

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G2

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SAIOC-1@G2

Bond precision:	C-C = 0.0265 Å	Wavelength=1.34050	
Cell:	a=29.8617 (5) alpha=90	b=29.8617 (5) beta=90	c=19.1914 (5) gamma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	17113.4 (7)	17113.4 (7)	
Space group	P 4/n	P 4/n	
Hall group	-P 4a	-P 4a	
Moiety formula	C216 H364 Al32 N12 O110 Pb6 S12, 3(C2 H6 O S) [+ solvent]	C216 H364 Al32 N12 O110 Pb6 S12, 3(C2 H6 O S)	
Sum formula	C222 H382 Al32 N12 O113 Pb6 S15 [+ solvent]	C222 H382 Al32 N12 O113 Pb6 S15	
Mr	7614.88	7614.77	
Dx, g cm-3	1.478	1.478	
Z	2	2	
Mu (mm-1)	5.298	5.442	
F000	7700.0	7700.0	
F000'	7680.81		
h, k, lmax	35, 35, 22	35, 34, 22	
Nref	14621	14557	
Tmin, Tmax		1.000, 1.000	
Tmin'			

Correction method= # Reported T Limits: Tmin=1.000 Tmax=1.000
AbsCorr = SPHERE

Data completeness= 0.996 Theta (max) = 52.043

R(reflections)= 0.0860(8987)

wR2 (reflections)=
0.2836(14557)

S = 1.042

Npar= 899

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

 Alert level A

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb3 2.44 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

 Alert level B

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of S2 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C24 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C25 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C47 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of N1 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of N2 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of N3 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C19 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C34 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds 0.02645 Ang.

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.02Ang From Pb3 3.16 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Pb2 1.90 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Pb1 1.85 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

🟡 Alert level C

RADNW01_ALERT_1_C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150
Wavelength given = 1.34050

THETM01_ALERT_3_C The value of $\sin(\theta_{\max})/\text{wavelength}$ is less than 0.590
Calculated $\sin(\theta_{\max})/\text{wavelength}$ = 0.5882

PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25) 0.28 Report

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.41 Report

PLAT220_ALERT_2_C	NonSolvent	Resd	1	C	Ueq(max) /Ueq(min)	Range	3.8	Ratio
PLAT220_ALERT_2_C	NonSolvent	Resd	1	O	Ueq(max) /Ueq(min)	Range	5.3	Ratio
PLAT222_ALERT_3_C	NonSolvent	Resd	1	H	Uiso(max) /Uiso(min)	Range	5.5	Ratio
PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as Compared to Neighbors of			07	Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as Compared to Neighbors of			C3	Check
-------------------	------	-----------	-----	-----------------------------	--	--	----	-------

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as Compared to Neighbors of			C4	Check
-------------------	------	-----------	-----	-----------------------------	--	--	----	-------

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as Compared to Neighbors of			C12	Check
-------------------	------	-----------	-----	-----------------------------	--	--	-----	-------

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as Compared to Neighbors of			C13	Check
-------------------	------	-----------	-----	-----------------------------	--	--	-----	-------

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C18 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C20 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C33 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C46 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of O4 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of O14 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C8 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C11 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C15 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C16 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C29 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C51 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT260_ALERT_2_C Large Average Ueq of Residue Including	Pb1	0.175	Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including	S4	0.253	Check
PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C11 - C14	.	1.54	Ang.
PLAT410_ALERT_2_C Short Intra H...H Contact H45A ..H47B	.	1.94	Ang.
	x,y,z =	1_555	Check
PLAT412_ALERT_2_C Short Intra XH3 .. XHn H22A ..H24A	.	1.87	Ang.
	x,y,z =	1_555	Check
PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ...		-2.786	Report
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=	0.588	63	Report
1 3 0, -2 6 0, 0 6 0, 2 6 0, 1 7 0, 8 10 0,			
1 2 1, 4 5 1, 3 6 1, -7 8 1, 5 10 1, 7 10 1,			
-4 12 1, -8 13 1, 0 1 2, -3 4 2, 2 5 2, -4 7 2,			
-6 8 2, -6 9 2, -9 10 2, -3 10 2, 2 10 2, -1 2 3,			
0 8 3, 8 8 3, 5 9 3, 3 14 3, 0 4 4, 2 5 4,			
1 6 4, 3 8 4, -5 10 4, 2 11 4, -7 12 4, 0 3 5,			
0 6 5, 5 7 5, -6 9 5, -3 9 5, -1 9 5, 7 12 5,			
-9 14 5, 1 3 6, -6 10 6, 6 13 6, 2 6 7, 3 7 7,			
4 10 7, -1 4 8, 2 5 8, 4 5 8, 4 7 8, -3 12 8,			
1 3 10, -5 6 10, 7 26 11, 8 26 11, 7 27 11, 7 28 11,			
1 2 12, -2 12 21, -1 12 21,			
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.07Ang From Pb1		2.11	eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.18Ang From Pb2 2.01 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.92Ang From Pb2

1.98 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.84Ang From Pb2

1.90 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.15Ang From Pb3

1.78 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.94Ang From Pb1

1.69 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.98Ang From Pb2

1.65 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.09Ang From Pb2

1.61 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

● Alert level G

ABSMU01_ALERT_1_G	Calculation of _exptl_absorpt_correction_mu	
	not performed for this radiation type.	
PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite	32 Note
PLAT003_ALERT_2_G	Number of Uiso or U(i,j) Restrained non-H Atoms	34 Report
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms	2 Report
	H13 H22	
PLAT051_ALERT_1_G	Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by .	2.64 %
PLAT069_ALERT_1_G	Atom Label Without Numerical Part	Al Do !
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large	0.17 Report
PLAT083_ALERT_2_G	SHELXL Second Parameter in WGHT Unusually Large	21.49 Why ?
PLAT172_ALERT_4_G	The CIF-Embedded .res File Contains DFIX Records	29 Report
PLAT173_ALERT_4_G	The CIF-Embedded .res File Contains DANG Records	13 Report
PLAT177_ALERT_4_G	The CIF-Embedded .res File Contains DELU Records	4 Report
PLAT178_ALERT_4_G	The CIF-Embedded .res File Contains SIMU Records	4 Report
PLAT186_ALERT_4_G	The CIF-Embedded .res File Contains ISOR Records	2 Report
PLAT187_ALERT_4_G	The CIF-Embedded .res File Contains RIGU Records	1 Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for First Par	0.0100 Report
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT300_ALERT_4_G	Atom Site Occupancy of C6	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of C7	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H5AA	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H5AB	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H6A	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H6B	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H6C	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H5BC	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H5BD	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H7A	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H7B	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H7C	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of S4	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of O1	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of C56	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of C57	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H56A	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H56B	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H56C	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H57A	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H57B	Constrained at
PLAT300_ALERT_4_G	Atom Site Occupancy of H57C	Constrained at
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd 1) 1% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder	(Resd 2) 100% Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in	(Resd 2) 7.50 Check
PLAT343_ALERT_2_G	Unusual sp3 Angle Range in Main Residue for	C24 Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn H1A ..H6B .	1.63 Ang.
	1/2+y,1-x,1-z =	7_666 Check

PLAT413_ALERT_2_G	Short	Inter	XH3 .. XHn	H1A .. H5BC	.	1.96	Ang.		
				1/2+y,1-x,1-z	=	7_666	Check		
PLAT413_ALERT_2_G	Short	Inter	XH3 .. XHn	H6C .. H27C	.	1.92	Ang.		
				3/2-x,1/2-y,z	=	2_655	Check		
PLAT413_ALERT_2_G	Short	Inter	XH3 .. XHn	H44B .. H7C	.	2.06	Ang.		
				3/2-y,x,1+z	=	3_656	Check		
PLAT432_ALERT_2_G	Short	Inter	X...Y Contact	C1 .. C6	.	3.01	Ang.		
				1/2+y,1-x,1-z	=	7_666	Check		
PLAT605_ALERT_4_G	Largest Solvent Accessible VOID in the Structure					145	A**3		
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels					6	Note		
	A100	000W	H5AA	H5AB	H5BC	H5BD			
PLAT721_ALERT_1_G	Bond	Calc	0.99000, Rep	0.97960	Dev...	0.01	Ang.		
	C7	-H7B	1_555	1_555	#	221 Check		
PLAT721_ALERT_1_G	Bond	Calc	0.97000, Rep	0.98020	Dev...	0.01	Ang.		
	C7	-H7C	1_555	1_555	#	222 Check		
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-PB1	3_655	1_555	1_555	#	206 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-PB1	4_565	1_555	1_555	#	207 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-PB1	2_665	1_555	1_555	#	208 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	2_665	1_555	2_665	#	209 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	2_665	1_555	1_555	#	210 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	2_665	1_555	4_565	#	211 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	4_565	1_555	2_665	#	212 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	4_565	1_555	4_565	#	213 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	3_655	1_555	2_665	#	214 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	3_655	1_555	3_655	#	215 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	3_655	1_555	4_565	#	216 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	2_665	1_555	3_655	#	217 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	3_655	1_555	1_555	#	218 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	4_565	1_555	1_555	#	219 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-AL6	4_565	1_555	3_655	#	220 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-O15	3_655	1_555	2_665	#	221 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-O15	4_565	1_555	2_665	#	222 Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...					0.00	Deg.		
	O15	-O15	-O15	4_565	1_555	3_655	#	223 Check
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb1		(II)	.		2.11	Info		
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb3		(II)	.		2.01	Info		
PLAT794_ALERT_5_G	Tentative Bond Valency for Al		(III)	.		2.95	Info		
PLAT794_ALERT_5_G	Tentative Bond Valency for Al1		(III)	.		2.77	Info		
PLAT794_ALERT_5_G	Tentative Bond Valency for Al00		(III)	.		2.75	Info		
PLAT794_ALERT_5_G	Tentative Bond Valency for Al2		(III)	.		2.78	Info		

PLAT794_ALERT_5_G Tentative Bond Valency for A13	(III)	.	2.80	Info
PLAT794_ALERT_5_G Tentative Bond Valency for A15	(III)	.	2.76	Info
PLAT794_ALERT_5_G Tentative Bond Valency for A16	(III)	.	2.88	Info
PLAT802_ALERT_4_G CIF Input Record(s) with more than 80 Characters			6	Info
PLAT860_ALERT_3_G Number of Least-Squares Restraints			512	Note
PLAT868_ALERT_4_G ALERTS Due to the Use of _smtbx_masks Suppressed			!	Info
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).			1	Note
1 1 0,				
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File			54	Note
4 7 8, 3 6 1, 4 5 8, 5 7 5, 3 8 4, 1 6 4,				
-6 10 6, 0 1 2, 4 5 1, 7 12 5, 1 3 6, -7 8 1,				
-3 4 2, -1 2 3, -8 13 1, 2 5 2, 0 8 3, 2 10 2,				
8 8 3, 7 10 1, 1 2 12, 3 14 3, -5 6 10, -1 9 5,				
-4 7 2, 4 10 7, -3 12 8, 2 5 8, -5 10 4, -6 9 2,				
2 6 7, -9 10 2, 5 9 3, 5 10 1, -1 4 8, -7 12 4,				
-4 12 1, 0 6 0, -3 10 2, -2 6 0, 0 4 4, -6 9 5,				
-6 8 2, 2 5 4, 3 7 7, 0 6 5, 2 11 4, 0 3 5,				
1 3 10, 6 13 6,				
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity			3.8	Low
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value			5.222	Note
Predicted wR2: Based on Sigi**2 5.43 or SHELX Weight 27.22				
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.			0	Info
PLAT984_ALERT_1_G The C-f' = 0.0147 Deviates from the B&C-Value			0.0137	Check
PLAT984_ALERT_1_G The N-f' = 0.0253 Deviates from the B&C-Value			0.0241	Check
PLAT984_ALERT_1_G The O-f' = 0.0412 Deviates from the B&C-Value			0.0389	Check
PLAT984_ALERT_1_G The Pb-f' = -4.2646 Deviates from the B&C-Value			-4.4950	Check
PLAT985_ALERT_1_G The Al-f" = 0.1843 Deviates from the B&C-Value			0.1873	Check
PLAT985_ALERT_1_G The Pb-f" = 7.1982 Deviates from the B&C-Value			6.8412	Check
PLAT985_ALERT_1_G The S-f" = 0.4242 Deviates from the B&C-Value			0.4295	Check

1 ALERT level A = Most likely a serious problem - resolve or explain				
13 ALERT level B = A potentially serious problem, consider carefully				
39 ALERT level C = Check. Ensure it is not caused by an omission or oversight				
101 ALERT level G = General information/check it is not something unexpected				
13 ALERT type 1 CIF construction/syntax error, inconsistent or missing data				
58 ALERT type 2 Indicator that the structure model may be wrong or deficient				
20 ALERT type 3 Indicator that the structure quality may be low				
52 ALERT type 4 Improvement, methodology, query or suggestion				
11 ALERT type 5 Informative message, check				

checkCIF publication errors

🔴 Alert level A

PUBL004_ALERT_1_A The contact author's name and address are missing, _publ_contact_author_name and _publ_contact_author_address.

PUBL005_ALERT_1_A _publ_contact_author_email, _publ_contact_author_fax and _publ_contact_author_phone are all missing.
At least one of these should be present.

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.

PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
 Abstract of paper in English.

7 **ALERT level A** = Data missing that is essential or data in wrong format
0 **ALERT level G** = General alerts. Data that may be required is missing

Publication of your CIF

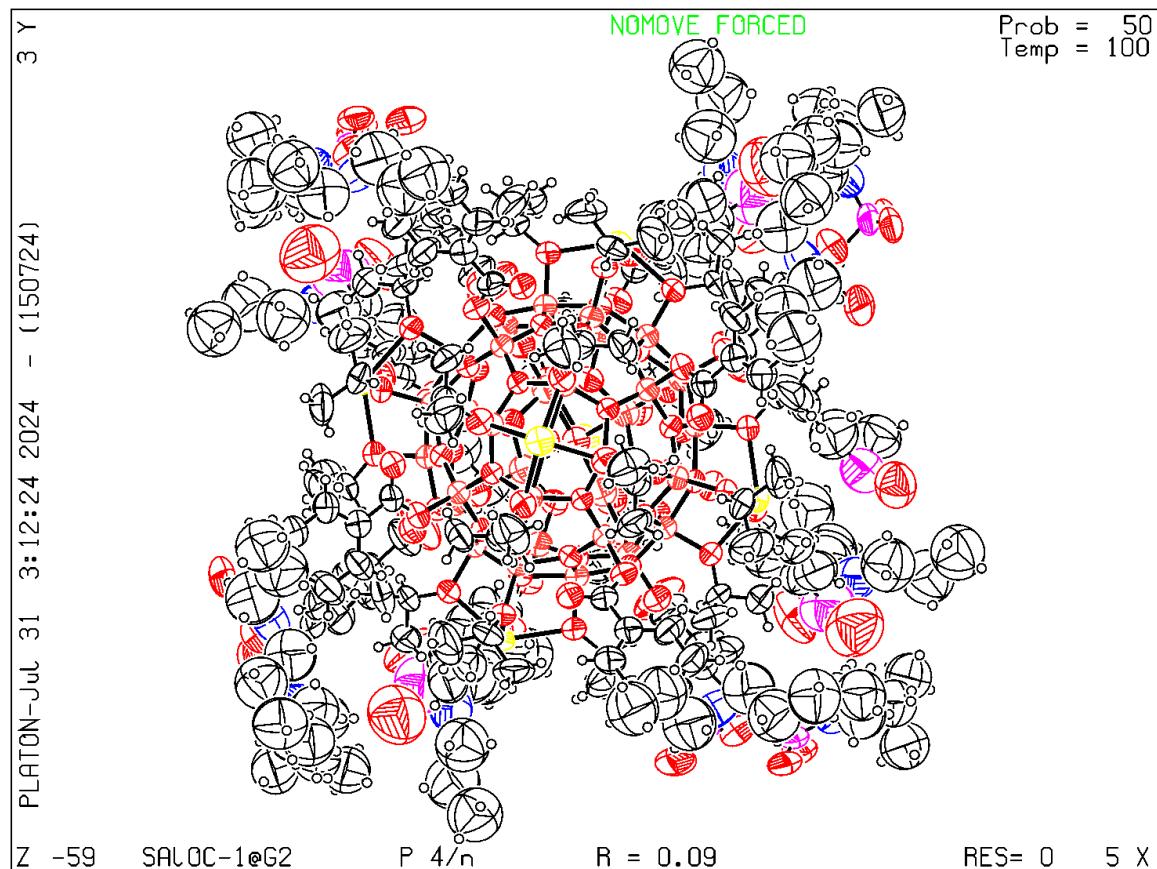
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
```


```
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 15/07/2024; check.def file version of 15/07/2024

Datablock SAIOC-1@G2 - ellipsoid plot

