

## checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SAIOC-1@G13

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

### Datablock: SAIOC-1@G13

---

|                        |                                                                  |                                                   |                           |
|------------------------|------------------------------------------------------------------|---------------------------------------------------|---------------------------|
| Bond precision:        | C-C = 0.0110 Å                                                   | Wavelength=1.34050                                |                           |
| Cell:                  | a=29.8451 (2)<br>alpha=90                                        | b=29.8451 (2)<br>beta=90                          | c=19.8380 (2)<br>gamma=90 |
| Temperature:           | 100 K                                                            |                                                   |                           |
|                        | Calculated                                                       | Reported                                          |                           |
| Volume                 | 17670.3 (3)                                                      | 17670.3 (3)                                       |                           |
| Space group            | P 4/n                                                            | P 4/n                                             |                           |
| Hall group             | -P 4a                                                            | -P 4a                                             |                           |
| Moiety formula         | C216 H368 Al32 N12 O110 Pb6<br>S12, 3(C12 H10 N2) [+<br>solvent] | C216 H368 Al32 N12 O110 Pb6<br>S12, 3(C12 H10 N2) |                           |
| Sum formula            | C252 H398 Al32 N18 O110 Pb6<br>S12 [+ solvent]                   | C252 H398 Al32 N18 O110 Pb6<br>S12                |                           |
| Mr                     | 7931.19                                                          | 7931.08                                           |                           |
| Dx, g cm <sup>-3</sup> | 1.491                                                            | 1.491                                             |                           |
| Z                      | 2                                                                | 2                                                 |                           |
| Mu (mm <sup>-1</sup> ) | 5.040                                                            | 5.181                                             |                           |
| F000                   | 8032.0                                                           | 8032.0                                            |                           |
| F000'                  | 8011.76                                                          |                                                   |                           |
| h, k, lmax             | 35, 35, 23                                                       | 35, 35, 23                                        |                           |
| Nref                   | 15072                                                            | 15016                                             |                           |
| Tmin, Tmax             |                                                                  | 1.000, 1.000                                      |                           |
| Tmin'                  |                                                                  |                                                   |                           |

Correction method= # Reported T Limits: Tmin=1.000 Tmax=1.000  
AbsCorr = SPHERE

Data completeness= 0.996 Theta (max) = 52.038

R(reflections)= 0.0567( 13356)

wR2 (reflections)=  
0.1562( 15016)

S = 1.028

Npar= 969

---

The following ALERTS were generated. Each ALERT has the format  
**test-name\_ALERT\_alert-type\_alert-level**.

Click on the hyperlinks for more details of the test.

---



### **Alert level B**

PLAT220\_ALERT\_2\_B NonSolvent Resd 1 0 Ueq(max) /Ueq(min) Range 7.7 Ratio

**Author Response:** These alerts are generated because there is a large amount of disorder in the structure. Some refined commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assignment of atom types.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.93Ang From Pb1

3.35 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.93Ang From Pb2

2.89 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.98Ang From Pb2

2.86 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.96Ang From Pb1

2.77 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.96Ang From Pb1

2.72 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.89Ang From Pb2

2.66 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.97Ang From Pb3

2.60 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 1.06Ang From Pb1

2.57 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.92Ang From Pb1

2.55 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT973\_ALERT\_2\_B Check Calcd Positive Resid. Density on

Pb2

1.78 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

---

**🟡 Alert level C**

RADNW01\_ALERT\_1\_C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.34130-1.34150  
Wavelength given = 1.34050

THETM01\_ALERT\_3\_C The value of sine(theta\_max)/wavelength is less than 0.590  
Calculated sin(theta\_max)/wavelength = 0.5882

|                   |                                                   |             |
|-------------------|---------------------------------------------------|-------------|
| PLAT094_ALERT_2_C | Ratio of Maximum / Minimum Residual Density ..... | 2.01 Report |
| PLAT213_ALERT_2_C | Atom S2 has ADP max/min Ratio .....               | 3.2 prolat  |
| PLAT213_ALERT_2_C | Atom O20 has ADP max/min Ratio .....              | 3.4 prolat  |
| PLAT220_ALERT_2_C | NonSolvent Resd 1 C Ueq(max) /Ueq(min) Range      | 5.7 Ratio   |

**Author Response:** These alerts are generated because there is a large amount of disorder in the structure. Some refined commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assignment of atom types.

PLAT220\_ALERT\_2\_C NonSolvent Resd 1 S Ueq(max) /Ueq(min) Range 3.2 Ratio

**Author Response:** These alerts are generated because there is a large amount of disorder in the structure. Some refined commands such as DELU, SIMU and ISOR were used to address such abnormal Ueq value, but failed. After inspection, this does not affect the correct assignment of atom types.

|                   |                                                       |              |
|-------------------|-------------------------------------------------------|--------------|
| PLAT222_ALERT_3_C | NonSolvent Resd 1 H Uiso(max) /Uiso(min) Range        | 8.9 Ratio    |
| PLAT241_ALERT_2_C | High 'MainMol' Ueq as Compared to Neighbors of        | C5 Check     |
| PLAT242_ALERT_2_C | Low 'MainMol' Ueq as Compared to Neighbors of         | N2 Check     |
| PLAT242_ALERT_2_C | Low 'MainMol' Ueq as Compared to Neighbors of         | C4 Check     |
| PLAT242_ALERT_2_C | Low 'MainMol' Ueq as Compared to Neighbors of         | C19 Check    |
| PLAT242_ALERT_2_C | Low 'MainMol' Ueq as Compared to Neighbors of         | C22 Check    |
| PLAT242_ALERT_2_C | Low 'MainMol' Ueq as Compared to Neighbors of         | C25 Check    |
| PLAT342_ALERT_3_C | Low Bond Precision on C-C Bonds .....                 | 0.01102 Ang. |
| PLAT414_ALERT_2_C | Short Intra D-H..H-X H7 ..H19 .                       | 1.91 Ang.    |
|                   | y,1/2-x,z = 4_555                                     | Check        |
| PLAT420_ALERT_2_C | D-H Bond Without Acceptor N3 --H3 .                   | Please Check |
| PLAT767_ALERT_4_C | INS Embedded LIST 6 Instruction Should be LIST 4      | Please Check |
| PLAT906_ALERT_3_C | Large K Value in the Analysis of Variance .....       | 2.467 Check  |
| PLAT911_ALERT_3_C | Missing FCF Refl Between Thmin & STh/L= 0.588         | 55 Report    |
|                   | 2 2 0, -1 5 0, 0 6 0, 2 6 0, 1 1 1, -1 2 1,           |              |
|                   | 1 3 1, -1 5 1, 0 5 1, 5 6 1, 3 7 1, -10 13 1,         |              |
|                   | 3 17 1, 0 1 2, 0 3 2, 1 3 2, 1 4 2, -3 5 2,           |              |
|                   | -2 5 2, -1 5 2, 3 5 2, -4 6 2, 0 6 2, 5 7 2,          |              |
|                   | 7 7 2, 0 8 2, -1 9 2, -5 11 2, 4 11 2, 7 15 2,        |              |
|                   | 0 2 3, -2 3 3, -2 6 3, 2 3 4, 3 4 4, -3 5 4,          |              |
|                   | -7 10 4, -5 10 4, -5 11 4, 4 6 6, -1 10 7, 2 15 10,   |              |
|                   | 1 15 11, 2 15 11, 1 16 12, 2 16 12, 1 16 13, 2 16 13, |              |
|                   | 1 16 14, 2 16 14, 1 16 15, 2 16 15, 1 16 16, 2 16 16, |              |
|                   | 2 15 19,                                              |              |
| PLAT971_ALERT_2_C | Check Calcd Resid. Dens. 0.79Ang From Pb1             | 2.44 eA-3    |

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_C Check Calcd Resid. Dens. 0.78Ang From Pb3 1.88 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

PLAT971\_ALERT\_2\_C Check Calcd Resid. Dens. 1.09Ang From Pb3 1.81 eA-3

**Author Response:** These alerts are generated because of residual density peaks near the heaviest atoms in the structure, due to fourier termination ripples. After inspection, the residual electron density peak does not make chemical sense and will not affect the correct identification of the structure.

```

PLAT972_ALERT_2_C Check Calcd Resid. Dens. 0.92Ang From Pb2 -1.85 eA-3
PLAT972_ALERT_2_C Check Calcd Resid. Dens. 0.82Ang From Pb3 -1.78 eA-3
PLAT972_ALERT_2_C Check Calcd Resid. Dens. 0.78Ang From Pb1 -1.62 eA-3
PLAT972_ALERT_2_C Check Calcd Resid. Dens. 0.97Ang From Pb1 -1.60 eA-3
PLAT972_ALERT_2_C Check Calcd Resid. Dens. 0.89Ang From Pb1 -1.59 eA-3
PLAT977_ALERT_2_C Check Negative Difference Density on H3 .
PLAT977_ALERT_2_C Check Negative Difference Density on H7 .
PLAT977_ALERT_2_C Check Negative Difference Density on H23 .

```

- Alert level G

|                                                                    |        |        |
|--------------------------------------------------------------------|--------|--------|
| ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu      |        |        |
| not performed for this radiation type.                             |        |        |
| PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite | 22     | Note   |
| PLAT003_ALERT_2_G Number of Uiso or U(i,j) Restrained non-H Atoms  | 34     | Report |
| PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .....          | 3      | Report |
| H3      H7      H23                                                |        |        |
| PLAT051_ALERT_1_G Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . | 2.72   | %      |
| PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large  | 49.57  | Why ?  |
| PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records | 19     | Report |
| PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records | 4      | Report |
| PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records | 4      | Report |
| PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records | 1      | Report |
| PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used | 0.0100 | Report |
| PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used | 0.0100 | Report |
| PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used | 0.0100 | Report |
| PLAT188_ALERT_3_G A Non-default SIMU Restraint Value has been used | 0.0100 | Report |
| PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar | 0.0200 | Report |
| PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar | 0.0200 | Report |
| PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar | 0.0200 | Report |
| PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar | 0.0200 | Report |
| PLAT299_ALERT_4_G Atom Site Occupancy Constrained at .....         | 0.5    | Check  |

|                   | C56                                              | C57   | H54A           | H54B  | H54C           | H54D | H56A  | H56B  |       |
|-------------------|--------------------------------------------------|-------|----------------|-------|----------------|------|-------|-------|-------|
|                   | H56C                                             | H57A  | H57B           | H57C  |                |      |       |       |       |
| PLAT300_ALERT_4_G | Atom Site Occupancy of N4                        |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of N5                        |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C58                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C59                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C60                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C61                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C62                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C63                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C64                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C65                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C66                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C67                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C68                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of C69                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H58                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H59                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H61                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H62                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H63                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H64                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H66                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H67                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H68                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT300_ALERT_4_G | Atom Site Occupancy of H69                       |       |                |       | Constrained at |      |       | 0.75  | Check |
| PLAT301_ALERT_3_G | Main Residue Disorder .....                      | (Resd | 1)             |       |                |      |       | 1%    | Note  |
| PLAT302_ALERT_4_G | Anion/Solvent/Minor-Residue Disorder             | (Resd | 2)             |       |                |      |       | 100%  | Note  |
| PLAT411_ALERT_2_G | Short Inter H...H Contact                        | H32   | ..H67          |       | .              |      |       | 1.98  | Ang.  |
|                   |                                                  |       | -1/2+y,1-x,1-z | =     |                |      | 7_566 | Check |       |
| PLAT413_ALERT_2_G | Short Inter XH3 .. XHn                           | H50B  | ..H56B         |       | .              |      |       | 2.13  | Ang.  |
|                   |                                                  |       | 1-y,-1/2+x,1-z | =     |                |      | 8_656 | Check |       |
| PLAT414_ALERT_2_G | Short Intra D-H..H-X                             | H3    | ..H54A         |       | .              |      |       | 2.09  | Ang.  |
|                   |                                                  |       | x,y,z          | =     |                |      | 1_555 | Check |       |
| PLAT414_ALERT_2_G | Short Intra D-H..H-X                             | H3    | ..H56A         |       | .              |      |       | 1.95  | Ang.  |
|                   |                                                  |       | x,y,z          | =     |                |      | 1_555 | Check |       |
| PLAT605_ALERT_4_G | Largest Solvent Accessible VOID in the Structure |       |                |       |                |      |       | 73    | A**3  |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -PB2 3_555 1_555 1_555 .....              | #     | 195            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -PB2 4_555 1_555 1_555 .....              | #     | 196            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -PB2 2_555 1_555 1_555 .....              | #     | 197            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 2_555 1_555 2_555 .....              | #     | 198            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 3_555 1_555 1_555 .....              | #     | 199            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 2_555 1_555 3_555 .....              | #     | 200            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 2_555 1_555 1_555 .....              | #     | 201            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 4_555 1_555 1_555 .....              | #     | 202            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 3_555 1_555 2_555 .....              | #     | 203            | Check |                |      |       |       |       |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ... |       |                |       |                |      |       | 0.00  | Deg.  |
|                   | O6 -O6 -AL4 4_555 1_555 4_555 .....              | #     | 204            | Check |                |      |       |       |       |

|                   |                                                       |                        |
|-------------------|-------------------------------------------------------|------------------------|
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -AL4       | 4_555 1_555 3_555 .....                               | # 205 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -AL4       | 3_555 1_555 4_555 .....                               | # 206 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -AL4       | 2_555 1_555 3_555 .....                               | # 207 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -AL4       | 2_555 1_555 4_555 .....                               | # 208 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -AL4       | 4_555 1_555 2_555 .....                               | # 209 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -06        | 3_555 1_555 2_555 .....                               | # 210 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -06        | 4_555 1_555 2_555 .....                               | # 211 Check            |
| PLAT779_ALERT_4_G | Suspect or Irrelevant (Bond) Angle(s) in CIF ...      | 0.00 Deg.              |
| 06 -06 -06        | 4_555 1_555 3_555 .....                               | # 212 Check            |
| PLAT793_ALERT_4_G | Model has Chirality at N3                             | (Centro SpGr) S Verify |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Pb2                        | (II) . 2.02 Info       |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Pb3                        | (II) . 2.10 Info       |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Al3                        | (III) . 2.79 Info      |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Al4                        | (III) . 2.76 Info      |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Al5                        | (III) . 2.73 Info      |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Al6                        | (III) . 2.77 Info      |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Al7                        | (III) . 2.80 Info      |
| PLAT794_ALERT_5_G | Tentative Bond Valency for Al8                        | (III) . 2.81 Info      |
| PLAT860_ALERT_3_G | Number of Least-Squares Restraints .....              | 343 Note               |
| PLAT868_ALERT_4_G | ALERTS Due to the Use of _smtbx_masks Suppressed      | ! Info                 |
| PLAT883_ALERT_1_G | No Info/Value for _atom_sites_solution_primary .      | Please Do !            |
| PLAT909_ALERT_3_G | Percentage of I>2sig(I) Data at Theta(Max) Still      | 78% Note               |
| PLAT910_ALERT_3_G | Missing # of FCF Reflection(s) Below Theta(Min) .     | 1 Note                 |
|                   | 1 1 0,                                                |                        |
| PLAT933_ALERT_2_G | Number of HKL-OMIT Records in Embedded .res File      | 37 Note                |
|                   | 1 4 2, 0 1 2, -3 5 4, 2 3 4, -2 6 3, 5 6 1,           |                        |
|                   | 7 7 2, -1 5 1, 2 2 0, -2 3 3, 0 5 1, 3 5 2,           |                        |
|                   | 0 8 2, 0 6 2, 2 6 0, -10 13 1, 4 11 2, 3 17 1,        |                        |
|                   | 5 7 2, -5 11 2, -7 10 4, -1 5 0, 1 3 1, 7 15 2,       |                        |
|                   | -1 9 2, 3 7 1, -5 11 4, 4 6 6, 3 4 4, 0 2 3,          |                        |
|                   | 0 3 2, -1 2 1, -2 5 2, 1 3 2, 0 6 0, -5 10 4,         |                        |
|                   | -1 5 2,                                               |                        |
| PLAT941_ALERT_3_G | Average HKL Measurement Multiplicity .....            | 3.2 Low                |
| PLAT969_ALERT_5_G | The 'Henn et al.' R-Factor-gap value .....            | 3.392 Note             |
|                   | Predicted wR2: Based on SigI**2 4.60 or SHELLX Weight | 15.19                  |
| PLAT978_ALERT_2_G | Number C-C Bonds with Positive Residual Density.      | 1 Info                 |
| PLAT984_ALERT_1_G | The C-f' = 0.0150 Deviates from the B&C-Value         | 0.0137 Check           |
| PLAT984_ALERT_1_G | The Al-f' = 0.1760 Deviates from the B&C-Value        | 0.1771 Check           |
| PLAT984_ALERT_1_G | The O-f' = 0.0410 Deviates from the B&C-Value         | 0.0389 Check           |
| PLAT984_ALERT_1_G | The Pb-f' = -4.2650 Deviates from the B&C-Value       | -4.4950 Check          |
| PLAT985_ALERT_1_G | The Al-f" = 0.1840 Deviates from the B&C-Value        | 0.1873 Check           |
| PLAT985_ALERT_1_G | The Pb-f" = 7.1980 Deviates from the B&C-Value        | 6.8412 Check           |
| PLAT985_ALERT_1_G | The S-f" = 0.4240 Deviates from the B&C-Value         | 0.4295 Check           |

---

0 **ALERT level A** = Most likely a serious problem - resolve or explain

11 **ALERT level B** = A potentially serious problem, consider carefully

31 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

93 **ALERT level G** = General information/check it is not something unexpected

```
11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
44 ALERT type 2 Indicator that the structure model may be wrong or deficient
18 ALERT type 3 Indicator that the structure quality may be low
52 ALERT type 4 Improvement, methodology, query or suggestion
10 ALERT type 5 Informative message, check
```

---

## checkCIF publication errors

---

### Alert level A

PUBL004\_ALERT\_1\_A The contact author's name and address are missing, \_publ\_contact\_author\_name and \_publ\_contact\_author\_address.  
PUBL005\_ALERT\_1\_A \_publ\_contact\_author\_email, \_publ\_contact\_author\_fax and \_publ\_contact\_author\_phone are all missing.  
At least one of these should be present.  
PUBL006\_ALERT\_1\_A \_publ\_requested\_journal is missing  
e.g. 'Acta Crystallographica Section C'  
PUBL008\_ALERT\_1\_A \_publ\_section\_title is missing. Title of paper.  
PUBL009\_ALERT\_1\_A \_publ\_author\_name is missing. List of author(s) name(s).  
PUBL010\_ALERT\_1\_A \_publ\_author\_address is missing. Author(s) address(es).  
PUBL012\_ALERT\_1\_A \_publ\_section\_abstract is missing.  
Abstract of paper in English.

---

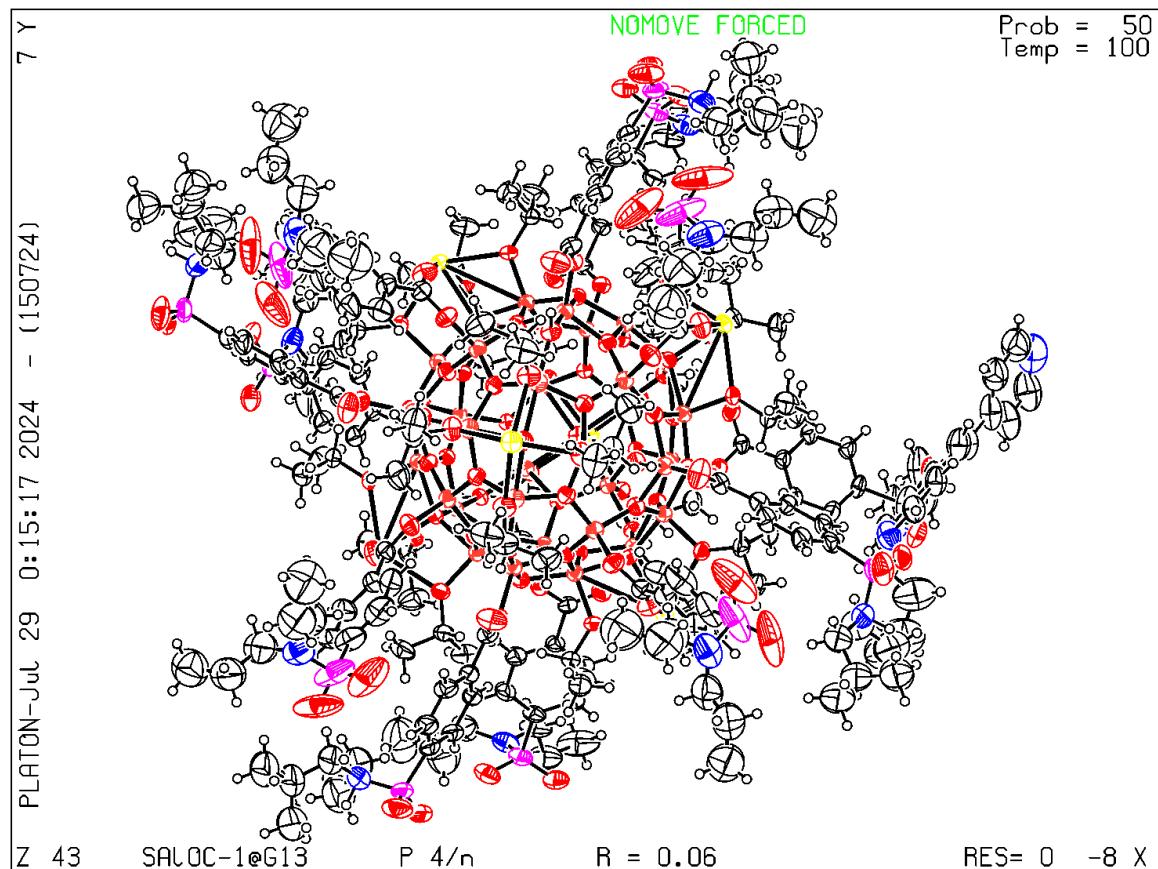
7 **ALERT level A** = Data missing that is essential or data in wrong format  
0 **ALERT level G** = General alerts. Data that may be required is missing

---

## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special\_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.


## Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL004_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

Datablock SAIOC-1@G13 - ellipsoid plot

