

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G8

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SAIOC-1@G8

Bond precision:	C-C = 0.0342 Å	Wavelength=1.34050	
Cell:	a=30.0958 (6) alpha=90	b=30.0958 (6) beta=90	c=19.3547 (5) gamma=90
Temperature:	113 K		
	Calculated	Reported	
Volume	17530.7 (8)	17530.7 (8)	
Space group	P 4/n	P 4/n	
Hall group	-P 4a	-P 4a	
Moiety formula	C216 H364 Al32 N12 O110 Pb6 S12, 2(C7 H7 O), 3(C7 H8 O) [+ solv]	C216 H364 Al32 N12 O110 Pb6 S12, 3(C7 H8 O), 2(C7 H7 O)	
Sum formula	C251 H402 Al32 N12 O115 Pb6 S12 [+ solvent]	C251 H402 Al32 N12 O115 Pb6 S12	
Mr	7919.15	7919.04	
Dx, g cm ⁻³	1.500	1.500	
Z	2	2	
Mu (mm ⁻¹)	5.083	5.225	
F000	8024.0	8024.0	
F000'	8003.89		
h, k, lmax	35, 35, 22	34, 35, 22	
Nref	14970	14853	
Tmin, Tmax		1.000, 1.000	
Tmin'			

Correction method= # Reported T Limits: Tmin=1.000 Tmax=1.000
AbsCorr = SPHERE

Data completeness= 0.992 Theta (max) = 52.048

R(reflections)= 0.1076(9225)

wR2 (reflections)=
0.3415(14853)

S = 1.077

Npar= 985

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

 Alert level A

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.90Ang From Pb2

4.36 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.92Ang From Pb1

4.01 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.94Ang From Pb2

3.73 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on

Pb1

5.57 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on

Pb2

5.26 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on

Pb3

3.77 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

 Alert level B

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of

C13 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of

C53 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of

N1 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of

N3 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of

C18 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds 0.03417 Ang.

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.20Ang From Pb2 3.49 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.10Ang From Pb3 3.48 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.94Ang From Pb2 3.22 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.97Ang From Pb3 2.83 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.20Ang From Pb1

2.82 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.14Ang From Pb1

2.81 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.97Ang From Pb2

2.74 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.03Ang From Pb2

2.60 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

Alert level C

RADNW01_ALERT_1_C	The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150	
	Wavelength given = 1.34050	
THETM01_ALERT_3_C	The value of sine(theta_max)/wavelength is less than 0.590	
	Calculated sin(theta_max)/wavelength = 0.5882	
PLAT082_ALERT_2_C	High R1 Value	0.11 Report
PLAT084_ALERT_3_C	High wR2 Value (i.e. > 0.25)	0.34 Report
PLAT094_ALERT_2_C	Ratio of Maximum / Minimum Residual Density	3.62 Report
PLAT213_ALERT_2_C	Atom O5 has ADP max/min Ratio	3.5 prolat
PLAT220_ALERT_2_C	NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range	4.3 Ratio
PLAT220_ALERT_2_C	NonSolvent Resd 1 O Ueq(max)/Ueq(min) Range	4.4 Ratio
PLAT222_ALERT_3_C	NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range	6.1 Ratio
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	O24 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C14 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C32 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C46 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C52 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of S1 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of S3 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C21 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C24 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C40 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C44 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

```

PLAT260_ALERT_2_C Large Average Ueq of Residue Including      Pb1      0.119 Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including      O30      0.117 Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including      O31      0.160 Check
PLAT412_ALERT_2_C Short Intra XH3 .. XHn      H50B      ..H52B      .      1.88 Ang.
                                         x,y,z =      1_555 Check
PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ...      -4.360 Report
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/I=      0.588      117 Report
      -1 3 0, -2 4 0, -16 18 0, 22 22 0, 23 23 0, -9 25 0,
      1 25 0, 3 31 0, -12 32 0, -4 32 0, 14 32 0, 0 0 1,
      -2 3 1, 1 4 1, -2 5 1, -3 7 1, -3 8 1, 20 22 1,
      21 22 1, -10 23 1, -2 24 1, 12 25 1, -14 27 1, -3 28 1,
      -16 30 1, -15 31 1, -14 31 1, -12 32 1, -11 32 1, -1 32 1,
      4 34 1, 0 1 2, -1 2 2, -1 5 2, 2 7 2, -12 20 2,
      13 21 2, 4 34 2, 19 19 3, 14 24 3, -9 25 3, -10 27 3,
      -15 28 3, 1 29 3, 2 29 3, 11 31 3, -2 32 3, -20 22 4,
      -2 23 4, -8 24 4, -21 27 4, 1 28 4, 2 28 4, 3 28 4,
      -17 29 4, 8 29 4, 2 32 4, 6 33 4, 0 2 5, 11 19 5,
      17 21 5, 0 22 5, -19 25 5, -12 25 5, -9 25 5, 13 25 5,
      4 27 5, 1 29 5, 0 30 5, 3 31 5, -11 15 6, 8 17 6,
      -18 19 6, 19 19 6, 18 20 6, -20 22 6, -17 23 6, -13 23 6,
      -16 24 6, -8 27 6, 1 27 6, 0 28 6, 1 29 6, -11 15 7,
      9 16 7, 10 16 7, 17 17 7, -16 18 7, 16 18 7, -20 21 7,
      -11 21 7, -18 22 7, 11 22 7, -2 23 7, -16 24 7, -8 26 7,
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.08Ang From S1      2.39 eA-3

```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

```
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.03Ang From Pb3      2.02 eA-3
```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

```
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.87Ang From C15      1.95 eA-3
```

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT972_ALERT_2_C Check Calcd Resid. Dens. 1.99Ang From 08	-1.61 eA-3
PLAT975_ALERT_2_C Check Calcd Resid. Dens. 1.08Ang From 08	1.49 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H66	-0.37 eA-3

● Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type.	
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	17 Note
PLAT003_ALERT_2_G Number of Uiso or U(i,j) Restrained non-H Atoms	24 Report
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms H9 H23	2 Report
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check Calc: C216 H364 A132 N12 O110 Pb6 S12, 2(C7 H7 O), 3(C7 H8 O) Rep.: C216 H364 A132 N12 O110 Pb6 S12, 3(C7 H8 O), 2 (C7 H7 O)	
PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by .	2.72 %
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large	0.16 Report
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large	251.03 Why ?
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	15 Report
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records	5 Report
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	5 Report
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records	3 Report
PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records	1 Report
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT190_ALERT_3_G A Non-default RIGU Restraint Value for First Par	0.0100 Report
PLAT190_ALERT_3_G A Non-default RIGU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for First Par	0.0010 Report
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar	0.0020 Report
PLAT299_ALERT_4_G Atom Site Occupancy Constrained at O30 C57 C58 C59 C60 C61 C62 H57A H57B H57C H60 H61 H62 H63	0.5 Check C63
PLAT300_ALERT_4_G Atom Site Occupancy of C34 Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C33 Constrained at	0.25 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H34A Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H34B Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H34C Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H35A Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H35B Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H33A Constrained at	0.25 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H33B Constrained at	0.25 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H33C Constrained at	0.25 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H35C Constrained at	0.25 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H35D Constrained at	0.25 Check
PLAT300_ALERT_4_G Atom Site Occupancy of O31 Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C64 Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C65 Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C66 Constrained at	0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C67 Constrained at	0.75 Check

PLAT300_ALERT_4_G	Atom Site Occupancy of C68	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C69	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C70	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H64A	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H64B	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H64C	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H65	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H66	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H67	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H68	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H70	Constrained at	0.75	Check
PLAT301_ALERT_3_G	Main Residue Disorder(Resd 1)		1%	Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 2)		100%	Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 3)		100%	Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in(Resd 2)		7.50	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn H11A ..H33C .		1.97	Ang.
	x,y,-1+z =		1_554	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact C53 ..C61 .		3.20	Ang.
	x,y,z =		1_555	Check
PLAT605_ALERT_4_G	Largest Solvent Accessible VOID in the Structure		135	A**3
PLAT721_ALERT_1_G	Bond Calc 0.99000, Rep 0.97990 Dev...		0.01	Ang.
	C54 -H54A 1_555 1_555	#	266	Check
PLAT722_ALERT_1_G	Angle Calc 111.00, Rep 109.50 Dev...		1.50	Degree
	C53 -C55 -H55A 1_555 1_555 1_555 #		572	Check
PLAT722_ALERT_1_G	Angle Calc 108.00, Rep 109.40 Dev...		1.40	Degree
	H64A -C64 -H64C 1_555 1_555 1_555 #		582	Check
PLAT722_ALERT_1_G	Angle Calc 108.00, Rep 109.20 Dev...		1.20	Degree
	C35 -C33 -H33C 1_555 1_555 1_555 #		610	Check
PLAT722_ALERT_1_G	Angle Calc 111.00, Rep 109.50 Dev...		1.50	Degree
	H33A -C33 -H33B 1_555 1_555 1_555 #		611	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -PB1 3_655 1_555 1_555	#	219	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -PB1 4_565 1_555 1_555	#	220	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -PB1 2_665 1_555 1_555	#	221	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 3_655 1_555 3_655	#	222	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 4_565 1_555 3_655	#	223	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 3_655 1_555 4_565	#	224	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 4_565 1_555 4_565	#	225	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 2_665 1_555 3_655	#	226	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 2_665 1_555 4_565	#	227	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 2_665 1_555 2_665	#	228	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 4_565 1_555 2_665	#	229	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 4_565 1_555 1_555	#	230	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.
	O8 -O8 -AL1 3_655 1_555 2_665	#	231	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant (Bond) Angle(s) in CIF ...		0.00	Deg.

08	-08	-AL1	2_665	1_555	1_555	#	232	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant	(Bond)	Angle(s)	in CIF	...			0.00	Deg.
08	-08	-AL1	3_655	1_555	1_555	#	233	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant	(Bond)	Angle(s)	in CIF	...			0.00	Deg.
08	-08	-08	4_565	1_555	2_665	#	234	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant	(Bond)	Angle(s)	in CIF	...			0.00	Deg.
08	-08	-08	4_565	1_555	3_655	#	235	Check
PLAT779_ALERT_4_G	Suspect or Irrelevant	(Bond)	Angle(s)	in CIF	...			0.00	Deg.
08	-08	-08	3_655	1_555	2_665	#	236	Check
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb1	(II)	.					2.05	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb3	(II)	.					2.15	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al1	(III)	.					2.75	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al2	(III)	.					2.81	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al4	(III)	.					2.71	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al6	(III)	.					2.94	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al7	(III)	.					2.78	Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al8	(III)	.					2.88	Info
PLAT802_ALERT_4_G	CIF Input Record(s) with more than 80 Characters							6	Info
PLAT860_ALERT_3_G	Number of Least-Squares Restraints						224	Note
PLAT868_ALERT_4_G	ALERTS Due to the Use of _smtbx_masks Suppressed							!	Info
PLAT909_ALERT_3_G	Percentage of I>2sig(I) Data at Theta(Max) Still							37%	Note
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in Embedded .res File							11	Note
	0 1 2, -1 2 2, 1 27 6, -5 10 12, -4 12 14, -2 3 1,								
	1 4 1, -1 5 2, -2 4 0, 2 7 2, 0 2 5,								
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity						3.2	Low
PLAT969_ALERT_5_G	The 'Henn et al.' R-Factor-gap value						5.284	Note
	Predicted wR2: Based on SigI**2 6.46 or SHELX Weight	31.70							
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.							0	Info
PLAT984_ALERT_1_G	The C-f' = 0.0147 Deviates from the B&C-Value							0.0137	Check
PLAT984_ALERT_1_G	The N-f' = 0.0253 Deviates from the B&C-Value							0.0241	Check
PLAT984_ALERT_1_G	The O-f' = 0.0412 Deviates from the B&C-Value							0.0389	Check
PLAT984_ALERT_1_G	The Pb-f' = -4.2646 Deviates from the B&C-Value							-4.4950	Check
PLAT985_ALERT_1_G	The Al-f" = 0.1843 Deviates from the B&C-Value							0.1873	Check
PLAT985_ALERT_1_G	The Pb-f" = 7.1982 Deviates from the B&C-Value							6.8412	Check
PLAT985_ALERT_1_G	The S-f" = 0.4242 Deviates from the B&C-Value							0.4295	Check

6 **ALERT level A** = Most likely a serious problem - resolve or explain

14 **ALERT level B** = A potentially serious problem, consider carefully

32 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

108 **ALERT level G** = General information/check it is not something unexpected

16 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

53 ALERT type 2 Indicator that the structure model may be wrong or deficient

23 ALERT type 3 Indicator that the structure quality may be low

58 ALERT type 4 Improvement, methodology, query or suggestion

10 ALERT type 5 Informative message, check

checkCIF publication errors

Alert level A

PUBL004_ALERT_1_A The contact author's name and address are missing, _publ_contact_author_name and _publ_contact_author_address.

```
PUBL005_ALERT_1_A _publ_contact_author_email, _publ_contact_author_fax and
    _publ_contact_author_phone are all missing.
    At least one of these should be present.
PUBL006_ALERT_1_A _publ_requested_journal is missing
    e.g. 'Acta Crystallographica Section C'
PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
    Abstract of paper in English.
```

7 **ALERT level A** = Data missing that is essential or data in wrong format
0 **ALERT level G** = General alerts. Data that may be required is missing

Publication of your CIF

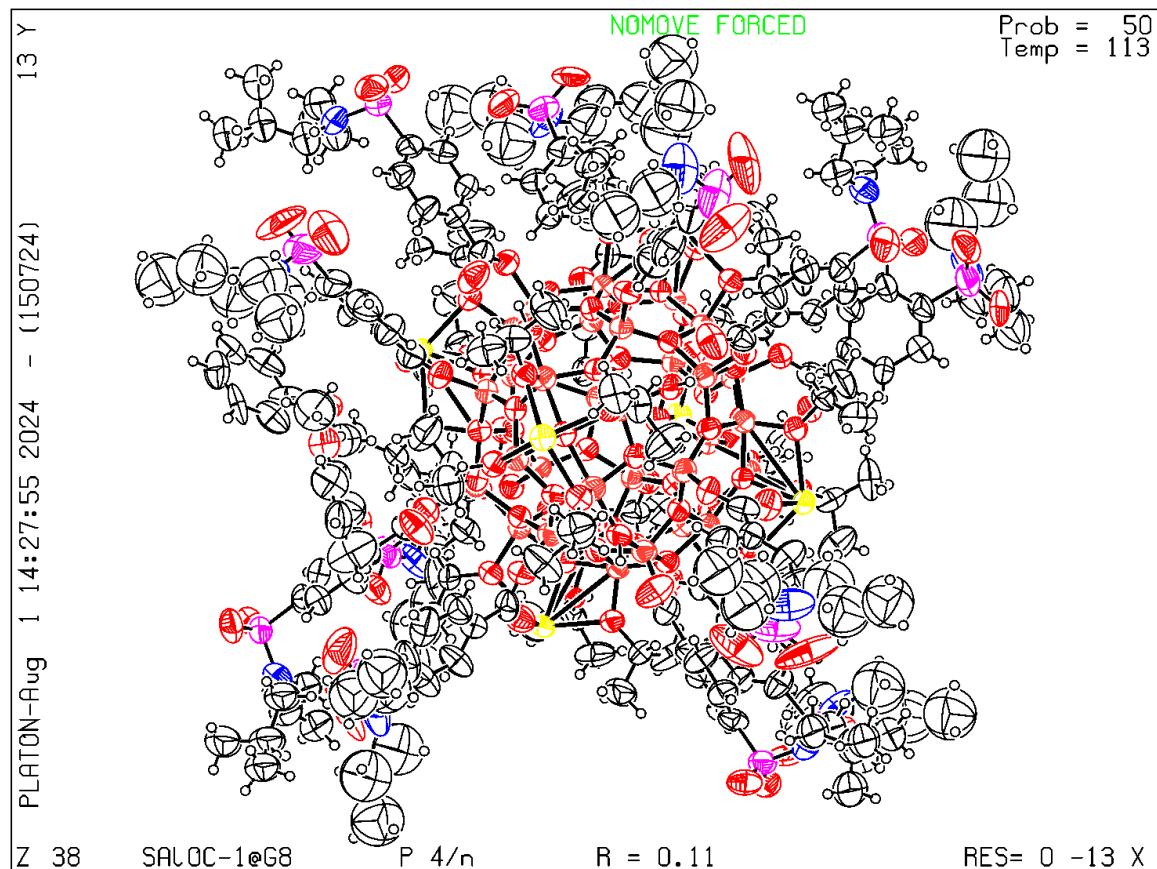
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
```


```
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 15/07/2024; check.def file version of 15/07/2024

Datablock SAIOC-1@G8 - ellipsoid plot

