

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G4

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SAIOC-1@G4

Bond precision:	C-C = 0.0121 Å	Wavelength=1.34050	
Cell:	a=30.0800 (2) alpha=90	b=30.0800 (2) beta=90	c=19.6522 (2) gamma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	17781.4 (3)	17781.4 (3)	
Space group	P 4/n	P 4/n	
Hall group	-P 4a	-P 4a	
Moiety formula	C216 H362 Al32 N12 O110 Pb6 S12, 3(C10 H18 O) [+ solvent]	C216 H362 Al32 N12 O110 Pb6 S12, 3(C10 H18 O)	
Sum formula	C246 H416 Al32 N12 O113 Pb6 S12 [+ solvent]	C246 H416 Al32 N12 O113 Pb6 S12	
Mr	7841.21	7841.10	
Dx, g cm ⁻³	1.464	1.465	
Z	2	2	
Mu (mm ⁻¹)	5.004	5.144	
F000	7960.0	7960.0	
F000'	7939.61		
h, k, lmax	35, 35, 23	35, 33, 23	
Nref	15177	15118	
Tmin, Tmax		1.000, 1.000	
Tmin'			

Correction method= # Reported T Limits: Tmin=1.000 Tmax=1.000
AbsCorr = SPHERE

Data completeness= 0.996 Theta (max) = 52.047

R(reflections)= 0.0481(12843)

wR2 (reflections)=
0.1360(15118)

S = 1.025

Npar= 976

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

PLAT220_ALERT_2_B NonSolvent Resd 1 C Ueq(max) /Ueq(min) Range 7.6 Ratio

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C27 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of N2 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

Alert level C

RADNW01_ALERT_1_C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150
Wavelength given = 1.34050

THETM01_ALERT_3_C The value of sine(theta_max)/wavelength is less than 0.590
Calculated sin(theta_max)/wavelength = 0.5882

PLAT220_ALERT_2_C NonSolvent Resd 1 O Ueq(max) /Ueq(min) Range 5.7 Ratio

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range 10.0 Ratio
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C3 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C4 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C52 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C53 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of N1 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of N3 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C2 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C32 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C35 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C41 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT260_ALERT_2_C Large Average Ueq of Residue Including	065	0.193	Check
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds		0.01215	Ang.
PLAT412_ALERT_2_C Short Intra XH3 .. XHn	H25B	..H27B	.
		x,y,z	= 1_555
PLAT414_ALERT_2_C Short Intra D-H..H-X	H18	..H41	.
		3/2-y,x,z	= 3_655
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance		2.743	Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=	0.588	56	Report
2 2 0, 1 3 0, 3 3 0, 1 5 0, 0 6 0, 0 2 1,			
1 2 1, -1 3 1, 0 3 1, 0 5 1, 2 5 1, 3 6 1,			
2 9 1, -7 10 1, 10 13 1, 0 0 2, 0 2 2, -2 3 2,			
1 3 2, -1 4 2, 3 4 2, 1 5 2, 3 5 2, 3 6 2,			
-5 7 2, 4 7 2, 1 9 2, 7 11 2, 7 13 2, 0 0 3,			
2 5 3, 0 6 3, 4 7 3, 5 7 3, -2 12 3, 3 14 3,			
0 3 4, 3 3 4, 4 4 4, -1 6 4, 2 6 4, -4 12 4,			
-2 12 4, -4 5 5, -4 7 5, 3 5 6, 2 6 6, 5 6 6,			
-7 9 6, 1 9 6, 11 15 6, 4 8 7, 0 10 7, 8 10 7,			
16 18 11, 17 19 11,			
PLAT973_ALERT_2_C Check Calcd Positive Resid. Density on	Pb3	1.46	eA-3
PLAT973_ALERT_2_C Check Calcd Positive Resid. Density on	Pb2	1.39	eA-3
PLAT973_ALERT_2_C Check Calcd Positive Resid. Density on	Pb1	1.01	eA-3
PLAT976_ALERT_2_C Check Calcd Resid. Dens. 1.05Ang From O25	.	-0.44	eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H18	.	-0.39	eA-3

● Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu			
not performed for this radiation type.			
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	12	Note	
PLAT003_ALERT_2_G Number of Uiso or U(i,j) Restrained non-H Atoms	70	Report	
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	3	Report	
H5 H18 H65			
PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by .	2.72	%	
PLAT069_ALERT_1_G Atom Label Without Numerical Part	Al	Do !	
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large	29.55	Why ?	
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	10	Report	
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records	3	Report	
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	3	Report	
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records	2	Report	
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100	Report	
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100	Report	
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0010	Report	
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200	Report	
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200	Report	
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for First Par	0.0010	Report	
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0020	Report	
PLAT299_ALERT_4_G Atom Site Occupancy Constrained at	0.5	Check	
C6 C7 C55 C56 H5BA H5BB H5A H6A			
H6B H6C H7A H7B H7C H54A H54B H54C			

	H54D	H55A	H55B	H55C	H56A	H56B	H56C	
PLAT300_ALERT_4_G	Atom Site Occupancy of O65					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C30					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C57					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C58					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C59					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C60					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C61					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C62					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C63					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C64					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C66					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H30A					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H30B					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H30C					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H57A					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H57B					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H57C					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H59A					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H59B					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H60A					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H60B					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H61					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H62A					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H62B					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H63					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H65					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H66A					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H66B					Constrained at		0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H66C					Constrained at		0.75 Check
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd	1)					2% Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder	(Resd	2)					100% Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in	(Resd	2)					21.75 Check
PLAT343_ALERT_2_G	Unusual sp3	Angle Range in Main Residue for						C27 Check
PLAT367_ALERT_2_G	Long? C(sp?) - C(sp?) Bond	C4		- C5		.		1.51 Ang.
PLAT410_ALERT_2_G	Short Intra H...H Contact	H53A		..H54B		.		2.05 Ang.
				x,y,z =			1_555	Check
PLAT410_ALERT_2_G	Short Intra H...H Contact	H53B		..H54A		.		2.05 Ang.
				x,y,z =			1_555	Check
PLAT412_ALERT_2_G	Short Intra XH3 .. XHn	H51B		..H56B		.		2.03 Ang.
				x,y,z =			1_555	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H1C		..H6B		.		1.82 Ang.
				1/2+y,1-x,1-z =			7_666	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H29A		..H56C		.		1.87 Ang.
				-1/2+y,1-x,1-z =			7_566	Check
PLAT415_ALERT_2_G	Short Inter D-H...H-X	H26A		..H65		.		1.87 Ang.
				-1/2+y,1-x,1-z =			7_566	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact	O65		..C26		.		3.00 Ang.
				1-y,1/2+x,1-z =			8_666	Check
PLAT605_ALERT_4_G	Largest Solvent Accessible VOID in the Structure							98 A**3
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels							3 Note
	A100	H5BA	H5BB					
PLAT793_ALERT_4_G	Model has Chirality at C61				(Centro SpGr)			S Verify
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb1			(II)		.		2.09 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb3			(II)		.		2.03 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A100			(III)		.		2.74 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A12			(III)		.		2.81 Info

PLAT794_ALERT_5_G Tentative Bond Valency for A13	(III)	.	2.82	Info
PLAT794_ALERT_5_G Tentative Bond Valency for A14	(III)	.	2.75	Info
PLAT794_ALERT_5_G Tentative Bond Valency for A15	(III)	.	2.80	Info
PLAT794_ALERT_5_G Tentative Bond Valency for A16	(III)	.	2.82	Info
PLAT802_ALERT_4_G CIF Input Record(s) with more than 80 Characters			6	Info
PLAT860_ALERT_3_G Number of Least-Squares Restraints			469	Note
PLAT868_ALERT_4_G ALERTS Due to the Use of _smtbx_masks Suppressed			!	Info
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .			Please Do !	
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still			67%	Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).			3	Note
1 1 0, 0 0 1, 0 1 1,				
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF			1	Note
1 1 0,				
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File			53	Note
3 6 1, 2 2 0, 2 6 4, 8 10 7, 1 9 2, 7 13 2,				
2 6 6, 3 3 4, 2 5 3, 0 6 3, -4 12 4, 4 7 2,				
2 9 1, 4 7 3, 4 4 4, 1 9 6, 0 2 1, -5 7 2,				
-4 5 5, 0 3 4, -2 12 4, 10 13 1, 3 14 3, -1 4 2,				
3 4 2, 3 6 2, 3 5 2, 0 10 7, -2 3 2, 5 7 3,				
7 11 2, 11 15 6, -1 6 4, -4 7 5, 3 5 6, 5 6 6,				
-2 12 3, 4 8 7, -7 9 6, 1 3 0, 1 5 2, 1 5 0,				
3 3 0, 1 2 1, 0 2 2, 1 3 2, 0 5 1, 0 6 0,				
0 3 1, -7 10 1,				
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity			3.3	Low
PLAT951_ALERT_5_G Calculated (ThMax) and CIF-Reported Kmax Differ			2	Units
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value			3.597	Note
Predicted wR2: Based on Sigi**2 3.78 or SHELX Weight 13.28				
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.			0	Info
PLAT984_ALERT_1_G The C-f' = 0.0147 Deviates from the B&C-Value			0.0137	Check
PLAT984_ALERT_1_G The N-f' = 0.0253 Deviates from the B&C-Value			0.0241	Check
PLAT984_ALERT_1_G The O-f' = 0.0412 Deviates from the B&C-Value			0.0389	Check
PLAT984_ALERT_1_G The Pb-f' = -4.2646 Deviates from the B&C-Value			-4.4950	Check
PLAT985_ALERT_1_G The Al-f" = 0.1843 Deviates from the B&C-Value			0.1873	Check
PLAT985_ALERT_1_G The Pb-f" = 7.1982 Deviates from the B&C-Value			6.8412	Check
PLAT985_ALERT_1_G The S-f" = 0.4242 Deviates from the B&C-Value			0.4295	Check

0 **ALERT level A** = Most likely a serious problem - resolve or explain

3 **ALERT level B** = A potentially serious problem, consider carefully

25 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

90 **ALERT level G** = General information/check it is not something unexpected

12 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

36 ALERT type 2 Indicator that the structure model may be wrong or deficient

18 ALERT type 3 Indicator that the structure quality may be low

41 ALERT type 4 Improvement, methodology, query or suggestion

11 ALERT type 5 Informative message, check

checkCIF publication errors

🔴 Alert level A

PUBL004_ALERT_1_A The contact author's name and address are missing, _publ_contact_author_name and _publ_contact_author_address.

```
PUBL005_ALERT_1_A _publ_contact_author_email, _publ_contact_author_fax and
    _publ_contact_author_phone are all missing.
    At least one of these should be present.
PUBL006_ALERT_1_A _publ_requested_journal is missing
    e.g. 'Acta Crystallographica Section C'
PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
    Abstract of paper in English.
```

7 **ALERT level A** = Data missing that is essential or data in wrong format
0 **ALERT level G** = General alerts. Data that may be required is missing

Publication of your CIF

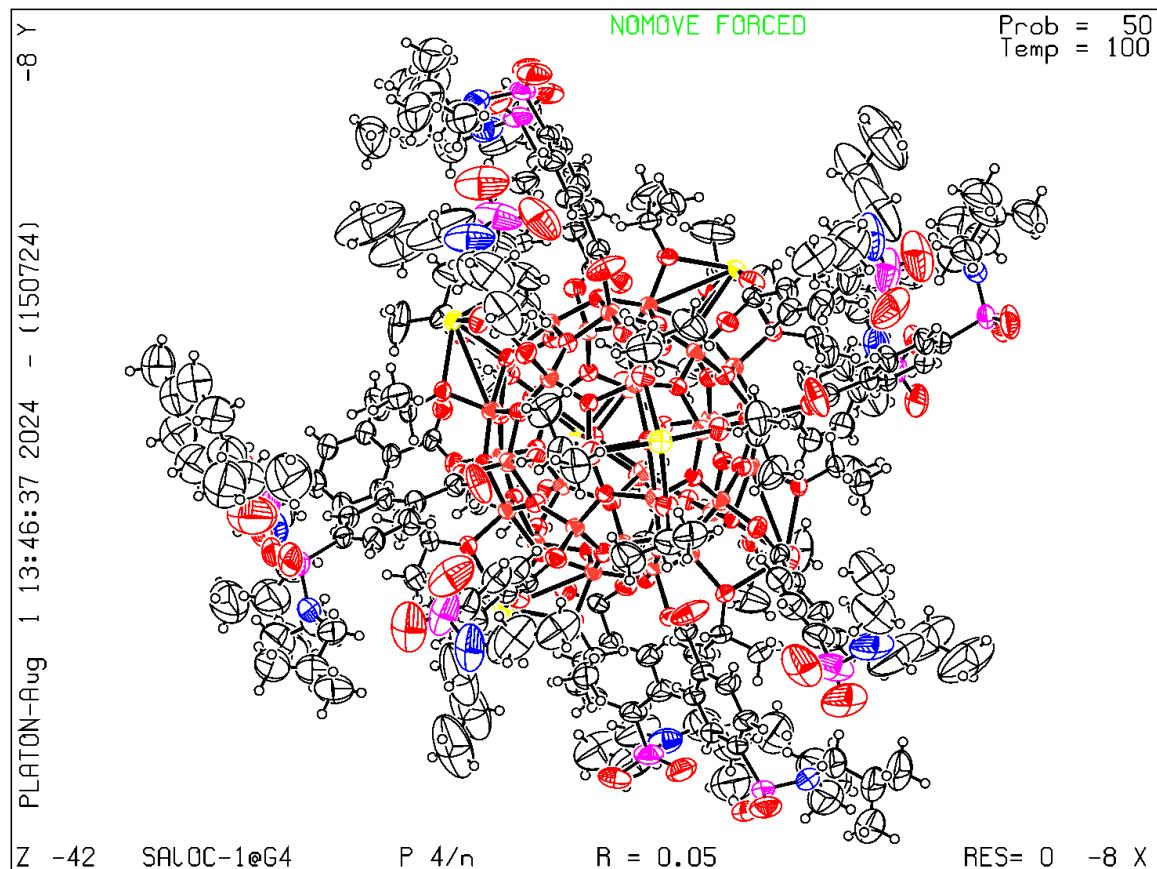
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
```


```
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 15/07/2024; check.def file version of 15/07/2024

Datablock SAIOC-1@G4 - ellipsoid plot

