

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G9

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SAIOC-1@G9

Bond precision:	C-C = 0.0125 Å	Wavelength=1.34050	
Cell:	a=30.3099 (3) alpha=90	b=30.3099 (3) beta=90	c=19.6250 (3) gamma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	18029.3 (4)	18029.3 (5)	
Space group	P 4/n	P 4/n	
Hall group	-P 4a	-P 4a	
Moiety formula	C216 H362 Al32 N12 O110 Pb6 S12, 3(C12 H17 B O2) [+ solvent]	C216 H362 Al32 N12 O110 Pb6 S12, 3(C12 H17 B O2)	
Sum formula	C252 H413 Al32 B3 N12 O116 Pb6 S12 [+ solvent]	C252 H413 Al32 B3 N12 O116 Pb6 S12	
Mr	7990.68	7990.57	
Dx, g cm ⁻³	1.472	1.472	
Z	2	2	
Mu (mm ⁻¹)	4.946	5.085	
F000	8104.0	8104.0	
F000'	8084.02		
h, k, lmax	39, 39, 25	39, 39, 25	
Nref	20531	19912	
Tmin, Tmax		1.000, 1.000	
Tmin'			

Correction method= # Reported T Limits: Tmin=1.000 Tmax=1.000
AbsCorr = SPHERE

Data completeness= 0.970 Theta (max) = 60.200

R(reflections)= 0.0664(14319)

wR2 (reflections)=
0.1980(19912)

S = 1.067

Npar= 1004

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

 Alert level A

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.87Ang From Pb01

4.48 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.85Ang From Pb02

4.23 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.90Ang From Pb03

4.08 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.99Ang From Pb02

4.01 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 1.00Ang From Pb01

3.65 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb02 2.49 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb01 2.41 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

🟡 Alert level B

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.95Ang From Pb03 2.81 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Pb03 1.77 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

🟡 Alert level C

RADNW01_ALERT_1_C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150
Wavelength given = 1.34050

PLAT094_ALERT_2_C	Ratio of Maximum / Minimum Residual Density	2.94 Report
PLAT213_ALERT_2_C	Atom O8 has ADP max/min Ratio	3.3 prolat
PLAT220_ALERT_2_C	NonSolvent Resd 1 C Ueq(max) / Ueq(min) Range	4.2 Ratio
PLAT220_ALERT_2_C	NonSolvent Resd 1 O Ueq(max) / Ueq(min) Range	5.6 Ratio
PLAT222_ALERT_3_C	NonSolvent Resd 1 H Uiso(max) / Uiso(min) Range	6.0 Ratio
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C02H Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	S00D Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	S01Z Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	N01C Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	N01S Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C016 Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C01B Check

```

PLAT242_ALERT_2_C Low      'MainMol' Ueq as Compared to Neighbors of      C01I Check
PLAT242_ALERT_2_C Low      'MainMol' Ueq as Compared to Neighbors of      C025 Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including      001V      0.113 Check
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds .....      0.01249 Ang.
PLAT360_ALERT_2_C Short  C(sp3)-C(sp3) Bond  C028      - C02J      .      1.42 Ang.
PLAT361_ALERT_2_C Long   C(sp3)-C(sp3) Bond  C18       - C02H      .      1.65 Ang.
PLAT414_ALERT_2_C Short  Intra D-H...H-X      H00M      ..H016      .      1.99 Ang.

3/2-y,x,z = 3_655 Check

PLAT767_ALERT_4_C INS Embedded LIST 6 Instruction Should be LIST 4      Please Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600      78 Report
      0 2 0, 2 2 0, -1 3 0, 3 3 0, -6 8 0, 22 28 0,
      21 29 0, 20 30 0, 5 35 0, 4 36 0, -3 4 1, 0 4 1,
      1 6 1, -6 7 1, 0 9 1, 9 11 1, 21 29 1, 0 0 2,
      0 1 2, 0 3 2, 1 3 2, 2 4 2, 4 4 2, -2 5 2,
      -3 6 2, -1 7 2, 0 8 2, -6 9 2, -5 9 2, -1 9 2,
      6 9 2, -2 10 2, 0 2 3, 2 2 3, -2 5 3, -6 7 3,
      -5 7 3, 7 35 3, 8 35 3, 3 3 4, 1 6 4, -2 7 4,
      0 11 4, 8 34 4, 9 34 4, 10 34 4, 1 2 5, 2 7 5,
      3 7 5, 9 32 5, 10 32 5, 11 32 5, 9 33 5, 10 33 5,
      9 34 5, -3 8 6, -1 8 6, 4 9 6, 6 9 6, 9 12 6,
      -3 13 6, 1 14 6, 0 15 6, 10 30 6, 11 30 6, 10 31 6,
      -5 11 7, -4 5 8, -15 26 11, -14 26 13, -12 24 15, -12 25 15,
      -11 24 16, -8 12 20, -7 12 20, -9 11 21, -8 11 21, -8 12 21,
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.03Ang From Pb02      2.16 eA-3

```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

```
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.04Ang From Pb01      2.11 eA-3
```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

```
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.11Ang From Pb01      2.05 eA-3
```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

```
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.12Ang From Pb03      1.96 eA-3
```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.00Ang From Pb01 1.93 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.12Ang From Pb01 1.63 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT975_ALERT_2_C Check Calcd Resid. Dens. 1.04Ang From O00 .	0.96 eA-3
PLAT976_ALERT_2_C Check Calcd Resid. Dens. 0.73Ang From O010 .	-0.47 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H16D .	-0.32 eA-3

● Alert level G		
ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type.		
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	2 Note	
PLAT003_ALERT_2_G Number of Uiso or U(i,j) Restrained non-H Atoms	69 Report	
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms H00M H00W	2 Report	
PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by .	2.73 %	
PLAT069_ALERT_1_G Atom Label Without Numerical Part	H Do !	
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large	0.12 Report	
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	1 Report	
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records	2 Report	
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	2 Report	
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records	2 Report	
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100 Report	
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100 Report	
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200 Report	
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200 Report	
PLAT299_ALERT_4_G Atom Site Occupancy Constrained at	0.5 Check	
C1 C27 C30 C31 H1A H1B H1C	H6	
H16A H16B H16C H16D H27A H27B H27C		H30A
H30B H30C H31A H31B H31C Hs Ht		
PLAT300_ALERT_4_G Atom Site Occupancy of O01V Constrained at	0.75 Check	
PLAT300_ALERT_4_G Atom Site Occupancy of O01X Constrained at	0.75 Check	
PLAT300_ALERT_4_G Atom Site Occupancy of C22 Constrained at	0.75 Check	
PLAT300_ALERT_4_G Atom Site Occupancy of C28 Constrained at	0.75 Check	
PLAT300_ALERT_4_G Atom Site Occupancy of C02C Constrained at	0.75 Check	

PLAT300_ALERT_4_G	Atom Site Occupancy of C02D	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02E	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02F	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02G	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02R	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02P	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02T	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02X	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of C02S	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of B02W	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H7	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H8	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H9	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H10	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H11	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H12	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H13	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H22	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of H28	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of Ha	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of Hb	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of Hc	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of Hd	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of He	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of Ho	Constrained at	0.75	Check			
PLAT300_ALERT_4_G	Atom Site Occupancy of Hp	Constrained at	0.75	Check			
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd 1)	2%	Note			
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder	(Resd 2)	100%	Note			
PLAT395_ALERT_2_G	Deviating X-O-Y Angle From 120 for O01V	.	105.1	Degree			
PLAT395_ALERT_2_G	Deviating X-O-Y Angle From 120 for O01X	.	106.4	Degree			
PLAT412_ALERT_2_G	Short Intra XH3 .. XHn	H1C ..H02D	.	2.08 Ang.			
		x,y,z =	1_555	Check			
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H5 ..H12	.	2.14 Ang.			
		x,y,z =	1_555	Check			
PLAT605_ALERT_4_G	Largest Solvent Accessible VOID in the Structure		93	A**3			
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels		172	Note			
Pb01	Pb02	Pb03	A100	S00C	S00D	00F	OOG
O0H	O0I	O0J	O0K	O0L	O00M	H00M	O0N
O0O	O0P	O0Q	O0R	O00S	O00T	O00U	O00V
O00W	H00W	O00X	O00Y	O00Z	O010	O011	C012
O013	O014	O015	C016	H016	C019	C01B	H01B
N01C	C01D	H01D	O01E	C01G	C01I	H01I	C01K
H01A	H01C	H01E	C01O	H01O	C01M	H01M	C017
C01A	H01F	C01J	H01J	C01L	C01P	H01G	H01H
H01K	C01R	H01R	N01S	N01T	O01V	C01W	H01L
H01N	H01P	O01X	C01Y	H01Y	C01U	C022	H022
C029	H029	C025	C026	H026	S01Z	C020	H02A
H02B	H02C	C021	H02D	H02E	C023	H023	C01Q
H01Q	C018	C01F	H01S	C01H	H01T	C01N	C024
H02F	H02G	H02H	C027	H02I	H02J	H02K	C028
H02L	H02M	C02A	H02N	H02O	H02P	C02B	H02Q
H02R	C02C	Ha	C02D	Hb	Hc	C02E	Hd
He	C02F	C02G	C02H	H02S	H02T	C02I	H02U
H02V	H02W	C02J	H02X	H02Y	C02K	H02Z	Hf
Hg	C02L	H02	Hh	C02M	Hi	C02N	Hj
Hk	C02O	H1	C02Q	Hm	Hn	C02R	C02P

	C02T	C02X	C02S	Ho	Hp	C02U	Hq	Hr
	C02V	Hs	Ht	B02W				
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -PB02	2_665	1_555	1_555	#	221	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -PB02	3_655	1_555	1_555	#	222	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -PB02	4_565	1_555	1_555	#	223	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	4_565	1_555	1_555	#	224	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	2_665	1_555	4_565	#	225	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	3_655	1_555	3_655	#	226	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	2_665	1_555	2_665	#	227	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	4_565	1_555	3_655	#	228	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	2_665	1_555	3_655	#	229	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	2_665	1_555	1_555	#	230	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	3_655	1_555	1_555	#	231	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	4_565	1_555	4_565	#	232	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	3_655	1_555	2_665	#	233	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	4_565	1_555	2_665	#	234	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -AL00	3_655	1_555	4_565	#	235	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -000	4_565	1_555	2_665	#	236	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -000	4_565	1_555	3_655	#	237	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF	...						0.00 Deg.
	000 -000 -000	3_655	1_555	2_665	#	238	Check
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb02	(II)	.	.				2.00 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb03	(II)	.	.				2.08 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al00	(III)	.	.				2.74 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al12	(III)	.	.				2.77 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al14	(III)	.	.				2.76 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al15	(III)	.	.				2.80 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al16	(III)	.	.				2.81 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al17	(III)	.	.				2.79 Info
PLAT860_ALERT_3_G	Number of Least-Squares Restraints						562 Note
PLAT868_ALERT_4_G	ALERTS Due to the Use of _smtbx_masks Suppressed							! Info
PLAT910_ALERT_3_G	Missing # of FCF Reflection(s) Below Theta(Min).							1 Note
	1 1 0,							
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above STh/L= 0.600							539 Note
PLAT913_ALERT_3_G	Missing # of Very Strong Reflections in FCF						1 Note
	1 1 0,							
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in Embedded .res File							49 Note
	-3 4 1, 2 2 3, -6 7 3, 15 32 10, -5 7 3, 1 14 6,							
	-2 5 2, 0 2 0, 1 3 2, -6 8 0, 1 2 5, 0 8 2,							
	2 4 2, 2 2 0, 0 3 2, -6 9 2, 3 3 4, -3 6 2,							

```

-2 7 4,   6 9 6,  -1 9 2,  -2 10 2,  -2 5 3,  3 3 0,
-3 13 6,  -1 8 6,  0 4 1,  4 4 2,  -5 11 7,  0 11 4,
 1 6 4,  -5 9 2,  6 9 2,  9 12 6,  -3 8 6,  9 11 1,
 2 7 5,  0 15 6,  -1 3 0,  -6 7 1,  0 9 1,  3 7 5,
-1 7 2,  0 0 2,  0 1 2,  0 2 3,  4 9 6,  1 6 1,
-4 5 8,
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ..... 4.5 Low
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value ..... 3.810 Note
Predicted wR2: Based on SigI**2 5.20 or SHELX Weight 18.56
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 0 Info
PLAT984_ALERT_1_G The C-f' = 0.0150 Deviates from the B&C-Value 0.0137 Check
PLAT984_ALERT_1_G The Al-f' = 0.1760 Deviates from the B&C-Value 0.1771 Check
PLAT984_ALERT_1_G The O-f' = 0.0410 Deviates from the B&C-Value 0.0389 Check
PLAT984_ALERT_1_G The Pb-f' = -4.2650 Deviates from the B&C-Value -4.4950 Check
PLAT985_ALERT_1_G The Al-f" = 0.1840 Deviates from the B&C-Value 0.1873 Check
PLAT985_ALERT_1_G The Pb-f" = 7.1980 Deviates from the B&C-Value 6.8412 Check
PLAT985_ALERT_1_G The S-f" = 0.4240 Deviates from the B&C-Value 0.4295 Check

```

```

7 ALERT level A = Most likely a serious problem - resolve or explain
2 ALERT level B = A potentially serious problem, consider carefully
31 ALERT level C = Check. Ensure it is not caused by an omission or oversight
98 ALERT level G = General information/check it is not something unexpected

```

```

11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
44 ALERT type 2 Indicator that the structure model may be wrong or deficient
12 ALERT type 3 Indicator that the structure quality may be low
61 ALERT type 4 Improvement, methodology, query or suggestion
10 ALERT type 5 Informative message, check

```

checkCIF publication errors

🔴 Alert level A

```

PUBL004_ALERT_1_A The contact author's name and address are missing,
    _publ_contact_author_name and _publ_contact_author_address.
PUBL005_ALERT_1_A _publ_contact_author_email, _publ_contact_author_fax and
    _publ_contact_author_phone are all missing.
    At least one of these should be present.
PUBL006_ALERT_1_A _publ_requested_journal is missing
    e.g. 'Acta Crystallographica Section C'
PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
    Abstract of paper in English.

```

```

7 ALERT level A = Data missing that is essential or data in wrong format
0 ALERT level G = General alerts. Data that may be required is missing

```

Publication of your CIF

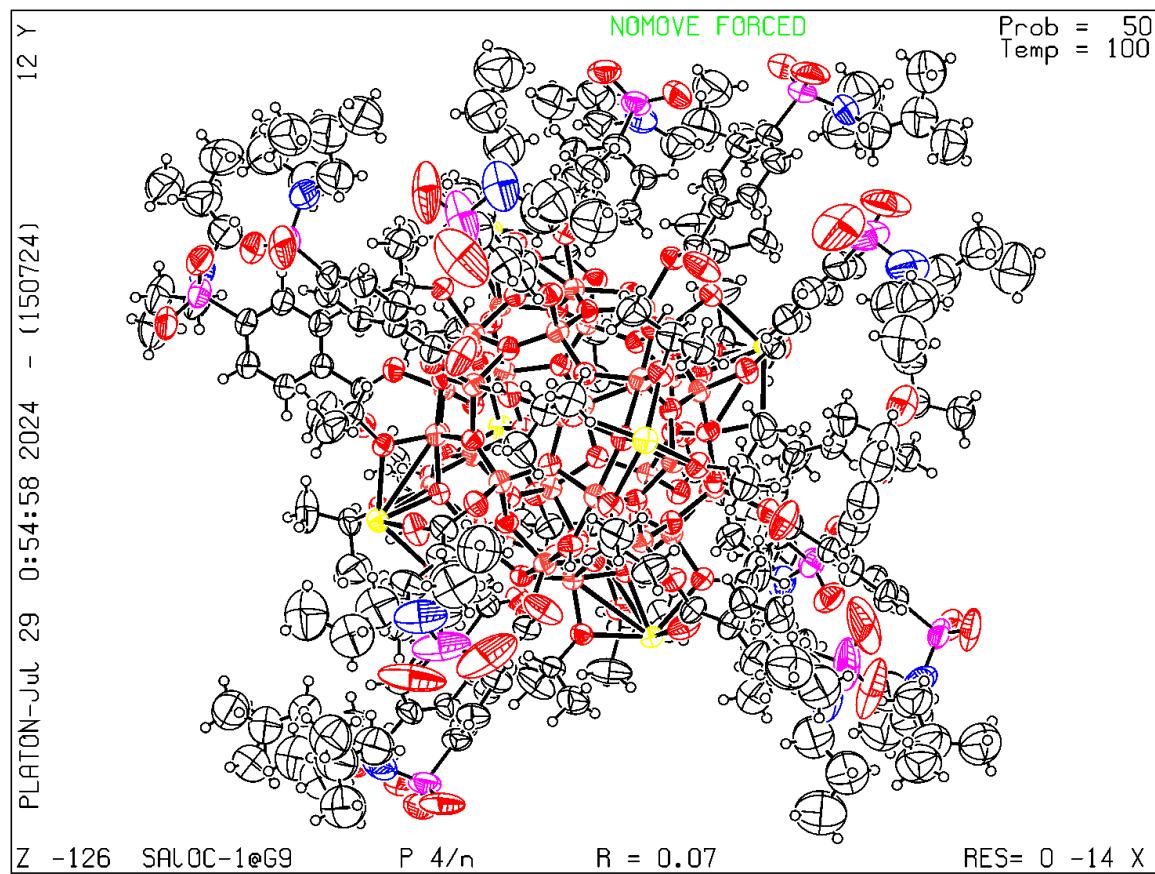
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
```


```
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 15/07/2024; check.def file version of 15/07/2024

Datablock SAIOC-1@G9 - ellipsoid plot

