchable nanocomposites. As shown in Fig. S1,
additional active learning loops can be performed under the guidance of the prediction model.
During the model expansion phase, additional experiments are required to refine the SVM
classifier and to update the ANN-based model. By strategically selecting new components in
tandem with the model expansion method, the prediction model can consistently enlarge its
parameter space and broaden the range of achievable functions. However, this model expansion

incurs additional active learning cycles, leading to higher time and cost implications.
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Note S2. Tunable wavelengths of G>—2D1D and G2-2D2D stretchable nanocomposites.

As shown in Fig. S4a—c, the average wavelengths of G>—2D1D stretchable nanocomposites were
tuned from 90 to 48 um by adjusting the applied pre-strains of VHB substrates from 100% to 300%,
respectively. As shown in Fig. S4d—f, the average wavelengths of G-2D2D stretchable
nanocomposites were tuned from 162 to 67 pum, by adjusting the applied pre-strains of VHB

substrates from 100% to 300%, respectively.
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Note S3. Estimated number of experiments required to build an extensive dataset for G1/G:

stretchable nanocomposites.

Three degrees of freedom (DOFs) were recognized in the compositions of Go nanocomposites,
including MXene loading, SWNT loading, and AuNP loading. Once these three loadings were
fixed, the PVA loading was automatically determined. If we set 2.0 wt.% as the step size, the total
steps to vary the MXene/SWNT/AuNP/PVA ratio were calculated to be ~23,500. Additionally, the
nanocomposites thicknesses, deformation sequences, and applied pre-strain were three other DOFs
for the fabrication of Gi/G2 stretchable nanocomposites. In this work, three thicknesses of Go
nanocomposites were adopted, including 800 nm, 1,200 nm, and 1,600 nm, and four kinds of
deformation sequences were included, containing G1—1D, G1—2D, G>—2D1D, and G,—2D2D. There
were three choices of applied pre-strains during the fabrication of G,—2D1D and G>-2D2D
stretchable nanocomposites, including 100%, 200%, and 300%. In total, building an extensive
dataset for G1/G: stretchable nanocomposites will require ~562,000 experiments if we follow
conventional one-factor-at-a-time (OFAT) design of experiment method. For each Gi or G2
stretchable nanocomposite, one “electrical” label (S,) and three “response” labels (€504, €7.50,5
€10y,) Were needed to be collected. The calculation was conducted using a customized Python

program:

https://github.com/yhcbloom14/stretchable conductor/blob/main/number_of experiments for d

esign_of experiment.ipynb.
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Note S4. Necessity of multistage ML framework.

To demonstrate the necessity of each unit used in the multistage ML framework, justifications are

provided as follows to explain why they are superior to other standard methods.

SVM regression model. The SVM regression model served as a critical screening layer in the

active learning loops, which drove the prediction model to only recommend the
MXene/SWNT/AuNP/PVA ratios that led to the Go nanocomposites with high electrical
conductance values >6.67 mS. Unlike other data-rich systems with higher tolerance of experiment
failure, it would take much time and effort to redo the fabrication of Gy nanocomposites, if the
prediction model suggests the MXene/SWNT/AuNP/PVA ratios that lead to the Go

nanocomposites with low electrical conductance.

Active learning loops with ensemble modeling. According to Fig. 3¢, the prediction model

(consisting of an ensemble committee with multiple ANNs) demonstrated a low MRE of 13.5%
after 7 active learning loops, which accurately predicted the “electrical” and “response” labels of
G1/G: stretchable nanocomposites from their fabrication parameters. In comparison, the prediction
models based on other algorithms presented higher MREs and were not able to accurately predict
the “electrical” and “response” labels, clearly demonstrating the necessity of ANN-based ensemble

modeling for such a non-linear and multi-DOF system.

Data augmentation. Data augmentation was conducted to address the major challenges of data
scarcity and model overfitting. In this work, the User Input Principle (UIP) method was adopted
to synthesize virtual data points, and both real and virtual data points were input to train a
prediction model. As shown in Fig. 3d, after the UIP method, the model’s prediction accuracy was

largely improved, and the MREs decreased from 30.6% to 13.5%.
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Overall, we believe that the multistage ML framework composed of SVM regression model,
active learning loops with ensemble modeling, and data augmentation can synergistically improve
the accuracy of a prediction model. In contrast, a simple or single ML tool/method could not

achieve such model accuracy based on a small dataset.
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Note SS. Training of a support vector machine (SVM) regression model.

To ensure the prediction model to suggest the MXene/SWNT/AuNP/PVA ratio that resulted in the
fabrication of a Go nanocomposite with high electrical conductance (>6.67 mS), a SVM regression
model was constructed. The SVM regression model predicted the electrical conductance of a Go

nanocomposite from its MXene/SWNT/AuNP/PVA ratio.

To construct a SVM regression model, four steps were involved: (/) take the logarithmic
term of the electrical conductance, (2) select a kernel function, (3) optimize SVM hyperparameters,
and (4) train a SVM model using the training data points. For the first step, as the electrical
conductance values ranged widely from 0 to +oo, which was ineffective in training an accurate
SVM regression model. Therefore, we calculated the logarithmic conductance value using

Equation S1,

Logarithmic conductance (LC) = (S1T)

1/ )
log,0(Sg ™ + 10)

, where S, is the electrical conductance of a Go nanocomposite, and the LC values range from 0 to
+1. For the second step, as the LC values were shown to be non-linear, we decided to select a radial
basis function (RBF) as the kernel function to map low-dimension data points into a higher
dimensional feature space to find the optimal hyperplanes with maximal margin distances*. For
the third step, Bayesian optimization (involving Gaussian processes and a 5-fold cross validation)
was used to adjust the hyperparameter values®. For the fourth step, the SVM regression model was
trained by inputting 286 data points (Table S2). Finally, the SVM regression model demonstrated
a low mean relative error (MRE) of ~17% to predict the LC values of Go nanocomposites using
42 testing data points (which were never input into the model training phase, Table S4). After

setting the electrical conductance threshold of >6.67 mS, a feasible parameter space was defined
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in Fig. S7. The SVM regression model was able to suggest the MXene/SWNT/AuNP/PVA ratios

that were positioned in the feasible parameter space at high accuracy of 95%.
The open-source code to train the SVM regression model in Python is provided in GitHub:

https://github.com/yhcbloom14/stretchable conductor/blob/main/design_boundary.ipynb.
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Note S6. User Input Principle (UIP) method for data augmentation.

To address model overfitting challenges upon the use of a small dataset, the data points collected
during active learning were augmented using the UIP method. The UIP method is based on the
natural principles proposed by expert users. For example, over small variations across specific
“composition” label(s), the “electrical” and “response” labels of a stretchable nanocomposite
remained approximately the same. As shown in Fig. S9, when the MXene/SWNT/AuNP/PVA
ratios varied from 22.0/65.2/7.8/5.0 to 21.6/69.7/5.5/3.2, the resulting Gi1—2D stretchable
nanocomposites exhibited similar “electrical” and “response” labels. Also, measurement variations
existed in the “electrical” and “response” labels. As shown in Fig. S10, by following the same set
of fabrication parameters, the characterized the “electrical” and “response” labels had 10-20%
measurement variations among multiple replicates. In this work, based on 146 data points collected
during active learning, we used the UIP method to synthesize 1,000-fold virtual data points by

29 ¢

introducing Gaussian noises into all “composition”, “electrical”, and “response” labels.

The open-source code to implement the UIP method in Python is provided in GitHub:

https://github.com/yhcbloom14/stretchable_conductor/blob/main/data_augmentation.ipynb.
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Note S7. Calculation of 4 Score acquisition function.

In the active learning loops, an acquisition function was introduced to suggest the targeted data
points with the highest uncertainty in the feasible parameter space. We defined the acquisition

function as 4 Score (Equation S2),
A Score = min(L,,L,) - 6 (S2)

, where L; denotes the shortest Euclidian distance between current input labels (within the dataset
of prediction model) and targeted input labels (not yet included in the dataset of prediction model),
and L, denotes the shortest Euclidian distance between each targeted input label. Input labels
include MXene loading, SWNT loading, AuNP loading, PVA loading, nanocomposite thickness,

deformation sequence, and applied pre-strain. L; and L, are calculated by Equation S3.4,

respectively,
L, = I}éil\fll(HInPUti — Input;||) (S3)
jeM
L, = min(||Input; — Inputy..;||) (S4)
keM

, where N is the cumulative number of data points in the current dataset, and M is the cumulative
number of data points in the targeted dataset. One-hot encoding was used for the input label of
deformation sequence in the prediction model. On the other hand, 6 denotes the prediction
variance of “electrical” and “response” labels from the ensemble committee of ANNs, which is

defined in Equation S5,

M c

PN 2

0= E i1 E 1[(0utputp,i) - (Outputaverage,i)] (SS)
L= p:

, where M is the cumulative number of data points in the target dataset, C is the total number of

ANNGs in the ensemble committee (C = 5), Output,; is the output labels predicted by the p™
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decision program on basis of the input labels of a targeted data point, Outputgyerqge,i is the
average output labels predicted by the ANN committee on basis of the input labels of a targeted

data point.

The open-source code to implement 4 Score-based active learning loops in Python is

provided in GitHub:

https://github.com/yhcbloom14/stretchable_conductor/blob/main/active learning.ipynb.
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Note S8. SHAP model interpretation.

The SHAP model interpretation is a game theoretic approach to explain the output of any ML
model (including any ensemble models). The SHAP model interpretation can find the feature
importance inside a ML model, enabling the users to address the black-box challenges of AI/ML
predictions. The analytical process of SHAP model interpretation is like investigating the
contribution of each player in a collaborative game. To understand how the feature importance is

derived in the SHAP analysis, an example is presented below.

As shown in Fig. S15a, there are three players, 4, B, and C. They collaborate with each
other to play a game. When all of them join the game, based on their different skills in a specific
game, they can collectively achieve a 100 reward. The task is to quantify how important each
player is in getting the reward. To solve this, we assume that three players join the game in a
specific sequence (e.g., player A first, then player B, next player C), and the marginal reward of
each player is then recorded. For example, player 4 is the first member with a reward of 50, then
player B joins the game and brings the reward to 90, and next player C joins the game to bring the
reward to 100. Therefore, the players’ respective marginal rewards are “players 4, B, C = 50, 40,
10”. However, the calculated marginal reward may not accurately represent the contribution of
each player. For example, when the sequence is changed from players A4, B, C to players 4, C, B,
the rewards are still 50, 40, and 10, indicating that players B and C have a similar skill set. Then,
the players’ respective marginal rewards are changed to “player 4, B, C = 50, 10, 40”. Therefore,

the sequence of how the players join the game is important.

To get a more accurate reward of each individual player, we need to find out the marginal
reward of each player under every possible sequence. The reward for each individual player then

can be the sum of these marginal rewards over the number of possible sequences (the calculation
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for a specific player is illustrated in Equation S6). For example, in the case outlined above, we
can simulate the arrival sequences: ABC, ACB, BCA, BAC, CAB, and CBA, and the marginal
reward of each player is recorded for each sequence. Then, by averaging all these rewards, we

obtain the reward contributed from each player. This reward is the SHAP value,

Y.y marginal reward of the player
N

SHAP value of a specific player = (56)

, where N represents number of total possible sequences.

In contrast to the feature importance analysis of a prediction model, we can take the
problem as an analogy to the above case. All “composition” (MXene loading, SWNT loading,
AuNP loading, and PVA loading), “thickness”, “deformation”, and “strain” labels are regarded as
players, which are fed into the prediction model to obtain the “conductance” and “response” labels.
The prediction process is treated as the game, and the deviation (between the predicted “electrical”
and “response” label of a specific data point and the average “electrical” and “response” labels
from all data points) is treated as the reward. By following Equation S7, the SHAP value of each
input label on a specific “electrical” or “response” label can be calculated, and this value is used

to measure the feature importance.

SHAP value of an input label

Y.y marginal reward of an input label on a specific output label (87)

N

, where N represents number of total possible sequences. The above process is the interpretation
of the prediction model on a specific data point which is called the local interpretation. To get the
global interpretation of the prediction model over all data points, we can plot the SHAP values of
every input label for every data point, as shown in Fig. S15b. A wider range of the SHAP value

for a specific feature indicates a higher importance, and vice versa.
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The open-source code to implement SHAP analyses in Python is provided in GitHub:

https://github.com/yhcbloom14/stretchable conductor/blob/main/shap _plotting.ipynb.
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Note S9. Two-scale finite element (FE) models of Gi/G: stretchable nanocomposites.

The complex topographies of Gi/G: stretchable nanocomposites were first generated using
different deflection functions. These deflection functions were determined by minimizing the total
energy of the binary system (including a conductive nanocomposite and an elastomeric substrate)

under varying compressive stresses, as formulated in Equation S8°,
§c(luv,w)) = &AW + & (wh) + & (fu, v, wh) (S8)

, where &.({u, v, w}) represents the total energy of a binary nanocomposite—substrate system,
&s({w}) is the energy of an elastomeric substrate, {¢, ({w}) and ¢ ({u, v, w}) are the energy of a
conductive nanocomposite at the stretching and bending states, respectively. The total energy of a
binary nanocomposite—substrate system, &, ({u, v, w}), is a function of the in-plane displacements,

u(x,y) and v(x, y) as well as the out-of-plane displacements, w(x, y).

Audoly and Boudaoud has derived a general deflection function that can capture the four
types of buckling modes®, including the cylindrical, undulating, varicose, and checkerboard modes,

as described in Equation S9,

w(x,y) = Acos(kx) + Bsin(kx) sin(k'y) + Ccos(kx) cos(k'y) + D cos(k'y) (S9)
, where k is the wavenumber in the x direction (horizontal, in plane), k' is the wavenumber in the
y direction (perpendicular to the x direction), A, B, C, D are the correlation parameters that tuned

the amplitude(s) of a specific buckling mode. The relation between k and the wavelength (1) was

correlated by Equation S10,
k=2m/2 (S10)
, where A is the wavelength of a G or G stretchable nanocomposite characterized from a Keyence

laser confocal microscope. In this work, k" was assumed to be 1/10. Table S8 summarizes the
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correlation parameters selected to construct the FE models of Gi—1D, G1-2D, G>-2D1D, G-

2D2D stretchable nanocomposites.

FE model of Gi—1D stretchable nanocomposites. As shown in Fig. S18a, the post-buckled

topography of a Gi—1D stretchable nanocomposite was described as a cylindrical mode with a
sinusoidal cross-section in an equilibrium state when subjected to uniaxial compression. To

describe the wrinkle-like microtextures, a deflection function was derived in Equation S11,

w(x,y) = Acos(kx) (S11)

FE model of G;—2D stretchable nanocomposites. As shown in Fig. S18b, the post-buckled

topography of a G1—2D stretchable nanocomposite was described as a checkerboard mode in an
equilibrium state when subjected to biaxial compression”®. To describe the crumple-like

microtextures, a deflection function was derived in Equation S12,

w(x,y) = Acos(kx) + D cos(k'y) (S12)

FE models of G,—2D1D and G,—2D2D stretchable nanocomposites. As shown in Fig. S18c,d, the

hierarchical topographies of Go—2D1D and G>-2D2D stretchable nanocomposites arising from
sequential deformations were described using a two-scale modeling approach. At the smaller scale,
the crumple-like topography was described as a checkerboard mode, similar as the FE model of
G1—2D stretchable nanocomposites. At the larger scale, the Go—2D1D stretchable nanocomposite
exhibited straight strips and was simulated as a cylindrical mode with a sinusoidal cross-section,

similar as the FE model of Gi—1D stretchable nanocomposites. At the larger scale, the G>—2D2D
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stretchable nanocomposites exhibited S-shaped strips and was simulated as an undulating mode,
and a deflection function was derived in Equation S13,
w(x,y) = Acos(kx) + bsin(kx) sin(k'y) (S13)

The complex surfaces of Gi—1D, Gi1—2D, G>—2D1D, G»-2D2D stretchable nanocomposites were
simulated, meshed, and exported to the STL files using MATLAB’s stlwrite function’

(https://www.mathworks.com/matlabcentral/fileexchange/20922-stlwrite-write-ascii-or-binary-

stl-files). The STL files were then imported into Abaqus 2022/Standard FE solver, and the
geometries were reconstructed using a plug-in tool developed by the SIMULIA Benelux office

(https://www.mathworks.com/matlabcentral/fileexchange/20922-stlwrite-write-ascii-or-binary-

stl-files).

Subsequently, a linear, elastic material model was introduced to all FE models with a
Young’s modulus of 1 GPa and a Poisson’s ratio of 0.227'°. These FE models aimed to simulate
the deformation mechanisms of Gi—1D, Gi1—2D, G>—2D1D, G>,—2D2D stretchable nanocomposites.
The modeling accuracy was maintained with 238,287 elements for the Gi—1D stretchable
nanocomposites, 244,216 elements for the Gi—2D stretchable nanocomposites, 591,893 elements
for the G2—2D1D stretchable nanocomposites, and 566,176 elements for the Go—2D2D stretchable

nanocomposites, utilizing 4-node linear tetrahedron elements.
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Note S10. Clustering analysis.

In this work, we use the DBSCAN algorithm to search the clusters with both high S, and &40,
values in the feasible parameter space. The acronym stands for “Density-based Spatial Clustering
of Applications with Noise” 1. The central component to the DBSCAN algorithm is the concept
of “core samples”, which are the samples in the high-density areas. There are two crucial
parameters to the DBSCAN algorithm, (1) min_samples and (2) eps. Higher min_samples or lower
eps indicate higher density necessary to form a cluster. In this work, we set the min_samples and
eps values to be 70 and 0.05, respectively. The eps parameter was chosen appropriately, which was
used to control the local neighborhood of the data points. When eps was chosen to be too small,
most data points would not be clustered at all. When eps was chosen to be too large, it caused close
clusters to be merged into one cluster, and eventually the entire data set to be returned as a single
cluster. It should be noted that, before the model was employed to identify any champion samples
through clustering analysis, the MRE value (using an independent testing data points) needed to
be sufficiently low. Afterward, a certain amount of experimental validation can be conducted near
the model-suggested clusters with global maximum. Through both approaches, one can gain more

confidence in the discovery of functional materials with superior properties.
The open source code to implement clustering analyses in Python is provided in GitHub:

https://github.com/yhcbloom14/stretchable _conductor/blob/main/clustering_analysis.ipynb.
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Note S11. Crack propagation of G>—2D2D gold conductors.

Quantified by the SEM images of a Go—2D2D gold conductor during a continuous strain loading
process (in Fig. Se), the statistical analyses of crack densities and crack areas are provided in Fig.
S20. Fig. S20a illustrates how crack areas were measured. First, crack density is defined as the
total number of cracks over a characterization area of SEM images. As shown in Fig. S20b,c, under
600% elongation, the G2—2D2D stretchable gold conductor showed no obvious cracks. Under 900%
elongation, the sums of crack width and length were characterized as 886 and 432 um, respectively,
resulting in the total crack area estimated to be 0.045 mm?2. Meanwhile, the crack density increased
to 0.5 mm~. Once the elongation increased over 1,300%, the sums of crack width and length
quickly increased to 16 and 13 mm, respectively, resulting in the total crack area estimated to be

2.072 mm?, and the crack density increased to 8.2 mm2,
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Table S1. Photos of 286 Go nanocomposites with different MXene/SWNT/AuNP/PVA ratios

as the training data points for the SVM regression model.
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Table

S2.

Electrical

conductance of

286 Go

nanocomposites

with different

MXene/SWNT/AuNP/PVA ratios as the training data points for the SVM regression model.

MXene/SWNT/AuNP/PVA Ratio S
ID MXene Loading | SWNT Loading | AuNP Loading | PVA Loading (mOS)
(Wt.%) (wt.%) (wt.%) (Wt.%)
1 0 0 0 100 0.00
2 10 0 0 90 0.19
3 20 0 0 80 0.32
4 30 0 0 70 0.59
5 40 0 0 60 1.02
6 50 0 0 50 1.39
7 60 0 0 40 3.05
8 70 0 0 30 4.07
9 80 0 0 20 6.29
10 90 0 0 10 8.06
11 100 0 0 0 40.00
12 0 10 0 90 0.00
13 10 10 0 80 0.09
14 20 10 0 70 0.18
15 30 10 0 60 0.33
16 40 10 0 50 0.43
17 50 10 0 40 0.65
18 60 10 0 30 1.15
19 70 10 0 20 4.55
20 80 10 0 10 541
21 90 10 0 0 15.15
22 0 20 0 80 0.07
23 10 20 0 70 0.26
24 20 20 0 60 0.53
25 30 20 0 50 0.56
26 40 20 0 40 2.60
27 50 20 0 30 3.29
28 60 20 0 20 3.79
29 70 20 0 10 6.58
30 80 20 0 0 18.18
31 0 30 0 70 0.24
32 10 30 0 60 0.32
33 20 30 0 50 0.53
34 30 30 0 40 2.00
35 40 30 0 30 4.05
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36 50 30 0 20 4.59
37 60 30 0 10 5.95
38 70 30 0 0 17.86
39 0 40 0 60 0.07
40 10 40 0 50 0.61
41 20 40 0 40 0.83
42 30 40 0 30 3.24
43 40 40 0 20 5.05
44 50 40 0 10 8.55
45 60 40 0 0 23.26
46 0 50 0 50 0.16
47 10 50 0 40 1.80
48 20 50 0 30 2.94
49 30 50 0 20 4.59
50 40 50 0 10 10.00
51 50 50 0 0 27.78
52 0 60 0 40 0.83
53 10 60 0 30 249
54 20 60 0 20 3.73
55 30 60 0 10 7.30
56 40 60 0 0 26.32
57 0 70 0 30 0.78
58 10 70 0 20 2.53
59 20 70 0 10 6.99
60 30 70 0 0 21.28
61 0 80 0 20 0.83
62 10 80 0 10 6.45
63 20 80 0 0 31.25
64 0 90 0 10 5.46
65 10 90 0 0 35.71
66 0 100 0 0 55.56
67 0 0 10 90 0.00
68 10 0 10 80 0.20
69 20 0 10 70 0.34
70 30 0 10 60 0.72
71 40 0 10 50 1.30
72 50 0 10 40 1.90
73 60 0 10 30 3.25
74 70 0 10 20 543
75 80 0 10 10 20.00
76 90 0 10 0 28.57
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77 0 10 10 80 0.11
78 10 10 10 70 0.16
79 20 10 10 60 0.39
80 30 10 10 50 0.47
81 40 10 10 40 0.69
82 50 10 10 30 3.23
&3 60 10 10 20 4.35
84 70 10 10 10 6.17
85 80 10 10 0 21.28
86 0 20 10 70 0.17
87 10 20 10 60 0.25
88 20 20 10 50 0.34
89 30 20 10 40 0.61
90 40 20 10 30 1.10
91 50 20 10 20 3.50
92 60 20 10 10 5.85
93 70 20 10 0 29.41
94 0 30 10 60 0.96
95 10 30 10 50 1.12
96 20 30 10 40 1.48
97 30 30 10 30 3.77
98 40 30 10 20 4.76
99 50 30 10 10 7.69
100 60 30 10 0 22.22
101 0 40 10 50 0.75
102 10 40 10 40 2.52
103 20 40 10 30 4.74
104 30 40 10 20 5.05
105 40 40 10 10 8.33
106 50 40 10 0 33.33
107 0 50 10 40 1.95
108 10 50 10 30 4.39
109 20 50 10 20 6.10
110 30 50 10 10 7.69
111 40 50 10 0 20.83
112 0 60 10 30 3.31
113 10 60 10 20 4.24
114 20 60 10 10 7.09
115 30 60 10 0 18.52
116 0 70 10 20 2.76
117 10 70 10 10 6.76
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118 20 70 10 0 16.67
119 0 80 10 10 4.13
120 10 80 10 0 16.13
121 0 90 10 0 15.15
122 0 0 20 80 0.00
123 10 0 20 70 0.43
124 20 0 20 60 0.71
125 30 0 20 50 2.50
126 40 0 20 40 4.13
127 50 0 20 30 6.62
128 60 0 20 20 10.10
129 70 0 20 10 12.66
130 80 0 20 0 25.00
131 0 10 20 70 0.16
132 10 10 20 60 0.23
133 20 10 20 50 0.37
134 30 10 20 40 0.58
135 40 10 20 30 1.43
136 50 10 20 20 3.05
137 60 10 20 10 4.24
138 70 10 20 0 10.75
139 0 20 20 60 0.41
140 10 20 20 50 0.88
141 20 20 20 40 1.14
142 30 20 20 30 2.96
143 40 20 20 20 4.35
144 50 20 20 10 4.57
145 60 20 20 0 33.33
146 0 30 20 50 0.52
147 10 30 20 40 1.28
148 20 30 20 30 3.56
149 30 30 20 20 4.35
150 40 30 20 10 6.58
151 50 30 20 0 10.75
152 0 40 20 40 1.16
153 10 40 20 30 2.99
154 20 40 20 20 4.76
155 30 40 20 10 5.49
156 40 40 20 0 16.39
157 0 50 20 30 2.35
158 10 50 20 20 3.23
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159 20 50 20 10 4.72
160 30 50 20 0 11.76
161 0 60 20 20 3.95
162 10 60 20 10 7.63
163 20 60 20 0 35.71
164 0 70 20 10 7.25
165 10 70 20 0 23.81
166 0 80 20 0 22.73
167 0 0 30 70 0.00
168 10 0 30 60 0.32
169 20 0 30 50 0.73
170 30 0 30 40 1.78
171 40 0 30 30 4.17
172 50 0 30 20 9.35
173 60 0 30 10 14.08
174 70 0 30 0 28.57
175 0 10 30 60 0.25
176 10 10 30 50 0.56
177 20 10 30 40 0.82
178 30 10 30 30 2.08
179 40 10 30 20 3.80
180 50 10 30 10 4.59
181 60 10 30 0 14.49
182 0 20 30 50 0.68
183 10 20 30 40 1.20
184 20 20 30 30 1.84
185 30 20 30 20 3.37
186 40 20 30 10 6.10
187 50 20 30 0 31.25
188 0 30 30 40 0.65
189 10 30 30 30 1.60
190 20 30 30 20 2.33
191 30 30 30 10 4.13
192 40 30 30 0 34.48
193 0 40 30 30 2.30
194 10 40 30 20 3.48
195 20 40 30 10 7.58
196 30 40 30 0 18.87
197 0 50 30 20 5.38
198 10 50 30 10 7.69
199 20 50 30 0 21.28
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200 0 60 30 10 9.43
201 10 60 30 0 21.74
202 0 70 30 0 18.87
203 0 0 40 60 0.00
204 10 0 40 50 0.83
205 20 0 40 40 1.73
206 30 0 40 30 3.79
207 40 0 40 20 7.25
208 50 0 40 10 10.64
209 60 0 40 0 6.94
210 0 10 40 50 0.43
211 10 10 40 40 0.54
212 20 10 40 30 1.20
213 30 10 40 20 3.22
214 40 10 40 10 5.21
215 50 10 40 0 8.20
216 0 20 40 40 1.01
217 10 20 40 30 1.57
218 20 20 40 20 2.82
219 30 20 40 10 4.26
220 40 20 40 0 11.36
221 0 30 40 30 1.79
222 10 30 40 20 3.07
223 20 30 40 10 5.21
224 30 30 40 0 13.70
225 0 40 40 20 5.24
226 10 40 40 10 6.17
227 20 40 40 0 38.46
228 0 50 40 10 8.55
229 10 50 40 0 47.62
230 0 60 40 0 12.82
231 0 0 50 50 0.00
232 10 0 50 40 0.80
233 20 0 50 30 1.87
234 30 0 50 20 7.25
235 40 0 50 10 8.26
236 50 0 50 0 28.57
237 0 10 50 40 0.49
238 10 10 50 30 0.89
239 20 10 50 20 1.29
240 30 10 50 10 3.34
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241 40 10 50 0 12.35
242 0 20 50 30 222
243 10 20 50 20 4.12
244 20 20 50 10 4.65
245 30 20 50 0 11.49
246 0 30 50 20 6.49
247 10 30 50 10 7.75
248 20 30 50 0 38.46
249 0 40 50 10 8.55
250 10 40 50 0 19.23
251 0 50 50 0 20.83
252 0 0 60 40 0.00
253 10 0 60 30 1.15
254 20 0 60 20 5.10
255 30 0 60 10 8.85
256 40 0 60 0 29.41
257 0 10 60 30 0.22
258 10 10 60 20 0.38
259 20 10 60 10 3.42
260 30 10 60 0 13.16
261 0 20 60 20 4.65
262 10 20 60 10 5.78
263 20 20 60 0 30.30
264 0 30 60 10 10.10
265 10 30 60 0 37.04
266 0 40 60 0 9.80
267 0 0 70 30 0.00
268 10 0 70 20 4.85
269 20 0 70 10 6.37
270 30 0 70 0 25.64
271 0 10 70 20 222
272 10 10 70 10 6.90
273 20 10 70 0 8.47
274 0 20 70 10 10.10
275 10 20 70 0 9.35
276 0 30 70 0 10.42
277 0 0 80 20 0.00
278 10 0 80 10 2.70
279 20 0 80 0 29.41
280 0 10 80 10 3.69
281 10 10 80 0 17.86
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282 0 20 80 0 10.00
283 0 0 90 10 0.00
284 10 0 90 0 22.22
285 0 10 90 0 5.15
286 0 0 100 0 0.00
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Table S3. Photos of 42 Gy nanocomposites with different MXene/SWNT/AuNP/PVA ratios

as the testing data points for the SVM regression model.
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Table S4. Electrical conductance of 42 Go nanocomposites with different

MXene/SWNT/AuNP/PVA ratios as the testing data points for the SVM regression model.

MXene/SWNT/AuNP/PVA Ratio S
ID MXene Loading | SWNT Loading | AuNP Loading | PVA Loading (mOS)
(Wt.%) (wt.%) (wt.%) (Wt.%)
1 49.5 50.5 0.0 0.0 76.92
2 12.7 41.0 41.3 5.0 7.87
3 12.3 78.3 6.5 2.9 12.50
4 7.2 30.0 59.4 34 8.33
5 34.9 32.1 31.0 2.1 7.14
6 4.9 86.9 6.2 2.0 20.00
7 40.2 44.8 21.4 3.6 13.51
8 40.2 42.4 8.8 8.6 8.77
9 45.8 36.8 13.9 3.5 7.14
10 84.4 4.6 8.6 2.4 7.58
11 17.5 67.0 9.2 6.4 8.55
12 41.9 33.8 9.4 14.9 2.22
13 65.9 15.3 6.8 12.0 3.12
14 5.7 79.0 7.7 7.6 14.29
15 559 32.6 53 6.2 6.90
16 12.5 53.2 24.3 10.0 2.50
17 23.6 63.4 11.0 1.9 8.93
18 20.2 47.8 20.8 11.3 2.22
19 36.3 56.9 4.9 1.9 8.13
20 7.4 76.5 7.5 8.6 7.25
21 55.8 35.2 6.6 2.4 8.33
22 294 51.5 15.1 4.1 7.35
23 25.5 63.6 8.2 2.6 8.47
24 27.2 52.9 10.8 9.1 6.76
25 73.7 7.2 54 13.7 2.58
26 5.8 533 0.0 40.8 1.13
27 12.5 21.7 11.7 54.2 0.39
28 38.3 20.3 7.2 34.2 0.32
29 30.0 19.2 17.5 333 0.36
30 70.0 9.2 7.0 13.8 2.28
31 18.3 38.3 25.0 18.3 2.02
32 70.8 4.7 8.7 15.8 2.14
33 6.3 42.8 16.7 34.2 1.18
34 8.7 38.8 12.5 40.0 0.91
35 28.3 11.7 28.3 31.7 0.21
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36 25.0 10.0 34.2 30.8 0.17
37 41.7 13.3 10.0 35.0 0.19
38 7.5 26.7 0.0 65.8 0.43
39 18.3 17.5 15.8 48.3 0.29
40 325 18.3 19.2 30.0 0.35
41 12.5 43.3 15.8 28.3 1.05
42 233 18.3 41.7 16.7 0.50
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Table SS. Training data points for the prediction model.

Composition Thickness Deformation Strain | Electrical Response
Labels Labels Labels Labels | Labels Labels
s MXe.ne SWNT AuNP PVA . Deformation Pre‘- S E59, | €7.5% | E10%
Loading | Loading | Loading | Loading | Thickness (nm) — Strain (mOS) % ; (% )° % )°
(Wt.%) | (wWt%) | (wt.%) | (wt.%) (%)

1 61.0 20.0 15.0 4.0 1,200 G1—-1D 0 5.57 67 | 67 67
1 5.0 80.0 5.0 10.0 1,200 G>—2D2D 100 9.06 198 | 202 | 206
1 46.0 40.0 10.0 4.0 1,200 G>—2D2D 300 13.39 1240 | 291 | 330
1 56.0 40.0 0.0 4.0 800 G>-2D1D 100 9.05 209 | 218 | 222
1 67.0 15.0 15.0 3.0 1,200 G>-2D1D 100 19.92 200 | 217 | 229

1 235 50.0 25.0 L.5 1,600 G1-2D 0 20.16 43 | 45 47

1 100.0 0.0 0.0 0.0 1,600 G1-2D 0 128.21 | 30 | 33 33
1 0.0 93.0 5.0 2.0 1,200 G>-2D2D 200 1534 383 | 388 | 393
1 25.0 70.0 2.0 3.0 1,600 G1-2D 0 29.41 35 | 38 40
1 20.0 80.0 0.0 0.0 1,200 G>—2D2D 200 20.16 | 266 | 341 | 363
1 49.5 50.5 0.0 0.0 1,200 G>—2D2D 100 31.15 [ 184 ] 194 | 201
1 12.7 41.0 41.3 5.0 1,200 G>-2D1D 200 7.48 415 | 450 | 460
1 12.3 78.3 6.5 2.9 1,200 G>-2D1D 300 8.52 564 | 586 | 602

1 17.0 45.6 31.9 54 800 G1—-1D 0 6.48 93 | 93 93
2 7.2 30.0 59.4 34 1,200 G>-2D1D 100 7.70 264 | 269 | 270
2 34.9 32.1 31.0 2.1 800 G>—2D2D 200 6.62 279 | 296 | 305
2 10.0 32.0 50.0 8.0 1,600 G>—2D2D 200 4.64 341 | 361 | 369
2 35.0 58.0 1.0 6.0 800 G>—2D2D 200 10.38 305 | 315 | 323
2 42.0 30.0 15.0 13.0 1,600 G>—2D2D 100 7.65 188 | 205 | 216

2 3.9 87.9 6.2 2.0 1,200 Gi—-1D 0 16.21 83 | 84 85

2 2.8 314 57.9 7.9 1,200 G1-2D 0 7.70 40 | 43 45
2 30.2 34.8 214 13.6 800 G1—2D 0 6.59 33 | 35 36

2 24.6 40.0 27.9 7.6 1,600 G1—-1D 0 15.20 40 | 42 42
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2 34.8 354 21.6 8.2 800 G1—2D 0 8.81 43 | 48 50
2 40.2 42.4 8.8 8.6 1,600 G>-2D1D 200 15.92 1281 | 303 | 316
2 17.9 7.6 68.1 6.5 1,200 G>-2D2D 100 9.94 262 | 267 | 269
2 45.8 36.8 13.9 3.5 1,200 G>-2D2D 200 23775 1296 | 320 | 332
2 36.6 38.0 23.8 1.7 800 G>-2D2D 100 8.18 185 | 197 | 208
2 4.2 41.0 51.6 3.2 1,600 G>-2D1D 100 15.53 1364 | 369 | 381
2 84.4 4.6 8.6 2.4 1,600 G1—2D 0 22.32 28 | 31 33
2 19.6 47.7 31.4 1.2 800 G1—2D 0 13.51 62 | 64 66
2 55.9 23.6 13.1 7.5 800 G1—2D 0 6.03 45 | 50 53
2 17.5 67.0 9.2 6.4 1,200 G>-2D1D 100 13.26 | 234 | 239 | 242
2 41.9 33.8 94 14.9 1,200 G>-2D1D 100 5.62 277 | 286 | 292
2 15.7 63.7 13.5 7.1 1,600 G>-2D1D 100 10.96 | 284 | 290 | 293
2 33 69.8 16.3 10.6 1,200 G2-2D1D 100 11.39 | 308 | 312 | 315
3 54.5 233 9.2 13.1 1,600 G>-2D1D 200 6.96 333 | 365 | 374
3 3.5 584 30.9 7.2 1,200 Gi—-1D 0 17.01 81 82 82
3 14.6 52.7 243 8.4 800 Gi—-1D 0 5.95 57 | 58 58
3 13.6 69.0 13.1 4.3 800 Gi-1D 0 6.27 62 | 64 64
3 31.0 45.6 15.6 7.8 800 Gi—-1D 0 7.13 81 83 86
3 65.9 15.3 6.8 12.0 800 G1—2D 0 6.73 47 | 50 53
3 80.7 11.6 2.5 52 1,200 Gi—-1D 0 18.45 133 | 133 | 135
3 64.2 7.4 13.8 14.7 1,200 G>-2D2D 100 8.01 151 ] 160 | 166
3 12.0 62.2 18.0 7.8 1,600 G>-2D1D 300 6.37 499 | 525 | 539
3 94 19.6 68.8 23 1,600 G1—2D 0 17.12 38 | 44 46
3 5.7 79.0 7.7 7.6 1,600 G>-2D2D 300 6.16 649 | 660 | 671
3 42.0 40.3 9.7 7.9 1,600 Gi—-1D 0 20.08 73 | 74 76
3 7.3 55.0 32.4 5.3 1,600 G>-2D1D 300 6.93 540 | 576 | 612
3 424 24.4 18.1 15.1 1,200 Gi—-1D 0 7.49 89 | 90 91
3 10.3 28.6 59.2 2.0 800 G1—2D 0 9.31 60 | 62 63
3 55.9 34.6 3.3 6.2 1,200 Gi—-1D 0 18.83 44 | 45 45
3 38.2 20.8 37.5 3.5 1,200 Gi—-1D 0 9.35 107 | 108 | 108
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3 83.5 1.7 10.4 4.4 1,600 G1—2D 0 41.67 77 | 86 94
3 32.0 32.1 32.2 3.7 800 Gi—-1D 0 6.51 105 | 106 | 106
3 4.2 73.7 19.7 24 1,600 G>-2D1D 200 11.19 | 391 | 408 | 416
3 31.8 50.6 16.3 1.4 800 Gi—-1D 0 20.24 37 | 37 38
3 90.3 3.7 4.7 1.3 800 G2-2D1D 200 14.49 1265 | 283 | 299
4 12.5 532 243 10.0 1,600 G>-2D1D 100 5.12 260 | 261 | 263
4 23.6 63.4 11.0 1.9 800 Gi—-1D 0 8.06 42 | 43 43
4 36.1 35.8 19.5 8.6 1,600 G>-2D2D 100 5.49 196 | 203 | 209
4 20.2 47.8 20.8 11.3 800 G1—2D 0 6.21 35 | 37 38
4 5.8 86.3 5.7 2.2 1,200 G>-2D2D 100 12.66 | 220 | 224 | 229
4 20.0 56.1 17.3 6.7 1,200 G>-2D1D 200 4.96 363 | 386 | 402
4 15.3 77.0 2.1 5.7 800 G>-2D2D 100 8.51 211 | 217 | 222
4 19.9 37.1 41.4 1.6 1,600 G>-2D1D 100 8.42 214 | 225 | 229
4 36.3 58.9 3.5 1.3 1,200 G>-2D1D 100 9.31 215 | 222 | 225
4 38.3 31.2 20.1 10.4 1,600 G1—2D 0 7.07 31 | 34 38
4 9.8 59.0 22.0 9.2 1,600 G>-2D1D 200 3.62 447 | 467 | 478
4 34 80.5 7.5 8.6 1,600 G>-2D2D 300 6.51 432 | 438 | 446
4 55.8 38.2 4.6 1.4 1,600 G>-2D1D 200 26.88 184 | 261 | 284
4 59 69.4 18.9 59 1,200 G>-2D2D 300 6.45 602 | 606 | 606
4 59.2 20.1 93 11.4 1,600 G>-2D1D 200 7.06 232 | 244 | 253
4 30.7 47.5 15.0 6.8 1,200 G>-2D1D 300 7.69 375 | 393 | 401
4 523 28.6 16.4 2.8 1,600 G2-2D2D 200 12.27 161 | 189 | 209
4 74.3 15.0 9.0 1.7 800 G>-2D1D 100 9.92 178 | 185 | 189
4 59 60.3 29.2 4.6 1,600 G>-2D2D 300 11.63 | 471 | 505 | 521
4 29.4 51.5 15.1 4.1 1,200 G>-2D2D 200 6.26 300 | 317 | 325
4 7.4 54.1 32.9 5.7 1,200 G>-2D1D 200 8.70 442 | 447 | 454
4 255 63.6 8.2 2.6 1,600 G>-2D2D 200 9.12 240 | 256 | 273
5 20.5 55.1 20.7 3.7 1,600 G>-2D2D 300 8.67 365 | 381 | 404
5 8.0 52.9 31.8 7.4 1,600 G>-2D2D 300 8.26 363 | 374 | 381
5 27.6 62.5 4.2 5.7 1,200 G>-2D1D 200 6.87 445 | 456 | 46l
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5 8.1 79.0 11.7 1.3 1,200 G>-2D1D 300 8.08 575 | 589 | 602
5 7.0 19.8 69.5 3.7 1,200 G>-2D2D 200 2.71 330 | 352 | 363
5 32.7 323 28.3 6.7 1,200 G>-2D2D 200 7.39 264 | 292 | 307
5 249 42.2 26.2 6.7 1,200 G>-2D2D 200 5.06 329 | 350 | 363
5 5.8 323 59.5 2.5 1,200 G>-2D2D 200 8.00 354 | 364 | 370
5 27.2 52.9 10.8 9.1 1,600 G>-2D2D 300 5.13 312 | 315 | 319
5 553 35.2 6.1 3.4 800 G>-2D1D 100 10.33 51 | 100 | 162
5 33.2 514 6.1 9.3 1,200 G>-2D2D 200 3.85 290 | 305 | 313
5 50.9 36.6 6.2 6.3 800 G1—2D 0 11.63 32 | 37 38
5 13.6 71.0 8.3 7.1 1,200 G1—2D 0 15.53 24 | 26 28
5 20.2 63.4 9.7 6.8 800 G1—2D 0 11.36 33 | 35 36
5 78.7 9.3 33 8.7 1,200 G>-2D2D 100 6.52 199 | 214 | 226
5 10.0 57.1 27.5 54 1,600 G>-2D2D 200 8.72 236 | 296 | 338
5 33.0 45.8 13.9 7.3 1,600 G>-2D2D 200 8.45 324 | 369 | 396
5 63.7 26.9 7.6 1.8 1,600 Gi—-1D 0 23.04 | 126 | 126 | 127
5 5.7 73.8 16.7 3.8 1,600 Gi—-1D 0 26.25 63 | 64 64
5 11.4 79.4 4.7 4.5 1,200 G>-2D2D 200 8.83 333 | 345 | 350
5 22.7 22.6 49.2 5.5 1,200 G>-2D2D 100 4.08 200 | 215 | 222
5 51.4 27.4 13.1 8.1 1,600 Gi—-1D 0 5.63 100 | 102 | 103
6 55.0 30.7 11.0 3.3 800 G1—2D 0 10.26 27 | 30 30
6 84.1 1.6 7.0 7.4 1,600 G>-2D1D 100 15.46 1200 | 203 | 206
6 11.7 45.7 36.0 6.6 1,200 G>-2D2D 200 4.29 343 | 361 | 371
6 16.1 26.0 523 5.6 1,600 G>-2D1D 100 11.01 172 ] 183 | 190
6 35.1 46.2 9.0 9.7 1,200 Gi—-1D 0 8.46 94 | 97 | 100
6 243 56.6 13.4 5.7 800 G>-2D1D 100 6.64 249 | 251 | 254
6 10.8 42.8 43.2 32 1,200 G>-2D1D 200 5.64 372 | 382 | 392
6 13.2 71.0 6.3 9.5 800 G>-2D1D 200 3.93 310 | 324 | 338
6 12.1 70.7 13.5 3.8 1,600 G>-2D1D 200 8.66 389 | 406 | 415
6 8.9 57.1 31.2 2.8 1,200 G>-2D1D 200 7.24 343 | 347 | 350
6 14.0 67.9 8.1 10.1 1,600 G>-2D1D 300 3.70 476 | 496 | 502

71




6 40.7 40.6 16.9 1.9 1,200 G>-2D1D 200 16.13 | 315 | 331 | 343
6 244 68.9 5.5 1.3 1,200 G>-2D2D 200 15.20 433 | 456 | 472
6 38.8 29.6 29.2 24 1,200 G>-2D2D 100 6.46 150 | 157 | 162
6 34.0 27.2 31.2 7.6 1,200 G1—2D 0 5.70 36 | 41 43
6 77.1 23 11.2 9.5 1,600 G>-2D2D 100 3.95 136 | 157 | 161
6 82.2 14.1 2.0 1.7 1,200 G>-2D1D 200 11.53 | 288 | 306 | 320
6 20.6 67.9 3.0 8.5 1,600 G>-2D1D 300 6.68 425 | 457 | 464
6 13.6 55.5 24.7 6.2 1,600 G>-2D1D 300 5.81 498 | 511 | 536
6 74.1 15.0 9.0 1.9 1,200 G>-2D1D 200 5.52 323 | 333 | 348
6 44.9 242 25.2 5.7 1,600 G>-2D2D 100 5.74 120 | 139 | 156
6 40.4 45.1 5.6 8.9 1,600 G>-2D1D 100 9.05 217 | 230 | 241
7 17.4 71.2 59 5.6 800 Gi—-1D 0 9.18 44 | 44 44
7 47.8 20.8 245 6.8 800 Gi—-1D 0 5.48 135 135 | 135
7 52.6 28.3 11.2 7.9 1,600 G>-2D2D 100 5.60 179 | 188 | 196
7 46.4 27.2 21.3 5.1 800 Gi—-1D 0 9.78 64 | 65 65
7 43.1 234 30.5 3.0 1,600 G>-2D1D 100 15.67 210 ] 217 | 225
7 65.3 17.9 12.5 4.3 1,600 G>-2D1D 200 8.76 250 | 308 | 340
7 41.8 34.7 15.6 7.8 1,200 G>-2D1D 200 4.74 327 | 336 | 345
7 28.1 50.6 14.0 7.3 800 Gi—-1D 0 5.35 82 | 82 82
7 7.2 69.6 19.0 4.3 1,600 G2-2D2D 100 11.39 259 | 262 | 264
7 9.5 50.7 36.4 3.4 800 Gi—-1D 0 7.09 76 | 76 77
7 45.2 324 12.8 9.7 1,200 G>-2D2D 100 6.97 211 | 215 | 219
7 75.4 4.5 11.3 8.8 1,200 G>-2D2D 100 9.90 227 | 231 | 235
7 58.5 17.3 15.4 8.8 1,600 G>-2D1D 100 6.75 212 | 221 | 232
7 52.9 22.9 21.5 2.8 1,200 G>-2D1D 200 10.33 | 301 | 340 | 359
7 22.0 38.1 36.1 3.8 1,200 G>-2D1D 200 8.66 410 | 425 | 434
7 2.7 65.9 25.7 5.7 1,600 G1—2D 0 13.39 28 | 29 30
7 50.5 34.9 9.0 5.6 1,600 G>-2D1D 100 9.78 201 | 205 | 209
7 22.8 31.7 43.3 23 800 Gi—-1D 0 13.26 74 | 75 75
7 20.5 27.9 49.3 23 1,200 G>-2D2D 200 5.94 502 | 526 | 528

72




7 333 47.4 13.6 5.7 1,600 G>-2D1D 100 9.35 249 | 255 | 260
7 45.3 37.9 12.7 4.1 1,600 G>-2D1D 200 11.67 | 406 | 420 | 421
7 12.3 70.0 13.8 4.0 1,600 G>-2D2D 300 7.79 499 | 557 | 567
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Table S6. Testing data points for the prediction model.

Composition Thickness Deformation Strain | Electrical Response
Labels Labels Labels Labels Labels Labels

1D MXe.ne SWNT AuNP PVA . Deformation Pre.- S &5, | €750 | €109

Loading | Loading | Loading | Loading | Thickness (nm) S — Strain (mOS) (% (70/‘2 )A’ (%,ZS’

(Wt.%) (Wt.%) (wWt.%) | (wt.%) (%)
01 42.0 47.8 3.6 6.6 1,200 G2-2D2D 200 11.40 304 | 325 | 337
02 19.8 68.4 7.0 4.8 1,600 G2-2D1D 300 8.14 518 | 529 | 546
03 323 57.0 53 53 1,600 G1-2D 0 24.57 37 | 37 37
04 543 27.3 13.7 4.8 800 G1-2D 0 13.55 41 45 49
05 39.4 44.0 6.1 10.6 1,600 Gi—-1D 0 8.48 75 | 75 75
06 64.5 22.0 6.4 7.2 1,600 G2-2D2D 200 7.04 188 | 209 | 225
07 65.6 14.1 19.0 1.3 1,200 G2-2D1D 200 6.16 302 | 326 | 337
08 15.7 21.2 59.4 3.6 1,600 G>-2D2D 100 8.87 157 ] 165 | 171
09 21.9 53.9 21.0 33 1,600 G2-2D2D 300 8.62 337 | 369 | 385
10 55.4 26.8 14.9 3.0 1,200 G>-2D1D 100 8.07 152 | 172 | 192
11 49.1 41.8 7.9 1.2 1,600 G2-2D1D 100 19.08 160 | 193 | 207
12 79.2 12.4 3.2 52 800 Gi—-1D 0 22.73 91 91 91
13 18.4 74.6 3.4 3.6 1,600 G2-2D1D 200 9.08 403 | 407 | 412
14 21.7 58.5 17.1 2.7 1,200 G2-2D2D 100 11.96 256 | 265 | 273
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Table S7. 10 fabrication parameter sets of G1/G: stretchable nanocomposites to examine the model’s prediction accuracy.

Composition Thickness | Deformation Strain | Electrical Response
Labels Labels Labels Labels Labels Labels
Recipe MXgne SWNT AuNP PVA Thickness | Deformation | Pre-Strain So &9 | €75% | €10%
" Loading | Loading | Loading | Loading i) S — (%) (mS) @ | @) | @)
(Wt.%) (Wt.%) (Wt.%) (Wt.%)
1 44.0 39.4 6.1 10.6 1,600 Gi—-1D 0 8.48 74 74 76
2 20.0 61.0 15.0 4.0 1,200 Gi—-1D 0 5.57 67 67 67
3 27.3 54.3 13.7 4.8 800 G1-2D 0 13.55 38 42 45
4 47.7 19.6 314 1.2 800 G1-2D 0 13.51 62 64 66
5 41.8 49.1 7.9 1.2 1,600 G>-2D1D 100 19.08 164 | 200 | 219
6 74.6 18.4 3.4 3.6 1,600 G>-2D1D 200 9.08 388 | 409 | 407
7 68.4 19.8 7.0 4.7 1,600 G>-2D1D 300 8.14 504 | 521 | 550
8 58.5 21.7 17.1 2.7 1,200 G>—2D2D 100 119.62 | 246 | 261 | 274
9 47.8 42.0 3.6 6.6 1,200 G>—2D2D 200 114.03 | 312 | 314 | 327
10 53.9 21.8 21.0 33 1,600 G>—2D2D 300 86.21 355 | 365 | 400
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Table S8. Correlation parameters used in the deflection functions of FE models.

Stretchable Buckling A B C D A
Nanocomposite Mode (um) (um) (um) (um) (um)
Gi—-1D Cylindrical 16 0 0 0 35
G1-2D Checkerboard 33 0 0 33 44
G>-2D1D Cylindrical 105 0 0 0 70
G-2D2D Undulating 105 53 0 0 70

A, B, C, and D are the correlation parameters, A is the wavelength characterized from Keyence
microscope. The thicknesses of G1/G: stretchable nanocomposites were set to be 800 nm.

Table S9. Summary of influential components identified in different data analysis methods.

Electrical and Response Labels
Data Analysis Method So E10%
(mS) (%)
. Deformation Sequence (+
PVA Loading (-) Applied Pre-Sctlrain (+() :
MXene Loading (+) Deformation Sequence (+)
PVA Loading (-)

Applied Pre-Strain (+)
Applied Pre-Strain (-) MXene Loading (-)

Spearman’s p Analysis

SHAP Model Interpretation
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Table S10. Comparison of our robotics/ML-integrated framework with the state-of-the-art works in the fields of stretchable

conductors
Design Fabrication Building Electrical Property Maximum -
Strategy Method Block at Relaxed State Stretchability €10% DTty 5
Robotics/ML . 80k cycles under 400% elongation .
_integrated dsiquen?.al Ngili/fyl\f / ‘?“NP/ 25%x10°Sm’ 1,300%  1,025% 50k cycles under 600% clongation ‘?;f(
framework crormation nAufayer 20k cycles at 700% elongation
Desi f et 15k cycles under 100% elongation
esign o . egog;neous EGaln + PU 2.1x10°Sm" 4,100% 310% 8k cycles under 300% elongation 12
expertien ending 1.2k cycles under 500% elongation
e]i;;%r?lgrt;t in]‘?elgrlz]teii)n EGaln + VHB 2.1%x10°Sm™! 1,000% 160% 1.5k cycles under 500% elongation 13
150 cycles under elongation
. o :
Demgn of Heteroggneous EGaln + SBS 18%10°Sm" 1.800% 100% 200 cycles under 1,00(9% elonggtlon 14
experiment blending 1k cycles under 500% elongation
25k cycles under 100% elongation
Design of  Heterogeneous Sl 0 0 1k cycles under 100% elongation 15
experiment blending EGaln/Ag flakes +SIB 8.2 x10°S m 1,200% 100% 550 cycles under 400% elongation
. EGaln + 11-
Design of - Heterogeneous phosphonoundecyl 25x10°Sm™ 750% 320% 10k cycles under 100% elongation 16
experiment blending acrylate
Designof -~ Bilayer EGaln+pp-TPU  23x10°Sm™  2260%  670% 10k cycles under 100% clongation 7
experiment integration
Design of — Heterogencous  EGaln/Ag flakes + ¢ 5 s g o 1,000%  150% 10k cycles under 800% clongation '
experiment blending EVA
Design of - Heterogeneous Ag flakes + Ecoflex 1.3x10*Sm™ 1,780% 11% 1k cycles under 50% elongation 19
experiment blending
Designof - Heterogencous ) \w/cNT+ PYDF 5.7 % 10°Sm”! 140% 15% 5k cycles under 20% elongation 2
experiment blending
Design of Heterogencous AgNW/Au + SBS 42 x10°Sm 840% 10% 3k cycles under 30% elongation 2
experiment blending
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Design of

Heterogeneous

experiment blending AuNP + PU 1.1 x10°Sm™ 480% 4% 10k cycles under 5% elongation 3
e]igzir%rllllgrt;t Heff:f(;iegous Ag flakes + PAA 3.7x10*Sm™ 250% 10% 1k cycles under 100% elongation 2
e]i;zi;‘f;;i Heff:f(;‘;egous algma‘fjpi";\ljf;;dmgel 1.4%10°Sm’ 1,000% 300% 200 cycles under 300% elongation %
e]i;zi;‘f;gi Heff:f(;‘;egous Ag ﬂalr‘lfgge rfsluorme 40x10°Sm’ 400% 85% 547 cycles under 50% elongation
e]i;zi;‘f;;i Heff:f(;‘;egous PEDOT:PSS + STEC 3.4 x 10°Sm 800% 45% 1k cycles under 100% elongation 2
e]i;zi;‘f;gi Heff:f(;‘;egous PEDOT:PSS+PR 7.0 10*Sm'" 125% 25% 100 cycles under 40% elongation 2
e]i;zi;‘f;;i Heff:f(;‘;egous PEDOT:I;%SQ EMIM = 55 105 m! 180% 20% 20 cycles under 40% elongation 7
e]i;zi;‘f;gi Heff:f(;‘;egous Graphe%félakes T 43x10°Sm’ 500% 300% 10k cycles under 300% clongation 2
e]i;zi;‘f;;i Heff:f(;‘;egous CNT/graphite + PDMS 1.3 x 10>Sm' 150% 130% 1k cycles under 60% elongation 2"
e]i;zi;‘f;gi Heff:f(;‘;egous CNT + PU 1.0x 102Sm™ 300% 30% 100 cycles under 80% elongation 30
e]i;zi;‘f;;i in?;;gggn CNT + PDMS 1.1x10°Sm" 150% 14% 10k cycles under 25% elongation 31

Abbreviations: SWNT — single-walled carbon nanotubes; AuNP- gold nanoparticle; PVA — poly(vinyl alcohol); EGaln — eutectic
gallium-indium; PU — polyurethane; EVA — ethylene vinyl acetate copolymer; SIB — styrene—isoprene block copolymers; SBS —
poly(styrene-block-butadiene-block-styrene); pp-TPU — polyester polyol-rich thermoplastic polyurethane; VHB — very high bond;
AgNW — silver nanowire; PAA — polyacrylamide alginate; CNT — carbon nanotube; PVDF — polyvinylidene fluoride; PAM —
polyacrylamide; PEDOT:PSS — poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate); PVDF — polyvinylidene fluoride; STEC —
stretchability and electrical conductivity; EMIM TCB — 1-ethyl-3-methylimidazolium tetracyanoborate; PR — polyrotaxane; PDMS —
polydimethylsiloxane.
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Table S11. Fitted EIS parameters of stretchable Zn//MnQ: batteries at different stretching

states.
Stretching State Rint () Ret (€2)
0% 18.1 2.42
300% 17.2 2.86

Equivalent Circuit Model

Rint

CPE

The parameters were obtained using the equivalent circuit model shown above, where Rint, Ret, and
Zy represent the internal resistance, the charge transfer resistance, and the Warburg impedance that
is related to the diffusion of Zn** at low frequencies, respectively. CPE is the constant phase
element.
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Table S12. Comparison of our stretchable Zn//MnO: battery with the state-of-the-art stretchable Zn-based and Li-ion batteries

with co-planar configurations.

Uniaxial Stretchability Electrolyte Specific Capacity .
Stretchable Battery (%) Contfien) at Relaxed State Rechargeability Ref.
2.0 M ZnSOyq4
0.2 M MnSO4 260 mAh g This
0
Zn//Mn0; 300% PVA Gel @100 mA g! Yes work
(Neutral)
2.0 M ZnCl,
. 2.0 M LiCl 118.5 mAh g‘1 1
- - 0
Zn@Ti-MXene//V-MXene 50% PVA Gel @50mAg' Yes
(Neutral)
2.0 M ZnSOq4
0.5 M MnSOq4 75.6 mAh g'1 3
0
Zn//MnO, 50% PAM Gel @ 308 mA g‘l Yes
(Neutral)
40 wt.% KOH )
Zn//MnO, 25% CMC Gel g 'g énrﬁ g No 34
(Alkaline) omAg
26 wt.% NH4Cl
8 wt.% ZnCl, 3.5 mAh cm™ 35
0
Zn//MnO, 50% Xanthan Gel @ 0.5 mA cm No
(Neutral)
PAA Gel 2.3 mAh cm™ 36
0
Zn//MnO; 100% (Alkaline) @ 0.12 mA cm 2 No
6.0 M KOH
0.4 M ZnO 3.8 mAh cm™ 37
0
Zn//MnO, 100% PAA Gel @ 0.175 mA cm™ No
(Alkaline)
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6.0 M KOH

1.0 M LiOH 2.5 mAh cm™ 38
0
Zn//Ag 100% PAA Gel @ 3 mA cm Yes
(Alkaline)
10 M NaOH 0.05 mAh cm™ 39
0
Zn//Ag 80% (Alkaline) @ 1.0 mA cm Yes
6.0 M KOH
1.0 M LiOH 0.6 mAh cm™ 40
v
Zn//Ag 1% PAA Gel @ 0.15 mA cm” Yes
(Alkaline)
1.0 M KOH
0.02 M Zn(Ac):
. 0.005 M LiOH 105 mAh g! 4
- 0
Zn//Ni-Co 30% 0.005 M Ca(OH), @1.0Ag" Yes
PVA Gel
(Alkaline)
10 M LiTFSI 100 mAh g! 2
0
V,05//LMO 50% (Neutral) @120mA g Yes
1.0 M Li,SOy4 90 mAh g M
0
AC//LMO 100% (Neutral) @18Ag" Yes

Abbreviations: PVA — poly(vinyl alcohol); PAM — polyacrylamide; CMC — carboxymethyl cellulose sodium salt; PAA — polyacrylic
acid; Ac — acetate, [CH3COO™]; LMO — LiMn2QO4; LiTFSI — lithium bis(trifluoromethanesulfonyl)imide; AC — active carbon.
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Movie S1. Automated pipetting robot for preparing various MXene/SWNT/AuNP/PVA

mixtures.

Movie S2. FE simulation of G:-2D1D and G:>-2D2D stretchable nanocomposites under

uniaxial elongations in top and perspective views.
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