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Fig. S1. Schematic illustration of a model expansion strategy. Workflow of a model expansion 

method. 
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Fig. S2. Characterization of building blocks. (a) TEM image of Ti3C2Tx MXene nanosheets, 

with an average lateral dimension of 1 × 1 µm2. (b) TEM image of single-walled carbon nanotubes 

(SWNTs), with an average diameter of 1 nm and an average length of 10 µm. (c) Tyndall effect of 

SWNT dispersion that contained sodium dodecyl sulfate (SDS). No SWNT aggregation was 

observed after ambient storage for 60 days. (d) TEM image of gold nanoparticles (AuNPs), with 

an average diameter of 20 nm. 
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Fig. S3. Fabrication of G1/G2 stretchable nanocomposites. (a) Fabrication of G1–1D stretchable 

nanocomposites using uniaxial shrink films. (b) Fabrication of G1–2D stretchable nanocomposites 

using biaxial shrink films. (c) Fabrication of G2–2D1D stretchable nanocomposites using biaxial 

shrink films and uniaxially pre-stretched VHB substrates sequentially. (d) Fabrication of G2–2D2D 

stretchable nanocomposites using biaxial shrink films and biaxially pre-stretched VHB substrates 

sequentially. 
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Fig. S4. Tunable wavelengths of G2–2D1D and G2–2D2D stretchable nanocomposites. (a)–(c) 

Wavelengths of G2–2D1D stretchable nanocomposites were tunable from 90 to 48 µm by 

controlling the applied pre-strains of VHB substrates from 100% to 300%, respectively. (d)–(f) 

Wavelengths of G2–2D2D stretchable nanocomposites were tunable from 162 to 67 µm by 

controlling the applied pre-strains of VHB substrates from 100% to 300%, respectively. 
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Fig. S5. Effect of thickness on the resistance–elongation curves of G1/G2 stretchable 

nanocomposites. Resistance–elongation curves of various G2–2D1D stretchable nanocomposites 

with different thicknesses. All G2–2D1D nanocomposites were at the same 

MXene/SWNT/AuNP/PVA ratio of 45/45/8/2, and the applied pre-strain was controlled to be the 

same at 100%. 
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Fig. S6. Fabrication of G0 nanocomposites with controlled thicknesses. During the SVM model 

construction, the thicknesses of all G0 nanocomposites were controlled to be ~800 nm. The 

MXene/SWNT/AuNP/PVA ratios of three G0 nanocomposites were (a) 10.1/79.5/5.7/4.7, (b) 

40.3/41.2/8.7/9.8, and (c) 61.2/25.3/12.4/1.1. 
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Fig. S7. Determination of a feasible parameter space. (a) Feasible parameter space of G0 

nanocomposites with high electrical conductance values >6.67 mS. (b) By selecting the iso-

surfaces with different electrical conductance values, the volume of a feasible parameter space 

changed accordingly. By setting the electrical conductance value of 6.67 mS as the threshold, a 

feasible parameter space was defined and held ~34% of the entire parameter space. 
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Fig. S8. Response labels of G1/G2 stretchable nanocomposites. A resistance–elongation profile 

of a G2–2D1D stretchable nanocomposite was used as an example. 𝜀"% represents the uniaxial 

elongation that increases the initial resistance (𝑅!) by 5%. 𝜀$."% represents the uniaxial elongation 

that increases 𝑅! by 7.5%. 𝜀&!% represents the uniaxial elongation that increases 𝑅! by 10%.  
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Fig. S9. Performance of G1/G2 stretchable nanocomposites upon slight composition 

variations. With slight variations in the MXene/SWNT/AuNP/PVA ratio (22.0/66.1/7.8/4.1 vs. 

21.6/69.7/5.5/3.2), two G1–2D stretchable nanocomposites were fabricated and demonstrated 

similar (a) electrical conductance values (i.e., 𝑆! ), (b) resistance–elongation curves, and (c) 

response labels (i.e., 𝜀"%, 𝜀$."%, 𝜀&!%). 
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Fig. S10. Measurement variations across G1/G2 stretchable nanocomposite replicates. A set 

of fabrication parameters was used to prepare three G1–2D replicates, including the 

MXene/SWNT/AuNP/PVA ratio of 45/45/8/2, the nanocomposite thickness of 1,200 nm, and the 

deformation sequence of G1–2D. (a) Electrical labels (i.e., 𝑆!) of three G1–2D replicates. (b) 

Response labels (i.e., 𝜀"%, 𝜀$."%, 𝜀&!%) of three G1–2D replicates. 
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Fig. S11. Cumulative numbers of G1/G2 stretchable nanocomposites fabricated across active 

learning loops. 146 G1/G2 stretchable nanocomposites were fabricated across 7 active learning 

loops, including 24 G1–1D, 23 G1–2D, 51 G2–2D1D, and 48 G2–2D2D stretchable nanocomposites. 
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Fig. S12. Spatial distributions of G1/G2 stretchable nanocomposites in the feasible parameter 

space. (a) After 2 loops. (b) After 4 loops. (c) After 6 loops. 
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Fig. S13. Comparison between model-predicted and actual electrical conductance. (a) G1–1D 

and G1–2D stretchable nanocomposites. (b) G2–2D1D stretchable nanocomposites. (c) G2–2D2D 

stretchable nanocomposites. 
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Fig. S14. Statistical analyses between fabrication parameters and nanocomposite properties. 

Spearman’s 𝜌  of MXene loading, SWNT loading, AuNP loading, and PVA loading, 

nanocomposite thickness, deformation sequence, and applied pre-strain on (a) the electrical label 

(i.e., 𝑆!) and (b) the response labels (i.e., 𝜀"%, 𝜀$."%, 𝜀&!%). Fig. S14a shows that the PVA loading 

was negatively correlated with 𝑆!. Fig. S14b shows that the deformation sequence and applied 

pre-strain were positively correlated with three response labels. 
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Fig. S15. Working mechanism of SHAP model interpretation. (a) An analogy between the 

interpretation of a specific game and the interpretation of a prediction model. The blue and red 

bars are the SHAP values (positive as red and negative as blue). (b) Figure plotting to get the global 

interpretation of the prediction model by using the SHAP values of every feature for every data 

point. 

  

Game

Player A = 8

Player B = 5

Player C = 2

Reward = 100

Prediction
Model

MXene = 0.50
SWNT = 0.45

ε10% = 280%

AuNP = 0.03
PVA = 0.02

Thickness = 800 nm
Deformation = G2–2D1D

Pre-Strain = 200%

Local
Interpretation

Local
Interpretation

MXene = 0.50
SWNT = 0.45
AuNP = 0.03
PVA = 0.02
Thickness = 800 nm
Deformation = G2–2D1D
Pre-Strain = 200%

+0.38

+0.87

+0.11

+0.08

–0.22

+0.27

–0.36

Analogy

+50

+50

–25

Player A = 8

Player B = 5

Player C = 2

Reward = 100

Data 
Extraction

SHAP 
Value

Game 
SkillPlayer

+508A

+505B

–253C

Normalized 
SHAP Value

Feature 
Value

Feature
Category

–0.360.50MXene Loading 

+0.270.45SWNT Loading 

–0.220.03AuNP Loading 

+0.080.02PVA Loading 

+0.11800 nmThickness

+0.38G2–2D1DDeformation

+0.87200%Pre-Strain

Data 
Extraction

Normalized 
SHAP Value

Feature 
Value

Feature
Category

–0.360.50MXene Loading 

+0.270.45SWNT Loading 

–0.220.03AuNP Loading 

+0.080.02PVA Loading 

+0.11800 nmThickness

+0.38G2–2D1DDeformation

+0.87200%Pre-Strain

………

Global
Interpretation

G1–1D G1–2D G2–2D1D G2–2D2D

Deformation Sequence

0% 100%
Weight Percentage (wt.%)

1,600800 1,200
Thickness (nm)

0% 300%100% 200%
Applied Pre-Strain

–1.0 –0.5 0.0 0.5 1.0

MXene Loading

SWNT Loading

AuNP Loading

PVA Loading

Thickness

Deformation Sequence

Applied Pre-Strain

SHAP Value on Normalized ε10% (–)

a

b



 19 

 

Fig. S16. SHAP interpretation on the 𝑺𝟎 of G1/G2 stretchable nanocomposites. Normalized 

SHAP values of MXene loading, SWNT loading, AuNP loading, PVA loading, nanocomposite 

thickness, deformation sequence, and applied pre-strain on the 𝑆!  of G1/G2 stretchable 

nanocomposites. 
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Fig. S17. Violin plots of G1/G2 stretchable nanocomposites. (a) The electrical label (i.e., 𝑆!) was 

less responsive to the deformation sequence and applied pre-strain during the fabrication of G1/G2 

stretchable nanocomposites. (b) The response labels (e.g., 𝜀&!%) was highly responsive to the 

deformation sequence and applied pre-strain during the fabrication of G1/G2 stretchable 

nanocomposites. 
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Fig. S18. Two-scale FE models of G1/G2 stretchable nanocomposites. (a) FE model of a G1–2D 

stretchable nanocomposite. The checkerboard mode was utilized to describe the isotropic crumples. 

(b) FE model of a G2–2D1D stretchable nanocomposite. (c) FE model of a G2–2D1D stretchable 

nanocomposite. On the small scale, the checkerboard mode was utilized to describe the isotropic 

crumples. At the large scale, cylindrical (wavy) mode was utilized to depict the parallel wrinkles. 

(d) FE model of a G2–2D2D stretchable nanocomposite. On the small scale, the checkerboard 

mode was utilized to describe the isotropic crumples. At the large scale, undulating (S-shape) mode 

was utilized to depict the curvy wrinkles. 
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Fig. S19. SEM images of a G2–2D2D gold conductor during a continuous elongation loading 

process from 0% to 1,300%. (a) 100%. (b) 200%. (c) 400%. (d) 600%. (e) 800%. (f) 1,000%. (g) 

1,200%. (h) 1,300%. 
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Fig. S20. Crack density and area measurement of a G2–2D2D stretchable gold conductor. (a) 

The SEM image of a G2–2D2D stretchable gold conductor under 800% elongation. Crack length 

(𝐿&) is defined as the distance between the two furthest points along the perimeter of the crack. 

Crack width (𝐿() is defined as the furthest distance of the crack perpendicular to 𝐿&. (b) Crack 

densities under different elongations. (c) Sum of crack areas under different elongations. 
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Fig. S21. Photographs of stretchable Zn and MnO2 electrodes. (a) As-prepared stretchable Zn 

anode. (b) Stretchable Zn anode after 3,000 stretching–relaxation cycles. (c) As-prepared MnO2 

cathode. (d) Stretchable MnO2 cathode after 3,000 stretching–relaxation cycles. 

  

Stretchable MnO2
Cathode

(As-Prepared)

Stretchable Zn
Anode

(As-Prepared)

Stretchable Zn
Anode

(After Stretching)

Stretchable MnO2
Cathode

(After Stretching)

a b

c d



 25 

 

Fig. S22. Electrochemical characterizations of a stretchable Zn//MnO2 battery at its relaxed 

state and under 300% elongation. (a) CV curves at 1 mV s–1. (b) Nyquist plots.  
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Note S1. Rationale of building block selection and model expansion strategy for G1/G2 

stretchable nanocomposites. 

In this work, four building blocks were selected to fabricate G1/G2 stretchable nanocomposites 

with high electrical conductance and insensitive strain responses. Four building blocks include 

three electrically conductive nanomaterials, including Ti3C2Tx MXene nanosheets, SWNTs, and 

AuNPs, and polyvinyl alcohol (PVA). First, Ti3C2Tx MXene nanosheets, an emerging class of two-

dimensional (2D) transition metal carbides, present superior electrical conductivity, intrinsic 

hydrophilicity, and high aspect ratios1. Second, SWNTs, a class of one-dimensional (1D) materials 

made of a single rolled graphene sheet with a cylindrical nanostructure, demonstrate high tensile 

strength and superior electrical conductivity2. Third, AuNPs, a class of zero-dimensional (0D) 

materials with an average diameter of 20 nm, can be integrated with the 2D/1D building blocks, 

which facilitate nanoscale contacts and boost overall electrical conductivity3. Last, PVA, as a 

polymeric binder, is introduced to enhance the structural stability of G1/G2 stretchable 

nanocomposites. 

To augment the model’s predictive power, we can adopt a model expansion method to 

incorporate more building blocks into G1/G2 stretchable nanocomposites. As shown in Fig. S1, 

additional active learning loops can be performed under the guidance of the prediction model. 

During the model expansion phase, additional experiments are required to refine the SVM 

classifier and to update the ANN-based model. By strategically selecting new components in 

tandem with the model expansion method, the prediction model can consistently enlarge its 

parameter space and broaden the range of achievable functions. However, this model expansion 

incurs additional active learning cycles, leading to higher time and cost implications.  
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Note S2. Tunable wavelengths of G2–2D1D and G2–2D2D stretchable nanocomposites. 

As shown in Fig. S4a–c, the average wavelengths of G2–2D1D stretchable nanocomposites were 

tuned from 90 to 48 µm by adjusting the applied pre-strains of VHB substrates from 100% to 300%, 

respectively. As shown in Fig. S4d–f, the average wavelengths of G2–2D2D stretchable 

nanocomposites were tuned from 162 to 67 µm, by adjusting the applied pre-strains of VHB 

substrates from 100% to 300%, respectively. 
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Note S3. Estimated number of experiments required to build an extensive dataset for G1/G2 

stretchable nanocomposites. 

Three degrees of freedom (DOFs) were recognized in the compositions of G0 nanocomposites, 

including MXene loading, SWNT loading, and AuNP loading. Once these three loadings were 

fixed, the PVA loading was automatically determined. If we set 2.0 wt.% as the step size, the total 

steps to vary the MXene/SWNT/AuNP/PVA ratio were calculated to be ~23,500. Additionally, the 

nanocomposites thicknesses, deformation sequences, and applied pre-strain were three other DOFs 

for the fabrication of G1/G2 stretchable nanocomposites. In this work, three thicknesses of G0 

nanocomposites were adopted, including 800 nm, 1,200 nm, and 1,600 nm, and four kinds of 

deformation sequences were included, containing G1–1D, G1–2D, G2–2D1D, and G2–2D2D. There 

were three choices of applied pre-strains during the fabrication of G2–2D1D and G2–2D2D 

stretchable nanocomposites, including 100%, 200%, and 300%. In total, building an extensive 

dataset for G1/G2 stretchable nanocomposites will require ~562,000 experiments if we follow 

conventional one-factor-at-a-time (OFAT) design of experiment method. For each G1 or G2 

stretchable nanocomposite, one “electrical” label (𝑆!) and three “response” labels (𝜀"%, 𝜀$."%, 

𝜀&!%) were needed to be collected. The calculation was conducted using a customized Python 

program: 

https://github.com/yhcbloom14/stretchable_conductor/blob/main/number_of_experiments_for_d

esign_of_experiment.ipynb. 
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Note S4. Necessity of multistage ML framework. 

To demonstrate the necessity of each unit used in the multistage ML framework, justifications are 

provided as follows to explain why they are superior to other standard methods. 

SVM regression model. The SVM regression model served as a critical screening layer in the 

active learning loops, which drove the prediction model to only recommend the 

MXene/SWNT/AuNP/PVA ratios that led to the G0 nanocomposites with high electrical 

conductance values >6.67 mS. Unlike other data-rich systems with higher tolerance of experiment 

failure, it would take much time and effort to redo the fabrication of G0 nanocomposites, if the 

prediction model suggests the MXene/SWNT/AuNP/PVA ratios that lead to the G0 

nanocomposites with low electrical conductance. 

Active learning loops with ensemble modeling. According to Fig. 3c, the prediction model 

(consisting of an ensemble committee with multiple ANNs) demonstrated a low MRE of 13.5% 

after 7 active learning loops, which accurately predicted the “electrical” and “response” labels of 

G1/G2 stretchable nanocomposites from their fabrication parameters. In comparison, the prediction 

models based on other algorithms presented higher MREs and were not able to accurately predict 

the “electrical” and “response” labels, clearly demonstrating the necessity of ANN-based ensemble 

modeling for such a non-linear and multi-DOF system. 

Data augmentation. Data augmentation was conducted to address the major challenges of data 

scarcity and model overfitting. In this work, the User Input Principle (UIP) method was adopted 

to synthesize virtual data points, and both real and virtual data points were input to train a 

prediction model. As shown in Fig. 3d, after the UIP method, the model’s prediction accuracy was 

largely improved, and the MREs decreased from 30.6% to 13.5%. 
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Overall, we believe that the multistage ML framework composed of SVM regression model, 

active learning loops with ensemble modeling, and data augmentation can synergistically improve 

the accuracy of a prediction model. In contrast, a simple or single ML tool/method could not 

achieve such model accuracy based on a small dataset. 
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Note S5. Training of a support vector machine (SVM) regression model. 

To ensure the prediction model to suggest the MXene/SWNT/AuNP/PVA ratio that resulted in the 

fabrication of a G0 nanocomposite with high electrical conductance (>6.67 mS), a SVM regression 

model was constructed. The SVM regression model predicted the electrical conductance of a G0 

nanocomposite from its MXene/SWNT/AuNP/PVA ratio. 

To construct a SVM regression model, four steps were involved: (1) take the logarithmic 

term of the electrical conductance, (2) select a kernel function, (3) optimize SVM hyperparameters, 

and (4) train a SVM model using the training data points. For the first step, as the electrical 

conductance values ranged widely from 0 to +∞, which was ineffective in training an accurate 

SVM regression model. Therefore, we calculated the logarithmic conductance value using 

Equation S1, 

Logarithmic	conductance	(LC) 	= 	1 log&!(𝑆!)& + 10)
>            (S1) 

, where 𝑆! is the electrical conductance of a G0 nanocomposite, and the LC values range from 0 to 

+1. For the second step, as the LC values were shown to be non-linear, we decided to select a radial 

basis function (RBF) as the kernel function to map low-dimension data points into a higher 

dimensional feature space to find the optimal hyperplanes with maximal margin distances4. For 

the third step, Bayesian optimization (involving Gaussian processes and a 5-fold cross validation) 

was used to adjust the hyperparameter values5. For the fourth step, the SVM regression model was 

trained by inputting 286 data points (Table S2). Finally, the SVM regression model demonstrated 

a low mean relative error (MRE) of ~17% to predict the LC values of G0 nanocomposites using 

42 testing data points (which were never input into the model training phase, Table S4). After 

setting the electrical conductance threshold of >6.67 mS, a feasible parameter space was defined 
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in Fig. S7. The SVM regression model was able to suggest the MXene/SWNT/AuNP/PVA ratios 

that were positioned in the feasible parameter space at high accuracy of 95%. 

The open-source code to train the SVM regression model in Python is provided in GitHub: 

https://github.com/yhcbloom14/stretchable_conductor/blob/main/design_boundary.ipynb. 
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Note S6. User Input Principle (UIP) method for data augmentation. 

To address model overfitting challenges upon the use of a small dataset, the data points collected 

during active learning were augmented using the UIP method. The UIP method is based on the 

natural principles proposed by expert users. For example, over small variations across specific 

“composition” label(s), the “electrical” and “response” labels of a stretchable nanocomposite 

remained approximately the same. As shown in Fig. S9, when the MXene/SWNT/AuNP/PVA 

ratios varied from 22.0/65.2/7.8/5.0 to 21.6/69.7/5.5/3.2, the resulting G1–2D stretchable 

nanocomposites exhibited similar “electrical” and “response” labels. Also, measurement variations 

existed in the “electrical” and “response” labels. As shown in Fig. S10, by following the same set 

of fabrication parameters, the characterized the “electrical” and “response” labels had 10–20% 

measurement variations among multiple replicates. In this work, based on 146 data points collected 

during active learning, we used the UIP method to synthesize 1,000-fold virtual data points by 

introducing Gaussian noises into all “composition”, “electrical”, and “response” labels. 

The open-source code to implement the UIP method in Python is provided in GitHub: 

https://github.com/yhcbloom14/stretchable_conductor/blob/main/data_augmentation.ipynb. 
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Note S7. Calculation of A Score acquisition function. 

In the active learning loops, an acquisition function was introduced to suggest the targeted data 

points with the highest uncertainty in the feasible parameter space. We defined the acquisition 

function as A Score (Equation S2), 

𝐴	𝑆𝑐𝑜𝑟𝑒 = 𝑚𝑖𝑛(𝐿G&, 𝐿G() ∙ 𝜎K (S2) 

, where 𝐿G& denotes the shortest Euclidian distance between current input labels (within the dataset 

of prediction model) and targeted input labels (not yet included in the dataset of prediction model), 

and 𝐿G(  denotes the shortest Euclidian distance between each targeted input label. Input labels 

include MXene loading, SWNT loading, AuNP loading, PVA loading, nanocomposite thickness, 

deformation sequence, and applied pre-strain. 𝐿G&  and 𝐿G(  are calculated by Equation S3,4, 

respectively, 

𝐿G& = min
*∈,
-∈.

L||𝐼𝑛𝑝𝑢𝑡* − 𝐼𝑛𝑝𝑢𝑡-||S (S3) 

𝐿G( = min
-∈.
/∈.

L||𝐼𝑛𝑝𝑢𝑡- − 𝐼𝑛𝑝𝑢𝑡/0-||S  (S4) 

, where N is the cumulative number of data points in the current dataset, and M is the cumulative 

number of data points in the targeted dataset. One-hot encoding was used for the input label of 

deformation sequence in the prediction model. On the other hand, 𝜎K  denotes the prediction 

variance of “electrical” and “response” labels from the ensemble committee of ANNs, which is 

defined in Equation S5, 

𝜎K =T T U(𝑂𝑢𝑡𝑝𝑢𝑡1,*) − (𝑂𝑢𝑡𝑝𝑢𝑡3456375,*)W
(8

19&

.

*9&
 (S5) 

, where M is the cumulative number of data points in the target dataset, C is the total number of 

ANNs in the ensemble committee (C = 5), 𝑂𝑢𝑡𝑝𝑢𝑡1,*  is the output labels predicted by the pth 
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decision program on basis of the input labels of a targeted data point, 𝑂𝑢𝑡𝑝𝑢𝑡3456375,*  is the 

average output labels predicted by the ANN committee on basis of the input labels of a targeted 

data point.  

The open-source code to implement A Score-based active learning loops in Python is 

provided in GitHub: 

https://github.com/yhcbloom14/stretchable_conductor/blob/main/active_learning.ipynb. 
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Note S8. SHAP model interpretation. 

The SHAP model interpretation is a game theoretic approach to explain the output of any ML 

model (including any ensemble models). The SHAP model interpretation can find the feature 

importance inside a ML model, enabling the users to address the black-box challenges of AI/ML 

predictions. The analytical process of SHAP model interpretation is like investigating the 

contribution of each player in a collaborative game. To understand how the feature importance is 

derived in the SHAP analysis, an example is presented below. 

As shown in Fig. S15a, there are three players, A, B, and C. They collaborate with each 

other to play a game. When all of them join the game, based on their different skills in a specific 

game, they can collectively achieve a 100 reward. The task is to quantify how important each 

player is in getting the reward. To solve this, we assume that three players join the game in a 

specific sequence (e.g., player A first, then player B, next player C), and the marginal reward of 

each player is then recorded. For example, player A is the first member with a reward of 50, then 

player B joins the game and brings the reward to 90, and next player C joins the game to bring the 

reward to 100. Therefore, the players’ respective marginal rewards are “players A, B, C = 50, 40, 

10”. However, the calculated marginal reward may not accurately represent the contribution of 

each player. For example, when the sequence is changed from players A, B, C to players A, C, B, 

the rewards are still 50, 40, and 10, indicating that players B and C have a similar skill set. Then, 

the players’ respective marginal rewards are changed to “player A, B, C = 50, 10, 40”. Therefore, 

the sequence of how the players join the game is important. 

To get a more accurate reward of each individual player, we need to find out the marginal 

reward of each player under every possible sequence. The reward for each individual player then 

can be the sum of these marginal rewards over the number of possible sequences (the calculation 
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for a specific player is illustrated in Equation S6). For example, in the case outlined above, we 

can simulate the arrival sequences: ABC, ACB, BCA, BAC, CAB, and CBA, and the marginal 

reward of each player is recorded for each sequence. Then, by averaging all these rewards, we 

obtain the reward contributed from each player. This reward is the SHAP value, 

𝑆𝐻𝐴𝑃	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑎	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑝𝑙𝑎𝑦𝑒𝑟 =
∑ 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑟𝑒𝑤𝑎𝑟𝑑	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑙𝑎𝑦𝑒𝑟	,

𝑁  (S6) 

, where N represents number of total possible sequences.  

In contrast to the feature importance analysis of a prediction model, we can take the 

problem as an analogy to the above case. All “composition” (MXene loading, SWNT loading, 

AuNP loading, and PVA loading), “thickness”, “deformation”, and “strain” labels are regarded as 

players, which are fed into the prediction model to obtain the “conductance” and “response” labels. 

The prediction process is treated as the game, and the deviation (between the predicted “electrical” 

and “response” label of a specific data point and the average “electrical” and “response” labels 

from all data points) is treated as the reward. By following Equation S7, the SHAP value of each 

input label on a specific “electrical” or “response” label can be calculated, and this value is used 

to measure the feature importance. 

𝑆𝐻𝐴𝑃	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑎𝑛	𝑖𝑛𝑝𝑢𝑡	𝑙𝑎𝑏𝑒𝑙	

=
∑ 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑟𝑒𝑤𝑎𝑟𝑑	𝑜𝑓	𝑎𝑛	𝑖𝑛𝑝𝑢𝑡	𝑙𝑎𝑏𝑒𝑙	𝑜𝑛	𝑎	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑜𝑢𝑡𝑝𝑢𝑡	𝑙𝑎𝑏𝑒𝑙,

𝑁  
(S7) 

, where N represents number of total possible sequences. The above process is the interpretation 

of the prediction model on a specific data point which is called the local interpretation. To get the 

global interpretation of the prediction model over all data points, we can plot the SHAP values of 

every input label for every data point, as shown in Fig. S15b. A wider range of the SHAP value 

for a specific feature indicates a higher importance, and vice versa.  
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The open-source code to implement SHAP analyses in Python is provided in GitHub: 

https://github.com/yhcbloom14/stretchable_conductor/blob/main/shap_plotting.ipynb. 
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Note S9. Two-scale finite element (FE) models of G1/G2 stretchable nanocomposites. 

The complex topographies of G1/G2 stretchable nanocomposites were first generated using 

different deflection functions. These deflection functions were determined by minimizing the total 

energy of the binary system (including a conductive nanocomposite and an elastomeric substrate) 

under varying compressive stresses, as formulated in Equation S86, 

𝜉:({𝑢, 𝑣, 𝑤}) = 𝜉;({𝑤}) +	𝜉<=({𝑤}) + 𝜉<;({𝑢, 𝑣, 𝑤}) (S8) 

, where 𝜉:({𝑢, 𝑣, 𝑤}) represents the total energy of a binary nanocomposite–substrate system, 

𝜉;({𝑤}) is the energy of an elastomeric substrate, 𝜉<=({𝑤}) and 𝜉<;({𝑢, 𝑣, 𝑤}) are the energy of a 

conductive nanocomposite at the stretching and bending states, respectively. The total energy of a 

binary nanocomposite–substrate system, 𝜉:({𝑢, 𝑣, 𝑤}), is a function of the in-plane displacements, 

𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) as well as the out-of-plane displacements, 𝑤(𝑥, 𝑦). 

Audoly and Boudaoud has derived a general deflection function that can capture the four 

types of buckling modes6, including the cylindrical, undulating, varicose, and checkerboard modes, 

as described in Equation S9, 

𝑤(𝑥, 𝑦) = 𝐴𝑐𝑜𝑠(𝑘𝑥) + 𝐵𝑠𝑖𝑛(𝑘𝑥) sin(𝑘>𝑦) + 𝐶𝑐𝑜𝑠(𝑘𝑥) cos(𝑘>𝑦) + 𝐷 cos(𝑘>𝑦) (S9) 

, where 𝑘 is the wavenumber in the 𝑥 direction (horizontal, in plane), 𝑘> is the wavenumber in the 

𝑦 direction (perpendicular to the 𝑥 direction), 𝐴, 𝐵, 𝐶, 𝐷 are the correlation parameters that tuned 

the amplitude(s) of a specific buckling mode. The relation between 𝑘 and the wavelength (𝜆) was 

correlated by Equation S10, 

𝑘 = 2𝜋/𝜆                (S10) 

, where 𝜆 is the wavelength of a G1 or G2 stretchable nanocomposite characterized from a Keyence 

laser confocal microscope. In this work, 𝑘> was assumed to be 1/10. Table S8 summarizes the 
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correlation parameters selected to construct the FE models of G1–1D, G1–2D, G2–2D1D, G2–

2D2D stretchable nanocomposites. 

 

FE model of G1–1D stretchable nanocomposites. As shown in Fig. S18a, the post-buckled 

topography of a G1–1D stretchable nanocomposite was described as a cylindrical mode with a 

sinusoidal cross-section in an equilibrium state when subjected to uniaxial compression. To 

describe the wrinkle-like microtextures, a deflection function was derived in Equation S11, 

𝑤(𝑥, 𝑦) = 𝐴𝑐𝑜𝑠(𝑘𝑥) (S11) 

 

FE model of G1–2D stretchable nanocomposites. As shown in Fig. S18b, the post-buckled 

topography of a G1–2D stretchable nanocomposite was described as a checkerboard mode in an 

equilibrium state when subjected to biaxial compression7,8. To describe the crumple-like 

microtextures, a deflection function was derived in Equation S12, 

𝑤(𝑥, 𝑦) = 𝐴𝑐𝑜𝑠(𝑘𝑥) + 𝐷 cos(𝑘>𝑦)	 (S12) 

 

FE models of G2–2D1D and G2–2D2D stretchable nanocomposites. As shown in Fig. S18c,d, the 

hierarchical topographies of G2–2D1D and G2–2D2D stretchable nanocomposites arising from 

sequential deformations were described using a two-scale modeling approach. At the smaller scale, 

the crumple-like topography was described as a checkerboard mode, similar as the FE model of 

G1–2D stretchable nanocomposites. At the larger scale, the G2–2D1D stretchable nanocomposite 

exhibited straight strips and was simulated as a cylindrical mode with a sinusoidal cross-section, 

similar as the FE model of G1–1D stretchable nanocomposites. At the larger scale, the G2–2D2D 
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stretchable nanocomposites exhibited S-shaped strips and was simulated as an undulating mode, 

and a deflection function was derived in Equation S13, 

𝑤(𝑥, 𝑦) = 𝐴𝑐𝑜𝑠(𝑘𝑥) + 𝑏𝑠𝑖𝑛(𝑘𝑥) sin(𝑘>𝑦) (S13) 

The complex surfaces of G1–1D, G1–2D, G2–2D1D, G2–2D2D stretchable nanocomposites were 

simulated, meshed, and exported to the STL files using MATLAB’s stlwrite function9 

(https://www.mathworks.com/matlabcentral/fileexchange/20922-stlwrite-write-ascii-or-binary-

stl-files). The STL files were then imported into Abaqus 2022/Standard FE solver, and the 

geometries were reconstructed using a plug-in tool developed by the SIMULIA Benelux office 

(https://www.mathworks.com/matlabcentral/fileexchange/20922-stlwrite-write-ascii-or-binary-

stl-files). 

Subsequently, a linear, elastic material model was introduced to all FE models with a 

Young’s modulus of 1 GPa and a Poisson’s ratio of 0.22710. These FE models aimed to simulate 

the deformation mechanisms of G1–1D, G1–2D, G2–2D1D, G2–2D2D stretchable nanocomposites. 

The modeling accuracy was maintained with 238,287 elements for the G1–1D stretchable 

nanocomposites, 244,216 elements for the G1–2D stretchable nanocomposites, 591,893 elements 

for the G2–2D1D stretchable nanocomposites, and 566,176 elements for the G2–2D2D stretchable 

nanocomposites, utilizing 4-node linear tetrahedron elements.  
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Note S10. Clustering analysis. 

In this work, we use the DBSCAN algorithm to search the clusters with both high 𝑆! and 𝜀&!% 

values in the feasible parameter space. The acronym stands for “Density-based Spatial Clustering 

of Applications with Noise” 11. The central component to the DBSCAN algorithm is the concept 

of “core samples”, which are the samples in the high-density areas. There are two crucial 

parameters to the DBSCAN algorithm, (1) min_samples and (2) eps. Higher min_samples or lower 

eps indicate higher density necessary to form a cluster. In this work, we set the min_samples and 

eps values to be 70 and 0.05, respectively. The eps parameter was chosen appropriately, which was 

used to control the local neighborhood of the data points. When eps was chosen to be too small, 

most data points would not be clustered at all. When eps was chosen to be too large, it caused close 

clusters to be merged into one cluster, and eventually the entire data set to be returned as a single 

cluster. It should be noted that, before the model was employed to identify any champion samples 

through clustering analysis, the MRE value (using an independent testing data points) needed to 

be sufficiently low. Afterward, a certain amount of experimental validation can be conducted near 

the model-suggested clusters with global maximum. Through both approaches, one can gain more 

confidence in the discovery of functional materials with superior properties. 

The open source code to implement clustering analyses in Python is provided in GitHub: 

https://github.com/yhcbloom14/stretchable_conductor/blob/main/clustering_analysis.ipynb. 
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Note S11. Crack propagation of G2–2D2D gold conductors. 

Quantified by the SEM images of a G2–2D2D gold conductor during a continuous strain loading 

process (in Fig. 5e), the statistical analyses of crack densities and crack areas are provided in Fig. 

S20. Fig. S20a illustrates how crack areas were measured. First, crack density is defined as the 

total number of cracks over a characterization area of SEM images. As shown in Fig. S20b,c, under 

600% elongation, the G2–2D2D stretchable gold conductor showed no obvious cracks. Under 900% 

elongation, the sums of crack width and length were characterized as 886 and 432 µm, respectively, 

resulting in the total crack area estimated to be 0.045 mm2. Meanwhile, the crack density increased 

to 0.5 mm–2. Once the elongation increased over 1,300%, the sums of crack width and length 

quickly increased to 16 and 13 mm, respectively, resulting in the total crack area estimated to be 

2.072 mm2, and the crack density increased to 8.2 mm–2. 
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Table S1. Photos of 286 G0 nanocomposites with different MXene/SWNT/AuNP/PVA ratios 

as the training data points for the SVM regression model. 
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Table S2. Electrical conductance of 286 G0 nanocomposites with different 

MXene/SWNT/AuNP/PVA ratios as the training data points for the SVM regression model. 

ID 
MXene/SWNT/AuNP/PVA Ratio 𝑆! 

(mS) MXene Loading 
(wt.%) 

SWNT Loading 
(wt.%) 

AuNP Loading 
(wt.%) 

PVA Loading 
(wt.%) 

1 0 0 0 100 0.00 
2 10 0 0 90 0.19 
3 20 0 0 80 0.32 
4 30 0 0 70 0.59 
5 40 0 0 60 1.02 
6 50 0 0 50 1.39 
7 60 0 0 40 3.05 
8 70 0 0 30 4.07 
9 80 0 0 20 6.29 
10 90 0 0 10 8.06 
11 100 0 0 0 40.00 
12 0 10 0 90 0.00 
13 10 10 0 80 0.09 
14 20 10 0 70 0.18 
15 30 10 0 60 0.33 
16 40 10 0 50 0.43 
17 50 10 0 40 0.65 
18 60 10 0 30 1.15 
19 70 10 0 20 4.55 
20 80 10 0 10 5.41 
21 90 10 0 0 15.15 
22 0 20 0 80 0.07 
23 10 20 0 70 0.26 
24 20 20 0 60 0.53 
25 30 20 0 50 0.56 
26 40 20 0 40 2.60 
27 50 20 0 30 3.29 
28 60 20 0 20 3.79 
29 70 20 0 10 6.58 
30 80 20 0 0 18.18 
31 0 30 0 70 0.24 
32 10 30 0 60 0.32 
33 20 30 0 50 0.53 
34 30 30 0 40 2.00 
35 40 30 0 30 4.05 
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36 50 30 0 20 4.59 
37 60 30 0 10 5.95 
38 70 30 0 0 17.86 
39 0 40 0 60 0.07 
40 10 40 0 50 0.61 
41 20 40 0 40 0.83 
42 30 40 0 30 3.24 
43 40 40 0 20 5.05 
44 50 40 0 10 8.55 
45 60 40 0 0 23.26 
46 0 50 0 50 0.16 
47 10 50 0 40 1.80 
48 20 50 0 30 2.94 
49 30 50 0 20 4.59 
50 40 50 0 10 10.00 
51 50 50 0 0 27.78 
52 0 60 0 40 0.83 
53 10 60 0 30 2.49 
54 20 60 0 20 3.73 
55 30 60 0 10 7.30 
56 40 60 0 0 26.32 
57 0 70 0 30 0.78 
58 10 70 0 20 2.53 
59 20 70 0 10 6.99 
60 30 70 0 0 21.28 
61 0 80 0 20 0.83 
62 10 80 0 10 6.45 
63 20 80 0 0 31.25 
64 0 90 0 10 5.46 
65 10 90 0 0 35.71 
66 0 100 0 0 55.56 
67 0 0 10 90 0.00 
68 10 0 10 80 0.20 
69 20 0 10 70 0.34 
70 30 0 10 60 0.72 
71 40 0 10 50 1.30 
72 50 0 10 40 1.90 
73 60 0 10 30 3.25 
74 70 0 10 20 5.43 
75 80 0 10 10 20.00 
76 90 0 10 0 28.57 
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77 0 10 10 80 0.11 
78 10 10 10 70 0.16 
79 20 10 10 60 0.39 
80 30 10 10 50 0.47 
81 40 10 10 40 0.69 
82 50 10 10 30 3.23 
83 60 10 10 20 4.35 
84 70 10 10 10 6.17 
85 80 10 10 0 21.28 
86 0 20 10 70 0.17 
87 10 20 10 60 0.25 
88 20 20 10 50 0.34 
89 30 20 10 40 0.61 
90 40 20 10 30 1.10 
91 50 20 10 20 3.50 
92 60 20 10 10 5.85 
93 70 20 10 0 29.41 
94 0 30 10 60 0.96 
95 10 30 10 50 1.12 
96 20 30 10 40 1.48 
97 30 30 10 30 3.77 
98 40 30 10 20 4.76 
99 50 30 10 10 7.69 
100 60 30 10 0 22.22 
101 0 40 10 50 0.75 
102 10 40 10 40 2.52 
103 20 40 10 30 4.74 
104 30 40 10 20 5.05 
105 40 40 10 10 8.33 
106 50 40 10 0 33.33 
107 0 50 10 40 1.95 
108 10 50 10 30 4.39 
109 20 50 10 20 6.10 
110 30 50 10 10 7.69 
111 40 50 10 0 20.83 
112 0 60 10 30 3.31 
113 10 60 10 20 4.24 
114 20 60 10 10 7.09 
115 30 60 10 0 18.52 
116 0 70 10 20 2.76 
117 10 70 10 10 6.76 
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118 20 70 10 0 16.67 
119 0 80 10 10 4.13 
120 10 80 10 0 16.13 
121 0 90 10 0 15.15 
122 0 0 20 80 0.00 
123 10 0 20 70 0.43 
124 20 0 20 60 0.71 
125 30 0 20 50 2.50 
126 40 0 20 40 4.13 
127 50 0 20 30 6.62 
128 60 0 20 20 10.10 
129 70 0 20 10 12.66 
130 80 0 20 0 25.00 
131 0 10 20 70 0.16 
132 10 10 20 60 0.23 
133 20 10 20 50 0.37 
134 30 10 20 40 0.58 
135 40 10 20 30 1.43 
136 50 10 20 20 3.05 
137 60 10 20 10 4.24 
138 70 10 20 0 10.75 
139 0 20 20 60 0.41 
140 10 20 20 50 0.88 
141 20 20 20 40 1.14 
142 30 20 20 30 2.96 
143 40 20 20 20 4.35 
144 50 20 20 10 4.57 
145 60 20 20 0 33.33 
146 0 30 20 50 0.52 
147 10 30 20 40 1.28 
148 20 30 20 30 3.56 
149 30 30 20 20 4.35 
150 40 30 20 10 6.58 
151 50 30 20 0 10.75 
152 0 40 20 40 1.16 
153 10 40 20 30 2.99 
154 20 40 20 20 4.76 
155 30 40 20 10 5.49 
156 40 40 20 0 16.39 
157 0 50 20 30 2.35 
158 10 50 20 20 3.23 
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159 20 50 20 10 4.72 
160 30 50 20 0 11.76 
161 0 60 20 20 3.95 
162 10 60 20 10 7.63 
163 20 60 20 0 35.71 
164 0 70 20 10 7.25 
165 10 70 20 0 23.81 
166 0 80 20 0 22.73 
167 0 0 30 70 0.00 
168 10 0 30 60 0.32 
169 20 0 30 50 0.73 
170 30 0 30 40 1.78 
171 40 0 30 30 4.17 
172 50 0 30 20 9.35 
173 60 0 30 10 14.08 
174 70 0 30 0 28.57 
175 0 10 30 60 0.25 
176 10 10 30 50 0.56 
177 20 10 30 40 0.82 
178 30 10 30 30 2.08 
179 40 10 30 20 3.80 
180 50 10 30 10 4.59 
181 60 10 30 0 14.49 
182 0 20 30 50 0.68 
183 10 20 30 40 1.20 
184 20 20 30 30 1.84 
185 30 20 30 20 3.37 
186 40 20 30 10 6.10 
187 50 20 30 0 31.25 
188 0 30 30 40 0.65 
189 10 30 30 30 1.60 
190 20 30 30 20 2.33 
191 30 30 30 10 4.13 
192 40 30 30 0 34.48 
193 0 40 30 30 2.30 
194 10 40 30 20 3.48 
195 20 40 30 10 7.58 
196 30 40 30 0 18.87 
197 0 50 30 20 5.38 
198 10 50 30 10 7.69 
199 20 50 30 0 21.28 
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200 0 60 30 10 9.43 
201 10 60 30 0 21.74 
202 0 70 30 0 18.87 
203 0 0 40 60 0.00 
204 10 0 40 50 0.83 
205 20 0 40 40 1.73 
206 30 0 40 30 3.79 
207 40 0 40 20 7.25 
208 50 0 40 10 10.64 
209 60 0 40 0 6.94 
210 0 10 40 50 0.43 
211 10 10 40 40 0.54 
212 20 10 40 30 1.20 
213 30 10 40 20 3.22 
214 40 10 40 10 5.21 
215 50 10 40 0 8.20 
216 0 20 40 40 1.01 
217 10 20 40 30 1.57 
218 20 20 40 20 2.82 
219 30 20 40 10 4.26 
220 40 20 40 0 11.36 
221 0 30 40 30 1.79 
222 10 30 40 20 3.07 
223 20 30 40 10 5.21 
224 30 30 40 0 13.70 
225 0 40 40 20 5.24 
226 10 40 40 10 6.17 
227 20 40 40 0 38.46 
228 0 50 40 10 8.55 
229 10 50 40 0 47.62 
230 0 60 40 0 12.82 
231 0 0 50 50 0.00 
232 10 0 50 40 0.80 
233 20 0 50 30 1.87 
234 30 0 50 20 7.25 
235 40 0 50 10 8.26 
236 50 0 50 0 28.57 
237 0 10 50 40 0.49 
238 10 10 50 30 0.89 
239 20 10 50 20 1.29 
240 30 10 50 10 3.34 
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241 40 10 50 0 12.35 
242 0 20 50 30 2.22 
243 10 20 50 20 4.12 
244 20 20 50 10 4.65 
245 30 20 50 0 11.49 
246 0 30 50 20 6.49 
247 10 30 50 10 7.75 
248 20 30 50 0 38.46 
249 0 40 50 10 8.55 
250 10 40 50 0 19.23 
251 0 50 50 0 20.83 
252 0 0 60 40 0.00 
253 10 0 60 30 1.15 
254 20 0 60 20 5.10 
255 30 0 60 10 8.85 
256 40 0 60 0 29.41 
257 0 10 60 30 0.22 
258 10 10 60 20 0.38 
259 20 10 60 10 3.42 
260 30 10 60 0 13.16 
261 0 20 60 20 4.65 
262 10 20 60 10 5.78 
263 20 20 60 0 30.30 
264 0 30 60 10 10.10 
265 10 30 60 0 37.04 
266 0 40 60 0 9.80 
267 0 0 70 30 0.00 
268 10 0 70 20 4.85 
269 20 0 70 10 6.37 
270 30 0 70 0 25.64 
271 0 10 70 20 2.22 
272 10 10 70 10 6.90 
273 20 10 70 0 8.47 
274 0 20 70 10 10.10 
275 10 20 70 0 9.35 
276 0 30 70 0 10.42 
277 0 0 80 20 0.00 
278 10 0 80 10 2.70 
279 20 0 80 0 29.41 
280 0 10 80 10 3.69 
281 10 10 80 0 17.86 
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282 0 20 80 0 10.00 
283 0 0 90 10 0.00 
284 10 0 90 0 22.22 
285 0 10 90 0 5.15 
286 0 0 100 0 0.00 
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Table S3. Photos of 42 G0 nanocomposites with different MXene/SWNT/AuNP/PVA ratios 

as the testing data points for the SVM regression model. 

1 2 3 4 5 

     
6 7 8 9 10 

     
11 12 13 14 15 

     
16 17 18 19 20 
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21 22 23 24 25 

     
26 27 28 29 30 

     
31 32 33 34 35 

     
36 37 38 39 40 

     
41 42    

  

   



 66 

Table S4. Electrical conductance of 42 G0 nanocomposites with different 

MXene/SWNT/AuNP/PVA ratios as the testing data points for the SVM regression model. 

ID 
MXene/SWNT/AuNP/PVA Ratio 𝑆! 

(mS) MXene Loading 
(wt.%) 

SWNT Loading 
(wt.%) 

AuNP Loading 
(wt.%) 

PVA Loading 
(wt.%) 

1 49.5 50.5 0.0 0.0 76.92 
2 12.7 41.0 41.3 5.0 7.87 
3 12.3 78.3 6.5 2.9 12.50 
4 7.2 30.0 59.4 3.4 8.33 
5 34.9 32.1 31.0 2.1 7.14 
6 4.9 86.9 6.2 2.0 20.00 
7 40.2 44.8 21.4 3.6 13.51 
8 40.2 42.4 8.8 8.6 8.77 
9 45.8 36.8 13.9 3.5 7.14 
10 84.4 4.6 8.6 2.4 7.58 
11 17.5 67.0 9.2 6.4 8.55 
12 41.9 33.8 9.4 14.9 2.22 
13 65.9 15.3 6.8 12.0 3.12 
14 5.7 79.0 7.7 7.6 14.29 
15 55.9 32.6 5.3 6.2 6.90 
16 12.5 53.2 24.3 10.0 2.50 
17 23.6 63.4 11.0 1.9 8.93 
18 20.2 47.8 20.8 11.3 2.22 
19 36.3 56.9 4.9 1.9 8.13 
20 7.4 76.5 7.5 8.6 7.25 
21 55.8 35.2 6.6 2.4 8.33 
22 29.4 51.5 15.1 4.1 7.35 
23 25.5 63.6 8.2 2.6 8.47 
24 27.2 52.9 10.8 9.1 6.76 
25 73.7 7.2 5.4 13.7 2.58 
26 5.8 53.3 0.0 40.8 1.13 
27 12.5 21.7 11.7 54.2 0.39 
28 38.3 20.3 7.2 34.2 0.32 
29 30.0 19.2 17.5 33.3 0.36 
30 70.0 9.2 7.0 13.8 2.28 
31 18.3 38.3 25.0 18.3 2.02 
32 70.8 4.7 8.7 15.8 2.14 
33 6.3 42.8 16.7 34.2 1.18 
34 8.7 38.8 12.5 40.0 0.91 
35 28.3 11.7 28.3 31.7 0.21 
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36 25.0 10.0 34.2 30.8 0.17 
37 41.7 13.3 10.0 35.0 0.19 
38 7.5 26.7 0.0 65.8 0.43 
39 18.3 17.5 15.8 48.3 0.29 
40 32.5 18.3 19.2 30.0 0.35 
41 12.5 43.3 15.8 28.3 1.05 
42 23.3 18.3 41.7 16.7 0.50 
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Table S5. Training data points for the prediction model. 

Round # 

Composition 
Labels 

Thickness 
Labels 

Deformation 
Labels 

Strain 
Labels 

Electrical 
Labels 

Response 
Labels 

MXene 
Loading 
(wt.%) 

SWNT 
Loading 
(wt.%) 

AuNP 
Loading 
(wt.%) 

PVA 
Loading 
(wt.%) 

Thickness (nm) Deformation 
Sequence 

Pre-
Strain 
(%) 

𝑆! 
(mS) 

𝜀"% 
(%) 

𝜀$."% 
(%) 

𝜀&!% 
(%) 

1 61.0 20.0 15.0 4.0 1,200 G1–1D 0 5.57 67 67 67 
1 5.0 80.0 5.0 10.0 1,200 G2–2D2D 100 9.06 198 202 206 
1 46.0 40.0 10.0 4.0 1,200 G2–2D2D 300 13.39 240 291 330 
1 56.0 40.0 0.0 4.0 800 G2–2D1D 100 9.05 209 218 222 
1 67.0 15.0 15.0 3.0 1,200 G2–2D1D 100 19.92 200 217 229 
1 23.5 50.0 25.0 1.5 1,600 G1–2D 0 20.16 43 45 47 
1 100.0 0.0 0.0 0.0 1,600 G1–2D 0 128.21 30 33 33 
1 0.0 93.0 5.0 2.0 1,200 G2–2D2D 200 15.34 383 388 393 
1 25.0 70.0 2.0 3.0 1,600 G1–2D 0 29.41 35 38 40 
1 20.0 80.0 0.0 0.0 1,200 G2–2D2D 200 20.16 266 341 363 
1 49.5 50.5 0.0 0.0 1,200 G2–2D2D 100 31.15 184 194 201 
1 12.7 41.0 41.3 5.0 1,200 G2–2D1D 200 7.48 415 450 460 
1 12.3 78.3 6.5 2.9 1,200 G2–2D1D 300 8.52 564 586 602 
1 17.0 45.6 31.9 5.4 800 G1–1D 0 6.48 93 93 93 
2 7.2 30.0 59.4 3.4 1,200 G2–2D1D 100 7.70 264 269 270 
2 34.9 32.1 31.0 2.1 800 G2–2D2D 200 6.62 279 296 305 
2 10.0 32.0 50.0 8.0 1,600 G2–2D2D 200 4.64 341 361 369 
2 35.0 58.0 1.0 6.0 800 G2–2D2D 200 10.38 305 315 323 
2 42.0 30.0 15.0 13.0 1,600 G2–2D2D 100 7.65 188 205 216 
2 3.9 87.9 6.2 2.0 1,200 G1–1D 0 16.21 83 84 85 
2 2.8 31.4 57.9 7.9 1,200 G1–2D 0 7.70 40 43 45 
2 30.2 34.8 21.4 13.6 800 G1–2D 0 6.59 33 35 36 
2 24.6 40.0 27.9 7.6 1,600 G1–1D 0 15.20 40 42 42 
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2 34.8 35.4 21.6 8.2 800 G1–2D 0 8.81 43 48 50 
2 40.2 42.4 8.8 8.6 1,600 G2–2D1D 200 15.92 281 303 316 
2 17.9 7.6 68.1 6.5 1,200 G2–2D2D 100 9.94 262 267 269 
2 45.8 36.8 13.9 3.5 1,200 G2–2D2D 200 23.75 296 320 332 
2 36.6 38.0 23.8 1.7 800 G2–2D2D 100 8.18 185 197 208 
2 4.2 41.0 51.6 3.2 1,600 G2–2D1D 100 15.53 364 369 381 
2 84.4 4.6 8.6 2.4 1,600 G1–2D 0 22.32 28 31 33 
2 19.6 47.7 31.4 1.2 800 G1–2D 0 13.51 62 64 66 
2 55.9 23.6 13.1 7.5 800 G1–2D 0 6.03 45 50 53 
2 17.5 67.0 9.2 6.4 1,200 G2–2D1D 100 13.26 234 239 242 
2 41.9 33.8 9.4 14.9 1,200 G2–2D1D 100 5.62 277 286 292 
2 15.7 63.7 13.5 7.1 1,600 G2–2D1D 100 10.96 284 290 293 
2 3.3 69.8 16.3 10.6 1,200 G2–2D1D 100 11.39 308 312 315 
3 54.5 23.3 9.2 13.1 1,600 G2–2D1D 200 6.96 333 365 374 
3 3.5 58.4 30.9 7.2 1,200 G1–1D 0 17.01 81 82 82 
3 14.6 52.7 24.3 8.4 800 G1–1D 0 5.95 57 58 58 
3 13.6 69.0 13.1 4.3 800 G1–1D 0 6.27 62 64 64 
3 31.0 45.6 15.6 7.8 800 G1–1D 0 7.13 81 83 86 
3 65.9 15.3 6.8 12.0 800 G1–2D 0 6.73 47 50 53 
3 80.7 11.6 2.5 5.2 1,200 G1–1D 0 18.45 133 133 135 
3 64.2 7.4 13.8 14.7 1,200 G2–2D2D 100 8.01 151 160 166 
3 12.0 62.2 18.0 7.8 1,600 G2–2D1D 300 6.37 499 525 539 
3 9.4 19.6 68.8 2.3 1,600 G1–2D 0 17.12 38 44 46 
3 5.7 79.0 7.7 7.6 1,600 G2–2D2D 300 6.16 649 660 671 
3 42.0 40.3 9.7 7.9 1,600 G1–1D 0 20.08 73 74 76 
3 7.3 55.0 32.4 5.3 1,600 G2–2D1D 300 6.93 540 576 612 
3 42.4 24.4 18.1 15.1 1,200 G1–1D 0 7.49 89 90 91 
3 10.3 28.6 59.2 2.0 800 G1–2D 0 9.31 60 62 63 
3 55.9 34.6 3.3 6.2 1,200 G1–1D 0 18.83 44 45 45 
3 38.2 20.8 37.5 3.5 1,200 G1–1D 0 9.35 107 108 108 
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3 83.5 1.7 10.4 4.4 1,600 G1–2D 0 41.67 77 86 94 
3 32.0 32.1 32.2 3.7 800 G1–1D 0 6.51 105 106 106 
3 4.2 73.7 19.7 2.4 1,600 G2–2D1D 200 11.19 391 408 416 
3 31.8 50.6 16.3 1.4 800 G1–1D 0 20.24 37 37 38 
3 90.3 3.7 4.7 1.3 800 G2–2D1D 200 14.49 265 283 299 
4 12.5 53.2 24.3 10.0 1,600 G2–2D1D 100 5.12 260 261 263 
4 23.6 63.4 11.0 1.9 800 G1–1D 0 8.06 42 43 43 
4 36.1 35.8 19.5 8.6 1,600 G2–2D2D 100 5.49 196 203 209 
4 20.2 47.8 20.8 11.3 800 G1–2D 0 6.21 35 37 38 
4 5.8 86.3 5.7 2.2 1,200 G2–2D2D 100 12.66 220 224 229 
4 20.0 56.1 17.3 6.7 1,200 G2–2D1D 200 4.96 363 386 402 
4 15.3 77.0 2.1 5.7 800 G2–2D2D 100 8.51 211 217 222 
4 19.9 37.1 41.4 1.6 1,600 G2–2D1D 100 8.42 214 225 229 
4 36.3 58.9 3.5 1.3 1,200 G2–2D1D 100 9.31 215 222 225 
4 38.3 31.2 20.1 10.4 1,600 G1–2D 0 7.07 31 34 38 
4 9.8 59.0 22.0 9.2 1,600 G2–2D1D 200 3.62 447 467 478 
4 3.4 80.5 7.5 8.6 1,600 G2–2D2D 300 6.51 432 438 446 
4 55.8 38.2 4.6 1.4 1,600 G2–2D1D 200 26.88 184 261 284 
4 5.9 69.4 18.9 5.9 1,200 G2–2D2D 300 6.45 602 606 606 
4 59.2 20.1 9.3 11.4 1,600 G2–2D1D 200 7.06 232 244 253 
4 30.7 47.5 15.0 6.8 1,200 G2–2D1D 300 7.69 375 393 401 
4 52.3 28.6 16.4 2.8 1,600 G2–2D2D 200 12.27 161 189 209 
4 74.3 15.0 9.0 1.7 800 G2–2D1D 100 9.92 178 185 189 
4 5.9 60.3 29.2 4.6 1,600 G2–2D2D 300 11.63 471 505 521 
4 29.4 51.5 15.1 4.1 1,200 G2–2D2D 200 6.26 300 317 325 
4 7.4 54.1 32.9 5.7 1,200 G2–2D1D 200 8.70 442 447 454 
4 25.5 63.6 8.2 2.6 1,600 G2–2D2D 200 9.12 240 256 273 
5 20.5 55.1 20.7 3.7 1,600 G2–2D2D 300 8.67 365 381 404 
5 8.0 52.9 31.8 7.4 1,600 G2–2D2D 300 8.26 363 374 381 
5 27.6 62.5 4.2 5.7 1,200 G2–2D1D 200 6.87 445 456 461 
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5 8.1 79.0 11.7 1.3 1,200 G2–2D1D 300 8.08 575 589 602 
5 7.0 19.8 69.5 3.7 1,200 G2–2D2D 200 2.71 330 352 363 
5 32.7 32.3 28.3 6.7 1,200 G2–2D2D 200 7.39 264 292 307 
5 24.9 42.2 26.2 6.7 1,200 G2–2D2D 200 5.06 329 350 363 
5 5.8 32.3 59.5 2.5 1,200 G2–2D2D 200 8.00 354 364 370 
5 27.2 52.9 10.8 9.1 1,600 G2–2D2D 300 5.13 312 315 319 
5 55.3 35.2 6.1 3.4 800 G2–2D1D 100 10.33 51 100 162 
5 33.2 51.4 6.1 9.3 1,200 G2–2D2D 200 3.85 290 305 313 
5 50.9 36.6 6.2 6.3 800 G1–2D 0 11.63 32 37 38 
5 13.6 71.0 8.3 7.1 1,200 G1–2D 0 15.53 24 26 28 
5 20.2 63.4 9.7 6.8 800 G1–2D 0 11.36 33 35 36 
5 78.7 9.3 3.3 8.7 1,200 G2–2D2D 100 6.52 199 214 226 
5 10.0 57.1 27.5 5.4 1,600 G2–2D2D 200 8.72 236 296 338 
5 33.0 45.8 13.9 7.3 1,600 G2–2D2D 200 8.45 324 369 396 
5 63.7 26.9 7.6 1.8 1,600 G1–1D 0 23.04 126 126 127 
5 5.7 73.8 16.7 3.8 1,600 G1–1D 0 26.25 63 64 64 
5 11.4 79.4 4.7 4.5 1,200 G2–2D2D 200 8.83 333 345 350 
5 22.7 22.6 49.2 5.5 1,200 G2–2D2D 100 4.08 200 215 222 
5 51.4 27.4 13.1 8.1 1,600 G1–1D 0 5.63 100 102 103 
6 55.0 30.7 11.0 3.3 800 G1–2D 0 10.26 27 30 30 
6 84.1 1.6 7.0 7.4 1,600 G2–2D1D 100 15.46 200 203 206 
6 11.7 45.7 36.0 6.6 1,200 G2–2D2D 200 4.29 343 361 371 
6 16.1 26.0 52.3 5.6 1,600 G2–2D1D 100 11.01 172 183 190 
6 35.1 46.2 9.0 9.7 1,200 G1–1D 0 8.46 94 97 100 
6 24.3 56.6 13.4 5.7 800 G2–2D1D 100 6.64 249 251 254 
6 10.8 42.8 43.2 3.2 1,200 G2–2D1D 200 5.64 372 382 392 
6 13.2 71.0 6.3 9.5 800 G2–2D1D 200 3.93 310 324 338 
6 12.1 70.7 13.5 3.8 1,600 G2–2D1D 200 8.66 389 406 415 
6 8.9 57.1 31.2 2.8 1,200 G2–2D1D 200 7.24 343 347 350 
6 14.0 67.9 8.1 10.1 1,600 G2–2D1D 300 3.70 476 496 502 
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6 40.7 40.6 16.9 1.9 1,200 G2–2D1D 200 16.13 315 331 343 
6 24.4 68.9 5.5 1.3 1,200 G2–2D2D 200 15.20 433 456 472 
6 38.8 29.6 29.2 2.4 1,200 G2–2D2D 100 6.46 150 157 162 
6 34.0 27.2 31.2 7.6 1,200 G1–2D 0 5.70 36 41 43 
6 77.1 2.3 11.2 9.5 1,600 G2–2D2D 100 3.95 136 157 161 
6 82.2 14.1 2.0 1.7 1,200 G2–2D1D 200 11.53 288 306 320 
6 20.6 67.9 3.0 8.5 1,600 G2–2D1D 300 6.68 425 457 464 
6 13.6 55.5 24.7 6.2 1,600 G2–2D1D 300 5.81 498 511 536 
6 74.1 15.0 9.0 1.9 1,200 G2–2D1D 200 5.52 323 333 348 
6 44.9 24.2 25.2 5.7 1,600 G2–2D2D 100 5.74 120 139 156 
6 40.4 45.1 5.6 8.9 1,600 G2–2D1D 100 9.05 217 230 241 
7 17.4 71.2 5.9 5.6 800 G1–1D 0 9.18 44 44 44 
7 47.8 20.8 24.5 6.8 800 G1–1D 0 5.48 135 135 135 
7 52.6 28.3 11.2 7.9 1,600 G2–2D2D 100 5.60 179 188 196 
7 46.4 27.2 21.3 5.1 800 G1–1D 0 9.78 64 65 65 
7 43.1 23.4 30.5 3.0 1,600 G2–2D1D 100 15.67 210 217 225 
7 65.3 17.9 12.5 4.3 1,600 G2–2D1D 200 8.76 250 308 340 
7 41.8 34.7 15.6 7.8 1,200 G2–2D1D 200 4.74 327 336 345 
7 28.1 50.6 14.0 7.3 800 G1–1D 0 5.35 82 82 82 
7 7.2 69.6 19.0 4.3 1,600 G2–2D2D 100 11.39 259 262 264 
7 9.5 50.7 36.4 3.4 800 G1–1D 0 7.09 76 76 77 
7 45.2 32.4 12.8 9.7 1,200 G2–2D2D 100 6.97 211 215 219 
7 75.4 4.5 11.3 8.8 1,200 G2–2D2D 100 9.90 227 231 235 
7 58.5 17.3 15.4 8.8 1,600 G2–2D1D 100 6.75 212 221 232 
7 52.9 22.9 21.5 2.8 1,200 G2–2D1D 200 10.33 301 340 359 
7 22.0 38.1 36.1 3.8 1,200 G2–2D1D 200 8.66 410 425 434 
7 2.7 65.9 25.7 5.7 1,600 G1–2D 0 13.39 28 29 30 
7 50.5 34.9 9.0 5.6 1,600 G2–2D1D 100 9.78 201 205 209 
7 22.8 31.7 43.3 2.3 800 G1–1D 0 13.26 74 75 75 
7 20.5 27.9 49.3 2.3 1,200 G2–2D2D 200 5.94 502 526 528 
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7 33.3 47.4 13.6 5.7 1,600 G2–2D1D 100 9.35 249 255 260 
7 45.3 37.9 12.7 4.1 1,600 G2–2D1D 200 11.67 406 420 421 
7 12.3 70.0 13.8 4.0 1,600 G2–2D2D 300 7.79 499 557 567 
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Table S6. Testing data points for the prediction model. 

ID 

Composition 
Labels 

Thickness 
Labels 

Deformation 
Labels 

Strain 
Labels 

Electrical 
Labels 

Response 
Labels 

MXene 
Loading 
(wt.%) 

SWNT 
Loading 
(wt.%) 

AuNP 
Loading 
(wt.%) 

PVA 
Loading 
(wt.%) 

Thickness (nm) Deformation 
Sequence 

Pre-
Strain 
(%) 

𝑆! 
(mS) 

𝜀"% 
(%) 

𝜀$."% 
(%) 

𝜀&!% 
(%) 

01 42.0 47.8 3.6 6.6 1,200 G2–2D2D 200 11.40 304 325 337 
02 19.8 68.4 7.0 4.8 1,600 G2–2D1D 300 8.14 518 529 546 
03 32.3 57.0 5.3 5.3 1,600 G1–2D 0 24.57 37 37 37 
04 54.3 27.3 13.7 4.8 800 G1–2D 0 13.55 41 45 49 
05 39.4 44.0 6.1 10.6 1,600 G1–1D 0 8.48 75 75 75 
06 64.5 22.0 6.4 7.2 1,600 G2–2D2D 200 7.04 188 209 225 
07 65.6 14.1 19.0 1.3 1,200 G2–2D1D 200 6.16 302 326 337 
08 15.7 21.2 59.4 3.6 1,600 G2–2D2D 100 8.87 157 165 171 
09 21.9 53.9 21.0 3.3 1,600 G2–2D2D 300 8.62 337 369 385 
10 55.4 26.8 14.9 3.0 1,200 G2–2D1D 100 8.07 152 172 192 
11 49.1 41.8 7.9 1.2 1,600 G2–2D1D 100 19.08 160 193 207 
12 79.2 12.4 3.2 5.2 800 G1–1D 0 22.73 91 91 91 
13 18.4 74.6 3.4 3.6 1,600 G2–2D1D 200 9.08 403 407 412 
14 21.7 58.5 17.1 2.7 1,200 G2–2D2D 100 11.96 256 265 273 
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Table S7. 10 fabrication parameter sets of G1/G2 stretchable nanocomposites to examine the model’s prediction accuracy. 

 Composition 
Labels 

Thickness 
Labels 

Deformation 
Labels 

Strain 
Labels 

Electrical 
Labels 

Response 
Labels 

Recipe 
# 

MXene 
Loading 
(wt.%) 

SWNT 
Loading 
(wt.%) 

AuNP 
Loading 
(wt.%) 

PVA 
Loading 
(wt.%) 

Thickness 
(nm) 

Deformation 
Sequence 

Pre-Strain 
(%) 

𝑆! 
(mS) 

𝜀"% 
(%) 

𝜀$."% 
(%) 

𝜀&!% 
(%) 

1 44.0 39.4 6.1 10.6 1,600 G1–1D 0 8.48 74 74 76 
2 20.0 61.0 15.0 4.0 1,200 G1–1D 0 5.57 67 67 67 
3 27.3 54.3 13.7 4.8 800 G1–2D 0 13.55 38 42 45 
4 47.7 19.6 31.4 1.2 800 G1–2D 0 13.51 62 64 66 
5 41.8 49.1 7.9 1.2 1,600 G2–2D1D 100 19.08 164 200 219 
6 74.6 18.4 3.4 3.6 1,600 G2–2D1D 200 9.08 388 409 407 
7 68.4 19.8 7.0 4.7 1,600 G2–2D1D 300 8.14 504 521 550 
8 58.5 21.7 17.1 2.7 1,200 G2–2D2D 100 119.62 246 261 274 
9 47.8 42.0 3.6 6.6 1,200 G2–2D2D 200 114.03 312 314 327 
10 53.9 21.8 21.0 3.3 1,600 G2–2D2D 300 86.21 355 365 400 
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Table S8. Correlation parameters used in the deflection functions of FE models. 

Stretchable 
Nanocomposite 

Buckling 
Mode 

A 
(µm) 

B 
(µm) 

C 
(µm) 

D 
(µm) 

𝜆 
(µm) 

G1–1D Cylindrical 16 0 0 0 35 

G1–2D Checkerboard 33 0 0 33 44 

G2–2D1D Cylindrical 105 0 0 0 70 

G2–2D2D Undulating 105 53 0 0 70 
A, B, C, and D are the correlation parameters, 𝜆 is the wavelength characterized from Keyence 
microscope. The thicknesses of G1/G2 stretchable nanocomposites were set to be 800 nm. 
 

 

Table S9. Summary of influential components identified in different data analysis methods. 

Data Analysis Method 
Electrical and Response Labels 

𝑆! 
(mS) 

𝜀&!% 
(%) 

Spearman’s ρ Analysis PVA Loading (–) Deformation Sequence (+) 
Applied Pre-Strain (+) 

SHAP Model Interpretation 
MXene Loading (+) 

PVA Loading (–) 
Applied Pre-Strain (–) 

Deformation Sequence (+) 
Applied Pre-Strain (+) 

MXene Loading (–) 
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Table S10. Comparison of our robotics/ML-integrated framework with the state-of-the-art works in the fields of stretchable 

conductors 

Design 
Strategy 

Fabrication 
Method 

Building 
Block 

Electrical Property 
at Relaxed State 

Maximum 
Stretchability 𝜀!"% Durability Ref. 

Robotics/ML
-integrated 
framework 

Sequential 
deformation 

MXene/SWNT/AuNP/
PVA + thin Au layer 2.5 × 106 S m–1 1,300% 1,025% 

80k cycles under 400% elongation 
50k cycles under 600% elongation 

20k cycles at 700% elongation 

This 
work 

Design of 
experiment 

Heterogeneous 
blending EGaIn + PU  2.1 × 106 S m–1 4,100% 310% 

15k cycles under 100% elongation 
8k cycles under 300% elongation 

1.2k cycles under 500% elongation 
12 

Design of 
experiment 

Bilayer 
integration EGaIn + VHB 2.1 × 106 S m–1 1,000% 160% 1.5k cycles under 500% elongation 13 

Design of 
experiment 

Heterogeneous 
blending EGaIn + SBS 1.8 × 106 S m–1 1,800% 100% 

150 cycles under elongation 
200 cycles under 1,000% elongation 

1k cycles under 500% elongation 
25k cycles under 100% elongation 

14 

Design of 
experiment 

Heterogeneous 
blending EGaIn/Ag flakes + SIB 8.2 × 105 S m–1 1,200% 100% 1k cycles under 100% elongation 

550 cycles under 400% elongation 
15 

Design of 
experiment 

Heterogeneous 
blending 

EGaIn + 11-
phosphonoundecyl 

acrylate 
2.5 × 105 S m–1 750% 320% 10k cycles under 100% elongation 16 

Design of 
experiment 

Bilayer 
integration EGaIn + pp-TPU 2.3 × 106 S m–1 2,260% 670% 10k cycles under 100% elongation 17 

Design of 
experiment 

Heterogeneous 
blending 

EGaIn/Ag flakes + 
EVA 8.3 × 105 S m–1 1,000% 150% 10k cycles under 800% elongation 18 

Design of 
experiment 

Heterogeneous 
blending Ag flakes + Ecoflex 1.3 × 104 S m–1 1,780% 11% 1k cycles under 50% elongation 19 

Design of 
experiment 

Heterogeneous 
blending AgNW/CNT + PVDF 5.7 × 105 S m–1 140% 15% 5k cycles under 20% elongation 20 

Design of 
experiment 

Heterogeneous 
blending AgNW/Au + SBS 4.2 × 106 S m–1 840% 10% 3k cycles under 30% elongation 21 
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Design of 
experiment 

Heterogeneous 
blending AuNP + PU 1.1 × 106 S m–1 480% 4% 10k cycles under 5% elongation 3 

Design of 
experiment 

Heterogeneous 
blending Ag flakes + PAA 3.7 × 104 S m–1 250% 10% 1k cycles under 100% elongation 22 

Design of 
experiment 

Heterogeneous 
blending 

Ag flakes + 
alginate/PAM hydrogel 1.4 × 105 S m–1 1,000% 300% 200 cycles under 300% elongation 23 

Design of 
experiment 

Heterogeneous 
blending 

Ag flakes + fluorine 
rubbers 4.0 × 105 S m–1 400% 85% 547 cycles under 50% elongation 24 

Design of 
experiment 

Heterogeneous 
blending PEDOT:PSS + STEC 3.4 × 105 S m–1 800% 45% 1k cycles under 100% elongation 25 

Design of 
experiment 

Heterogeneous 
blending PEDOT:PSS + PR 7.0 × 104 S m–1 125% 25% 100 cycles under 40% elongation 26 

Design of 
experiment 

Heterogeneous 
blending 

PEDOT:PSS + EMIM 
TCB 1.0 × 105 S m–1 180% 20% 20 cycles under 40% elongation 27 

Design of 
experiment 

Heterogeneous 
blending 

Graphene flakes + 
TPU 4.3 × 102 S m–1 500% 300% 10k cycles under 300% elongation 28 

Design of 
experiment 

Heterogeneous 
blending CNT/graphite + PDMS 1.3 × 102 S m–1 150% 130% 1k cycles under 60% elongation 29 

Design of 
experiment 

Heterogeneous 
blending CNT + PU 1.0 × 102 S m–1 300% 30% 100 cycles under 80% elongation 30 

Design of 
experiment 

Bilayer 
integration CNT + PDMS 1.1 × 105 S m–1 150% 14% 10k cycles under 25% elongation 31 

Abbreviations: SWNT – single-walled carbon nanotubes; AuNP– gold nanoparticle; PVA – poly(vinyl alcohol); EGaIn – eutectic 
gallium-indium; PU – polyurethane; EVA – ethylene vinyl acetate copolymer; SIB – styrene–isoprene block copolymers; SBS – 
poly(styrene-block-butadiene-block-styrene); pp-TPU – polyester polyol-rich thermoplastic polyurethane; VHB – very high bond; 
AgNW – silver nanowire; PAA – polyacrylamide alginate; CNT – carbon nanotube; PVDF – polyvinylidene fluoride; PAM – 
polyacrylamide; PEDOT:PSS – poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate); PVDF – polyvinylidene fluoride; STEC – 
stretchability and electrical conductivity; EMIM TCB – 1-ethyl-3-methylimidazolium tetracyanoborate; PR – polyrotaxane; PDMS – 
polydimethylsiloxane. 
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Table S11. Fitted EIS parameters of stretchable Zn//MnO2 batteries at different stretching 

states. 

Stretching State Rint (Ω) Rct (Ω) 
0% 18.1 2.42 

300% 17.2 2.86 

Equivalent Circuit Model 

 

 

 

The parameters were obtained using the equivalent circuit model shown above, where Rint, Rct, and 
Zw represent the internal resistance, the charge transfer resistance, and the Warburg impedance that 
is related to the diffusion of Zn2+ at low frequencies, respectively. CPE is the constant phase 
element. 
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Table S12. Comparison of our stretchable Zn//MnO2 battery with the state-of-the-art stretchable Zn-based and Li-ion batteries 

with co-planar configurations. 

Stretchable Battery Uniaxial Stretchability 
(%) 

Electrolyte 
(Condition) 

Specific Capacity 
at Relaxed State Rechargeability Ref. 

Zn//MnO2 300% 

2.0 M ZnSO4 
0.2 M MnSO4 

PVA Gel 
(Neutral) 

260 mAh g–1 
@ 100 mA g–1 Yes This 

work 

Zn@Ti-MXene//V-MXene 50% 

2.0 M ZnCl2 
2.0 M LiCl 
PVA Gel 
(Neutral) 

118.5 mAh g–1 
@ 50 mA g–1 Yes 32 

Zn//MnO2 50% 

2.0 M ZnSO4 
0.5 M MnSO4 

PAM Gel 
(Neutral) 

75.6 mAh g–1 
@ 308 mA g–1 Yes 33 

Zn//MnO2 25% 
40 wt.% KOH 

CMC Gel 
(Alkaline) 

20.4 mAh g–1 
@ 0.6 mA g–1 No 34 

Zn//MnO2 50% 

26 wt.% NH4Cl 
8 wt.% ZnCl2 
Xanthan Gel 

(Neutral) 

3.5 mAh cm–2 

@ 0.5 mA cm–2 No 35 

Zn//MnO2 100% PAA Gel 
(Alkaline) 

2.3 mAh cm–2 
@ 0.12 mA cm–2 No 36 

Zn//MnO2 100% 

6.0 M KOH 
0.4 M ZnO 

PAA Gel 
(Alkaline) 

3.8 mAh cm–2 
@ 0.175 mA cm–2 No 37 
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Zn//Ag 100% 

6.0 M KOH 
1.0 M LiOH 

PAA Gel 
(Alkaline) 

2.5 mAh cm–2 
@ 3 mA cm–2 Yes 38 

Zn//Ag 80% 10 M NaOH 
(Alkaline) 

0.05 mAh cm–2 

@ 1.0 mA cm–2 Yes 39 

Zn//Ag 11.1% 

6.0 M KOH 
1.0 M LiOH 

PAA Gel 
(Alkaline) 

0.6 mAh cm–2 

@ 0.15 mA cm–2 Yes 40 

Zn//Ni-Co 50% 

1.0 M KOH 
0.02 M Zn(Ac)2  
0.005 M LiOH 

0.005 M Ca(OH)2 
PVA Gel 

(Alkaline) 

105 mAh g–1 
@ 1.0 A g–1 Yes 41 

V2O5//LMO 50% 10 M LiTFSI 
(Neutral) 

100 mAh g–1 
@ 120 mA g–1 Yes 42 

AC//LMO 100% 1.0 M Li2SO4 
(Neutral) 

90 mAh g–1 
@ 1.8 A g–1 Yes 43 

Abbreviations: PVA – poly(vinyl alcohol); PAM – polyacrylamide; CMC – carboxymethyl cellulose sodium salt; PAA – polyacrylic 
acid; Ac – acetate, [CH3COO–]; LMO – LiMn2O4; LiTFSI – lithium bis(trifluoromethanesulfonyl)imide; AC – active carbon. 
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Movie S1. Automated pipetting robot for preparing various MXene/SWNT/AuNP/PVA 

mixtures. 

 

Movie S2. FE simulation of G2–2D1D and G2–2D2D stretchable nanocomposites under 

uniaxial elongations in top and perspective views. 
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