

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G7

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SAIOC-1@G7

Bond precision:	C-C = 0.0136 Å	Wavelength=1.34050	
Cell:	a=30.0205 (4) alpha=90	b=30.0205 (4) beta=90	c=19.1946 (4) gamma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	17298.8 (6)	17298.8 (6)	
Space group	P 4/n	P 4/n	
Hall group	-P 4a	-P 4a	
Moiety formula	C216 H364 Al32 N12 O110 Pb6 S12, 4(C7 H6 Cl2) [+ solvent]	C216 H364 Al32 N12 O110 Pb6 S12, 4(C7 H6 Cl2)	
Sum formula	C244 H388 Al32 Cl8 N12 O110 Pb6 S12 [+ solvent]	C244 H388 Al32 Cl8 N12 O110 Pb6 S12	
Mr	8024.56	8024.46	
Dx, g cm ⁻³	1.541	1.541	
Z	2	2	
Mu (mm ⁻¹)	5.520	5.657	
F000	8104.0	8104.0	
F000'	8088.70		
h, k, lmax	38, 38, 24	38, 36, 24	
Nref	19635	18951	
Tmin, Tmax		1.000, 1.000	
Tmin'			

Correction method= # Reported T Limits: Tmin=1.000 Tmax=1.000
AbsCorr = SPHERE

Data completeness= 0.965 Theta (max) = 60.142

R(reflections)= 0.0755(11674)

wR2 (reflections)=
0.2420(18951)

S = 0.988

Npar= 1042

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

 Alert level A

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.72Ang From Pb2

3.57 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb2 3.35 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb1 3.00 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb3 2.45 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

 Alert level B

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.94Ang From Pb1

3.13 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.77Ang From Pb1

3.08 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.89Ang From Pb1

2.81 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.08Ang From Pb3

2.68 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

🟡 Alert level C

RADNW01_ALERT_1_C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150
Wavelength given = 1.34050

PLAT094_ALERT_2_C	Ratio of Maximum / Minimum Residual Density	2.93	Report
PLAT220_ALERT_2_C	NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range	3.4	Ratio
PLAT220_ALERT_2_C	NonSolvent Resd 1 O Ueq(max)/Ueq(min) Range	3.7	Ratio
PLAT222_ALERT_3_C	NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range	4.8	Ratio
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C53	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C61	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C66	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	S1	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	O21	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	N2	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	N3	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C16	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C19	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C22	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C25	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C34	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C60	Check

PLAT242_ALERT_2_C	Low	'MainMol'	Ueq as Compared to Neighbors of		C62	Check
PLAT242_ALERT_2_C	Low	'MainMol'	Ueq as Compared to Neighbors of		C72	Check
PLAT260_ALERT_2_C	Large	Average Ueq of Residue Including	Pb1	0.118	Check	
PLAT260_ALERT_2_C	Large	Average Ueq of Residue Including	C11	0.145	Check	
PLAT260_ALERT_2_C	Large	Average Ueq of Residue Including	C13	0.176	Check	
PLAT342_ALERT_3_C	Low	Bond Precision on C-C Bonds		0.01363	Ang.	
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3) Bond	C24 - C25	.	1.43	Ang.
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3) Bond	C71 - C72	.	1.38	Ang.
PLAT905_ALERT_3_C	Negative K value in the Analysis of Variance ...			-0.431	Report	
PLAT911_ALERT_3_C	Missing FCF Refl Between Thmin & STh/L=	0.600		82	Report	
	-1 3 0, 1 3 0, 0 4 0, 2 4 0, 4 4 0, 5 5 0,					
	0 6 0, 1 11 0, 0 12 0, 0 2 1, 1 2 1, 1 3 1,					
	-3 4 1, -2 4 1, 2 4 1, -3 5 1, -1 5 1, 1 5 1,					
	5 5 1, -1 6 1, -4 7 1, 5 7 1, -3 9 1, 3 14 1,					
	0 1 2, 1 1 2, 2 2 2, 0 3 2, 4 4 2, -2 5 2,					
	1 5 2, 4 5 2, 2 7 2, -3 8 2, -2 10 2, 4 11 2,					
	-5 12 2, 0 12 2, 4 12 2, -3 13 2, 8 13 2, 9 14 2,					
	0 15 2, 1 1 3, 2 2 3, 0 3 3, -1 4 3, -2 6 3,					
	8 8 3, 1 3 4, -1 5 4, 3 6 4, -2 7 4, 7 9 4,					
	0 2 5, -5 6 5, 6 9 5, 0 0 6, 2 3 6, 0 4 6,					
	2 4 6, 0 6 6, -1 8 6, -6 9 6, -2 10 6, -1 5 7,					
	-3 7 7, -2 5 8, -4 11 8, -12 25 10, -11 25 10, -10 25 10,					
	-8 14 11, -11 23 11, -10 23 11, -14 24 11, -13 24 11, -12 24 11,					
	-17 24 13, -10 14 14, 0 0 16, 5 21 18,					
PLAT971_ALERT_2_C	Check Calcd Resid. Dens.	1.08Ang From Pb2		2.49	eA-3	

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C	Check Calcd Resid. Dens.	0.75Ang From Pb2	2.27	eA-3
-------------------	--------------------------	------------------	------	------

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C	Check Calcd Resid. Dens.	0.83Ang From Pb1	2.20	eA-3
-------------------	--------------------------	------------------	------	------

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C	Check Calcd Resid. Dens.	0.87Ang From Pb1	2.16	eA-3
-------------------	--------------------------	------------------	------	------

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.90Ang From Pb3

2.07 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.03Ang From Pb3

1.97 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.84Ang From Pb1

1.52 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT977_ALERT_2_C Check Negative Difference Density on H19 . -0.34 eA-3

PLAT977_ALERT_2_C Check Negative Difference Density on H23A . -0.32 eA-3

PLAT977_ALERT_2_C Check Negative Difference Density on H38B . -0.33 eA-3

● Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type.

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 34 Note

PLAT003_ALERT_2_G Number of Uiso or U(i,j) Restrained non-H Atoms 34 Report

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 2 Report
H5 H19

PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 2.42 %

PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.17 Report

PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 48 Report

PLAT174_ALERT_4_G The CIF-Embedded .res File Contains FLAT Records 2 Report

PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 5 Report

PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 4 Report

PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 4 Report

PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records 2 Report

PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used 0.0010 Report

PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used 0.0100 Report

PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used 0.0100 Report

PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100	Report					
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for First Par	0.0100	Report					
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for SecondPar	0.0200	Report					
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for First Par	0.0100	Report					
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for SecondPar	0.0200	Report					
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for First Par	0.0010	Report					
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0020	Report					
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200	Report					
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200	Report					
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200	Report					
PLAT299_ALERT_4_G	Atom Site Occupancy Constrained at	0.5	Check					
	C11	C12	C1	C2	C3	C4	C5	C6
	C7	H1A	H1B	H1C	H4	H5A	H6	C13
	C14	C8	C9	C10	C11	C12	C13	C14
	H8A	H8B	H8C	H11	H12	H13		
PLAT300_ALERT_4_G	Atom Site Occupancy of C38	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C39	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C55	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C69	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C70	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C40	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C41	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C54	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C67	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of C68	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H37A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H37B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H38A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H38B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H39A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H39B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H39C	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H53A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H53B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H55A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H55B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H55C	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H66A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H66B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H69A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H69B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H70A	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H70B	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H70C	Constrained at	0.75	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H37C	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H37D	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H40A	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H40B	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H41A	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H41B	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H41C	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H53C	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H53D	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H54A	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H54B	Constrained at	0.25	Check				
PLAT300_ALERT_4_G	Atom Site Occupancy of H54C	Constrained at	0.25	Check				

PLAT300_ALERT_4_G	Atom Site Occupancy of H66C	Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H66D	Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H67A	Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H67B	Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H68A	Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H68B	Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H68C	Constrained at	0.25	Check
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd 1)	5%	Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder	(Resd 2)	100%	Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder	(Resd 3)	100%	Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in	(Resd 2)	7.50	Check
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in	(Resd 3)	7.50	Check
PLAT410_ALERT_2_G	Short Intra H...H Contact	H35A ..H40A	.	1.51 Ang.
		x,y,z =	1_555	Check
PLAT412_ALERT_2_G	Short Intra XH3 .. XHn	H34B ..H41B	.	1.63 Ang.
		x,y,z =	1_555	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H36B ..H54C	.	2.01 Ang.
		y,1/2-x,1+z =	4_556	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H55B ..H63C	.	1.59 Ang.
		3/2-x,1/2-y,z =	2_655	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H1A ..H65A	.	2.05 Ang.
		x,y,z =	1_555	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact	S3 ..C41	.	3.29 Ang.
		1/2-y,x,-1+z =	3_554	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact	O29 ..C41	.	2.09 Ang.
		1/2-y,x,-1+z =	3_554	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact	C45 ..C40	.	3.11 Ang.
		1/2-y,x,-1+z =	3_554	Check
PLAT605_ALERT_4_G	Largest Solvent Accessible VOID in the Structure			170 A**3
PLAT721_ALERT_1_G	Bond Calc 0.97000, Rep 0.98020 Dev...			0.01 Ang.
	C54 -H54C 1_555 1_555	#	272	Check
PLAT721_ALERT_1_G	Bond Calc 1.00000, Rep 0.98990 Dev...			0.01 Ang.
	C40 -H40A 1_555 1_555	#	273	Check
PLAT721_ALERT_1_G	Bond Calc 0.98000, Rep 0.99020 Dev...			0.01 Ang.
	C40 -H40B 1_555 1_555	#	274	Check
PLAT721_ALERT_1_G	Bond Calc 0.97000, Rep 0.98010 Dev...			0.01 Ang.
	C41 -H41A 1_555 1_555	#	276	Check
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb2 (II)	.		2.03 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb3 (II)	.		2.07 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al2 (III)	.		2.73 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al3 (III)	.		2.77 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al4 (III)	.		2.75 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al6 (III)	.		2.76 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al7 (III)	.		2.97 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al8 (III)	.		2.86 Info
PLAT860_ALERT_3_G	Number of Least-Squares Restraints			535 Note
PLAT868_ALERT_4_G	ALERTS Due to the Use of _smtbx_masks Suppressed			! Info
PLAT910_ALERT_3_G	Missing # of FCF Reflection(s) Below Theta(Min).			2 Note
	1 1 0, 0 0 1,			
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above STh/L= 0.600			593 Note
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in Embedded .res File			65 Note
	0 1 2, -2 6 3, -3 7 7, 1 5 1, 0 2 5, -1 4 3,			
	-2 10 2, 1 1 3, -1 5 1, 2 2 2, 5 5 1, -2 5 2,			
	2 7 2, -1 5 4, 1 2 1, 5 5 0, -1 8 6, 1 3 1,			
	0 2 1, -3 4 1, 0 4 0, -1 6 1, 0 6 0, -1 5 7,			
	4 11 2, -5 6 5, 4 5 2, 3 14 1, 1 3 4, -4 7 1,			
	0 12 2, 0 3 2, 0 0 6, 0 4 6, -2 7 4, 8 13 2,			

```

8 8 3, 2 4 1, -8 35 8, 6 9 5, -2 5 8, 5 7 1,
-4 11 8, -6 9 6, 4 4 2, -3 9 1, 1 1 2, 1 5 2,
2 3 6, 4 12 2,
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ..... 3.1 Low
PLAT951_ALERT_5_G Calculated (ThMax) and CIF-Reported Kmax Differ 2 Units
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value ..... 4.502 Note
Predicted wr2: Based on SigI**2 5.38 or SHELX Weight 24.51
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 0 Info
PLAT984_ALERT_1_G The C-f' = 0.0147 Deviates from the B&C-Value 0.0137 Check
PLAT984_ALERT_1_G The Cl-f' = 0.3292 Deviates from the B&C-Value 0.3281 Check
PLAT984_ALERT_1_G The N-f' = 0.0253 Deviates from the B&C-Value 0.0241 Check
PLAT984_ALERT_1_G The O-f' = 0.0412 Deviates from the B&C-Value 0.0389 Check
PLAT984_ALERT_1_G The Pb-f' = -4.2646 Deviates from the B&C-Value -4.4950 Check
PLAT985_ALERT_1_G The Al-f" = 0.1843 Deviates from the B&C-Value 0.1873 Check
PLAT985_ALERT_1_G The Cl-f" = 0.5397 Deviates from the B&C-Value 0.5435 Check
PLAT985_ALERT_1_G The Pb-f" = 7.1982 Deviates from the B&C-Value 6.8412 Check
PLAT985_ALERT_1_G The S-f" = 0.4242 Deviates from the B&C-Value 0.4295 Check

```

4 **ALERT level A** = Most likely a serious problem - resolve or explain
 4 **ALERT level B** = A potentially serious problem, consider carefully
 38 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
 119 **ALERT level G** = General information/check it is not something unexpected

16 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 54 ALERT type 2 Indicator that the structure model may be wrong or deficient
 22 ALERT type 3 Indicator that the structure quality may be low
 62 ALERT type 4 Improvement, methodology, query or suggestion
 11 ALERT type 5 Informative message, check

checkCIF publication errors

🔴 Alert level A

PUBL004_ALERT_1_A The contact author's name and address are missing,
 _publ_contact_author_name and _publ_contact_author_address.
 PUBL005_ALERT_1_A _publ_contact_author_email, _publ_contact_author_fax and
 _publ_contact_author_phone are all missing.
 At least one of these should be present.
 PUBL006_ALERT_1_A _publ_requested_journal is missing
 e.g. 'Acta Crystallographica Section C'
 PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
 PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
 PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
 PUBL012_ALERT_1_A _publ_section_abstract is missing.
 Abstract of paper in English.

7 **ALERT level A** = Data missing that is essential or data in wrong format
 0 **ALERT level G** = General alerts. Data that may be required is missing

Publication of your CIF

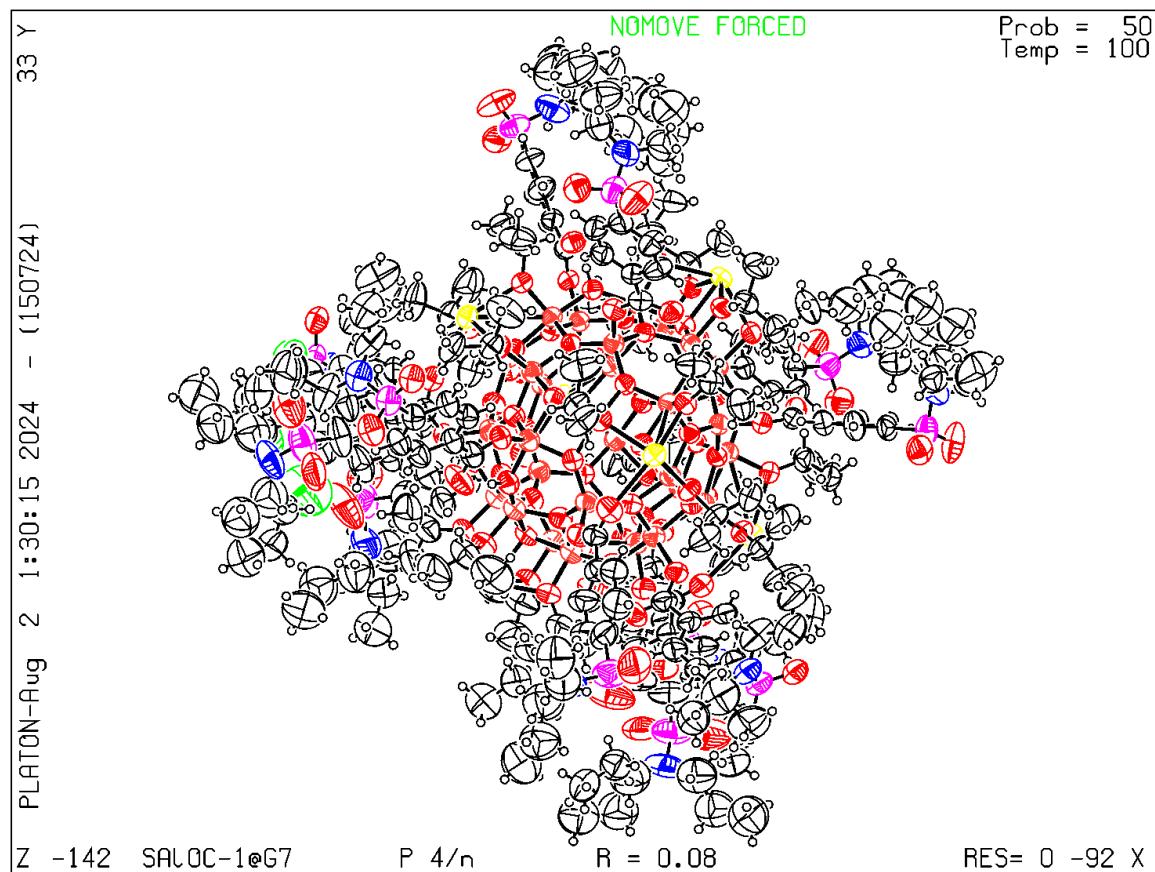
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
```


```
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 15/07/2024; check.def file version of 15/07/2024

Datablock SAI0C-1@G7 - ellipsoid plot

