

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G6

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SAIOC-1@G6

Bond precision:	C-C = 0.0155 Å	Wavelength=1.34050	
Cell:	a=30.0301 (3) alpha=90	b=30.0301 (3) beta=90	c=19.2959 (4) gamma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	17401.2 (5)	17401.2 (5)	
Space group	P 4/n	P 4/n	
Hall group	-P 4a	-P 4a	
Moiety formula	C216 H358 Al32 N12 O110 Pb6 S12, 3(C9 H12) [+ solvent]	C216 H358 Al32 N12 O110 Pb6 S12, 3(C9 H12)	
Sum formula	C243 H394 Al32 N12 O110 Pb6 S12 [+ solvent]	C243 H394 Al32 N12 O110 Pb6 S12	
Mr	7735.00	7734.90	
Dx, g cm ⁻³	1.476	1.476	
Z	2	2	
Mu (mm ⁻¹)	5.104	5.248	
F000	7832.0	7832.0	
F000'	7811.32		
h, k, lmax	35, 35, 22	34, 35, 22	
Nref	14850	14796	
Tmin, Tmax		1.000, 1.000	
Tmin'			
Correction method=	#	Reported T Limits: Tmin=1.000 Tmax=1.000	
AbsCorr =	SPHERE		
Data completeness=	0.996	Theta (max)= 52.047	

R(reflections)= 0.0635(10743)

wR2 (reflections)=
0.2018(14796)

S = 1.046

Npar= 934

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

 Alert level A

PLAT973_ALERT_2_A Check Calcd Positive Resid. Density on Pb1 2.01 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

 Alert level B

PLAT220_ALERT_2_B NonSolvent Resd 1 C Ueq(max) /Ueq(min) Range 6.2 Ratio

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C3 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Pb2 1.96 eA-3

Author Response: These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

🟡 **Alert level C**

RADNW01_ALERT_1_C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150
Wavelength given = 1.34050

THETM01_ALERT_3_C The value of sine(theta_max)/wavelength is less than 0.590
Calculated sin(theta_max)/wavelength = 0.5882

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.82 Report

PLAT213_ALERT_2_C Atom O1 has ADP max/min Ratio 3.3 prolat

PLAT220_ALERT_2_C NonSolvent Resd 1 O Ueq(max) /Ueq(min) Range 4.9 Ratio

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max) /Uiso(min) Range 8.6 Ratio
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C8 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C43 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C45 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C50 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C51 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C55 Check

Author Response: These alerts are generated because of a slight unresolved disorder caused by free rotation of the flexible chain at the end of the ligand. Some refi commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assign of atom types.

PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	S1 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	S3 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	O28 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	N1 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	N3 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C5 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C7 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C19 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C22 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C25 Check
PLAT242_ALERT_2_C Low	'MainMol' Ueq as Compared to Neighbors of	C44 Check
PLAT250_ALERT_2_C Large	U3/U1 Ratio for <U(i,j)> Tensor(Resd 2)	2.2 Note
PLAT260_ALERT_2_C Large	Average Ueq of Residue Including	Pb1 0.117 Check
PLAT260_ALERT_2_C Large	Average Ueq of Residue Including	C57 0.229 Check
PLAT329_ALERT_4_C	Carbon Atom Hybridisation Unclear for	C49 Check
PLAT342_ALERT_3_C	Low Bond Precision on C-C Bonds	0.01545 Ang.
PLAT361_ALERT_2_C	Long C(sp3)-C(sp3) Bond C55 - C56	. 1.69 Ang.
PLAT410_ALERT_2_C	Short Intra H...H Contact H2A ..H3B	. 1.93 Ang.
	x,y,z =	1_555 Check
PLAT413_ALERT_2_C	Short Inter XH3 .. XHn H6B ..H53A	. 2.01 Ang.
	1-x,2-y,1-z =	5_676 Check
PLAT911_ALERT_3_C	Missing FCF Refl Between Thmin & STh/L=	0.588 52 Report
1 3 0,	4 4 0, -1 7 0, -3 4 1, -2 4 1, 4 4 1,	
1 5 1,	2 5 1, 3 5 1, 5 5 1, 2 7 1, 3 7 1,	
6 8 1,	0 9 1, 3 9 1, 0 0 2, 0 1 2, -1 2 2,	
-1 5 2,	2 5 2, -2 7 2, 7 7 2, -4 11 2, 1 1 3,	
1 4 3,	2 4 3, 1 7 3, 3 8 3, 1 11 3, 5 8 4,	
7 10 5,	4 11 5, -2 13 5, 15 28 5, -1 3 6, 4 4 6,	
-4 7 6,	1 8 6, 5 9 6, 2 10 6, 5 13 6, -1 8 7,	

2 5 8, -14 22 14, -13 22 14, -12 22 14, -14 23 14, -14 22 15,			
-13 22 15, 3 19 18, 3 20 18, 4 20 18,			
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.85Ang From Pb2	2.23	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.96Ang From Pb2	1.95	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.98Ang From Pb1	1.76	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.64Ang From Pb1	1.66	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.93Ang From Pb2	1.64	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.79Ang From Pb3	1.61	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 1.16Ang From Pb1	1.60	eA-3	
PLAT971_ALERT_2_C Check Calcd Resid. Dens. 0.84Ang From Pb3	1.59	eA-3	
PLAT975_ALERT_2_C Check Calcd Resid. Dens. 0.94Ang From O24	.	0.91	eA-3
PLAT976_ALERT_2_C Check Calcd Resid. Dens. 1.04Ang From O21	.	-0.49	eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H2B	.	-0.31	eA-3

• Alert level G

ABSMU01_ALERT_1_G	Calculation of _exptl_absorpt_correction_mu	
	not performed for this radiation type.	
PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite	30 Note
PLAT003_ALERT_2_G	Number of Uiso or U(i,j) Restrained non-H Atoms	25 Report
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms	2 Report
	H8 H29	
PLAT051_ALERT_1_G	Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by .	2.74 %
PLAT069_ALERT_1_G	Atom Label Without Numerical Part	Al Do !
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large	0.14 Report
PLAT172_ALERT_4_G	The CIF-Embedded .res File Contains DFIX Records	24 Report
PLAT173_ALERT_4_G	The CIF-Embedded .res File Contains DANG Records	2 Report
PLAT174_ALERT_4_G	The CIF-Embedded .res File Contains FLAT Records	1 Report
PLAT177_ALERT_4_G	The CIF-Embedded .res File Contains DELU Records	2 Report
PLAT178_ALERT_4_G	The CIF-Embedded .res File Contains SIMU Records	2 Report
PLAT186_ALERT_4_G	The CIF-Embedded .res File Contains ISOR Records	1 Report
PLAT187_ALERT_4_G	The CIF-Embedded .res File Contains RIGU Records	1 Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100 Report
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for First Par	0.0100 Report
PLAT190_ALERT_3_G	A Non-default RIGU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT192_ALERT_3_G	A Non-default DELU Restraint Value for SecondPar	0.0200 Report
PLAT300_ALERT_4_G	Atom Site Occupancy of C47	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C48	Constrained at 0.25 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H47A	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H47B	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H47C	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H48A	Constrained at 0.25 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H48B	Constrained at 0.25 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H48C	Constrained at 0.25 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H49A	Constrained at 0.25 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H49B	Constrained at 0.25 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C57	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C58	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C59	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C60	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C61	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C62	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C63	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C64	Constrained at 0.75 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C65	Constrained at 0.75 Check

PLAT300_ALERT_4_G	Atom Site Occupancy of H57A	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H57B	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H57C	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H58A	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H58B	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H58C	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H59A	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H59B	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H59C	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H60	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H62	Constrained at	0.75	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H64	Constrained at	0.75	Check
PLAT301_ALERT_3_G	Main Residue Disorder	(Resd 1)	1%	Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder	(Resd 2)	100%	Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in	(Resd 2)	15.75	Check
PLAT367_ALERT_2_G	Long? C(sp?) - C(sp?) Bond	C49 - C50	.	1.54 Ang.
PLAT411_ALERT_2_G	Short Inter H...H Contact	H3A ..H64	.	2.10 Ang.
		x,y,1+z =	1_556	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H3A ..H58B	.	2.00 Ang.
		x,y,1+z =	1_556	Check
PLAT413_ALERT_2_G	Short Inter XH3 .. XHn	H3B ..H58B	.	1.20 Ang.
		x,y,1+z =	1_556	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact	C3 ..C58	.	2.84 Ang.
		x,y,1+z =	1_556	Check
PLAT605_ALERT_4_G	Largest Solvent Accessible VOID in the Structure		405	A**3
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels		2	Note
	A100 A10B			
PLAT721_ALERT_1_G	Bond Calc	0.99000, Rep	0.97990	Dev... 0.01 Ang.
	C48 -H48C	1_555 1_555	# 247	Check
PLAT722_ALERT_1_G	Angle Calc	104.00, Rep	105.10	Dev... 1.10 Degree
	H2A -C2 -H2B	1_555 1_555 1_555	# 542	Check
PLAT722_ALERT_1_G	Angle Calc	113.00, Rep	111.80	Dev... 1.20 Degree
	C49 -C48 -H48B	1_555 1_555 1_555	# 544	Check
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb1	(II)	.	2.07 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Pb3	(II)	.	2.08 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for Al	(III)	.	2.77 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A100	(III)	.	2.75 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A12	(III)	.	2.75 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A10B	(III)	.	2.73 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A14	(III)	.	2.81 Info
PLAT794_ALERT_5_G	Tentative Bond Valency for A15	(III)	.	2.87 Info
PLAT802_ALERT_4_G	CIF Input Record(s) with more than 80 Characters		4	Info
PLAT860_ALERT_3_G	Number of Least-Squares Restraints		328	Note
PLAT868_ALERT_4_G	ALERTS Due to the Use of _smtbx_masks Suppressed		!	Info
PLAT909_ALERT_3_G	Percentage of I>2sig(I) Data at Theta(Max) Still		41%	Note
PLAT910_ALERT_3_G	Missing # of FCF Reflection(s) Below Theta(Min).		2	Note
	1 1 0, 0 0 1,			
PLAT933_ALERT_2_G	Number of HKL-OMIT Records in Embedded .res File		42	Note
	-1 2 2, 0 0 2, 1 3 0, 0 1 2, 1 5 1, -4 7 6,			
	4 11 5, 2 5 2, 5 9 6, -4 11 2, 1 4 3, 1 8 6,			
	6 8 1, 7 7 2, -2 7 2, 5 5 1, 2 7 1, 3 8 3,			
	0 9 1, -1 3 6, -1 5 2, -2 4 1, 4 4 1, 4 4 0,			
	1 11 3, 2 5 8, 7 10 5, -2 13 5, 4 4 6, 2 4 3,			
	5 8 4, -3 4 1, 3 9 1, 3 7 1, 2 10 6, 1 1 3,			
	1 7 3, 5 13 6, 3 5 1, -1 8 7, 2 5 1, -1 7 0,			
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity		3.4	Low
PLAT969_ALERT_5_G	The 'Henn et al.' R-Factor-gap value		4.407	Note

Predicted wR2: Based on SigI^{**2} 4.58 or SHELX Weight 19.30

PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.	0 Info
PLAT984_ALERT_1_G	The C-f' = 0.0147 Deviates from the B&C-Value	0.0137 Check
PLAT984_ALERT_1_G	The N-f' = 0.0253 Deviates from the B&C-Value	0.0241 Check
PLAT984_ALERT_1_G	The O-f' = 0.0412 Deviates from the B&C-Value	0.0389 Check
PLAT984_ALERT_1_G	The Pb-f' = -4.2646 Deviates from the B&C-Value	-4.4950 Check
PLAT985_ALERT_1_G	The Al-f" = 0.1843 Deviates from the B&C-Value	0.1873 Check
PLAT985_ALERT_1_G	The Pb-f" = 7.1982 Deviates from the B&C-Value	6.8412 Check
PLAT985_ALERT_1_G	The S-f" = 0.4242 Deviates from the B&C-Value	0.4295 Check

1 **ALERT level A** = Most likely a serious problem - resolve or explain
 3 **ALERT level B** = A potentially serious problem, consider carefully
 43 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
 88 **ALERT level G** = General information/check it is not something unexpected

14 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 51 ALERT type 2 Indicator that the structure model may be wrong or deficient
 15 ALERT type 3 Indicator that the structure quality may be low
 45 ALERT type 4 Improvement, methodology, query or suggestion
 10 ALERT type 5 Informative message, check

checkCIF publication errors

🔴 Alert level A

PUBL004_ALERT_1_A The contact author's name and address are missing,
 _publ_contact_author_name and _publ_contact_author_address.
 PUBL005_ALERT_1_A _publ_contact_author_email, _publ_contact_author_fax and
 _publ_contact_author_phone are all missing.
 At least one of these should be present.
 PUBL006_ALERT_1_A _publ_requested_journal is missing
 e.g. 'Acta Crystallographica Section C'
 PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
 PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
 PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
 PUBL012_ALERT_1_A _publ_section_abstract is missing.
 Abstract of paper in English.

7 **ALERT level A** = Data missing that is essential or data in wrong format
 0 **ALERT level G** = General alerts. Data that may be required is missing

Publication of your CIF

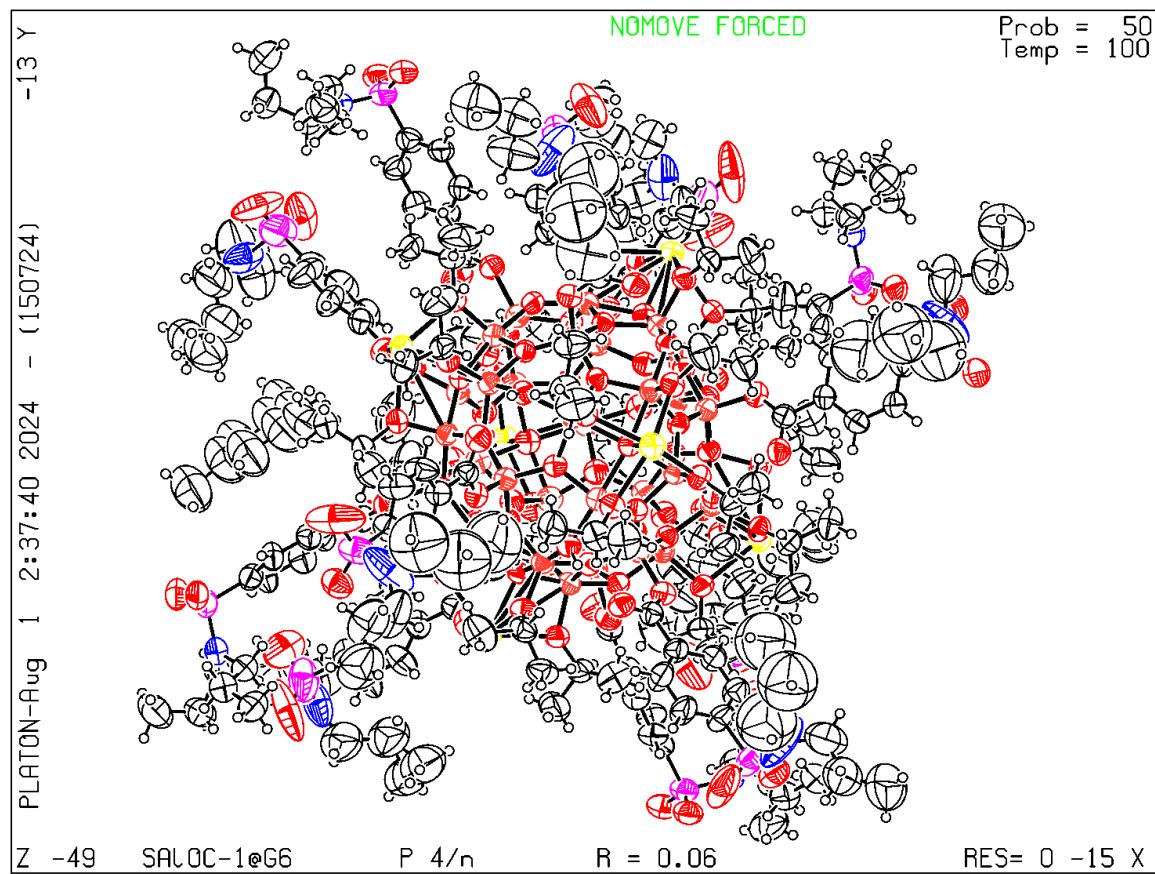
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
```


```
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 15/07/2024; check.def file version of 15/07/2024

Datablock SAIOC-1@G6 - ellipsoid plot

