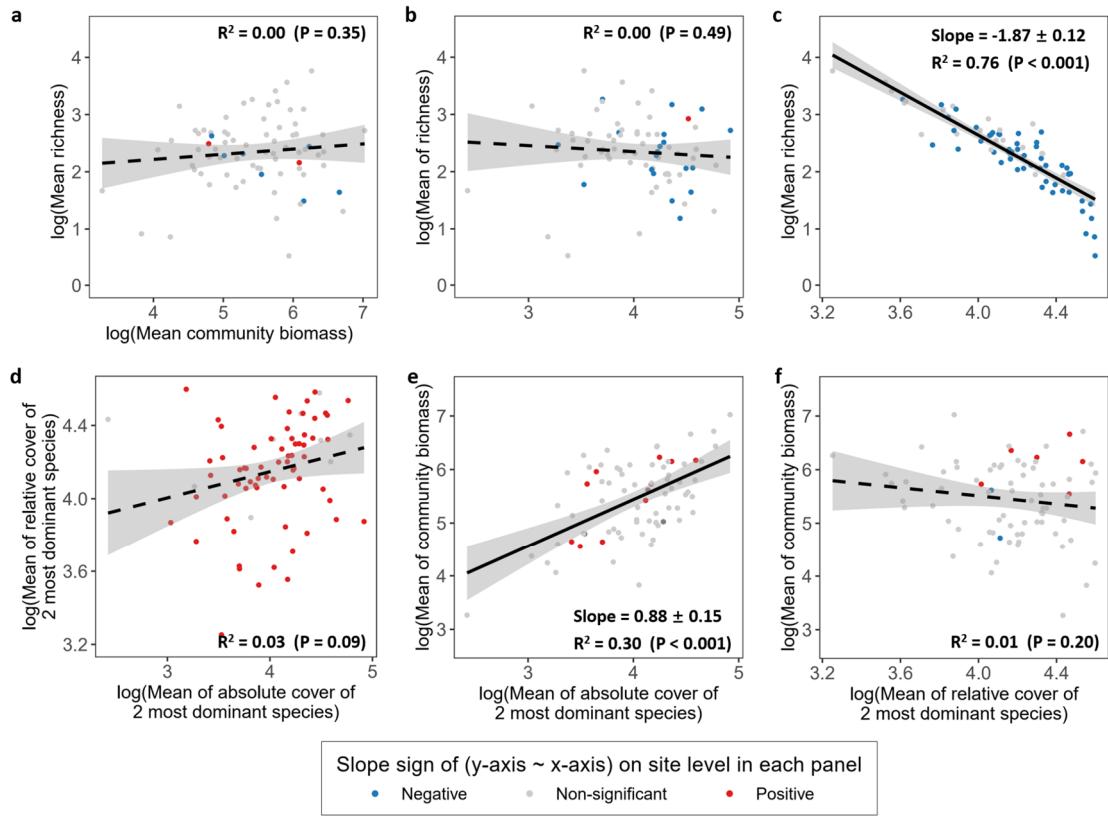
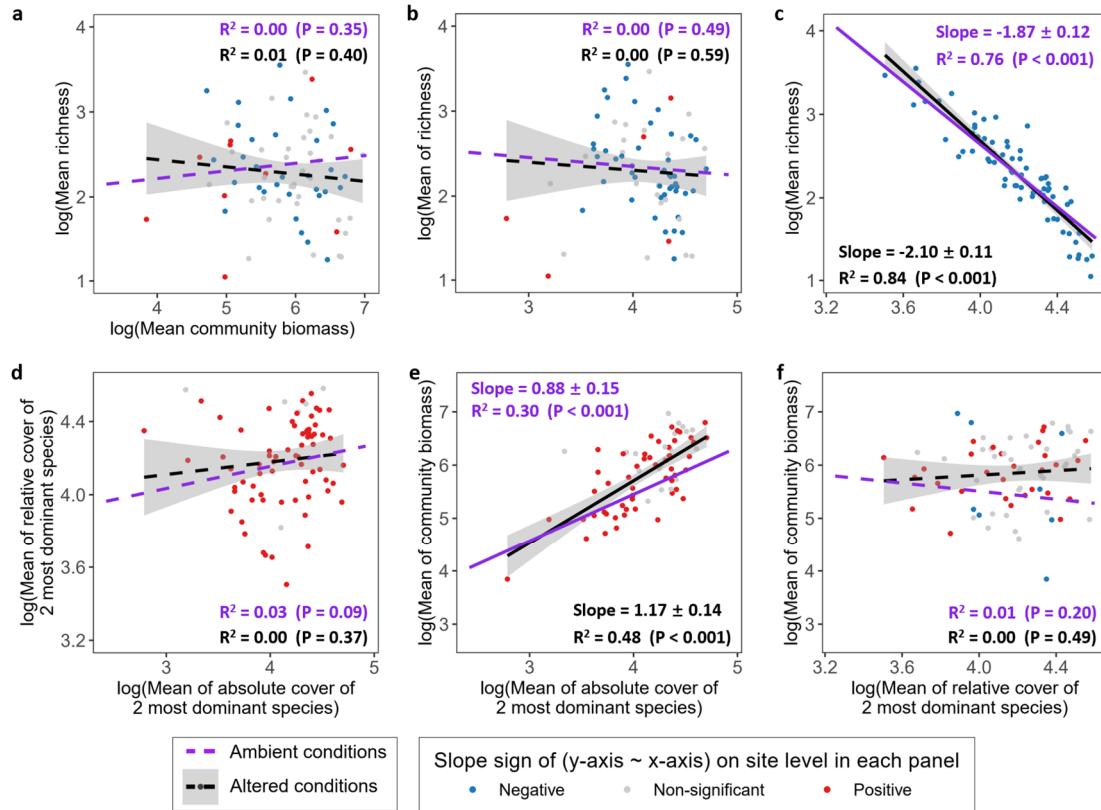


1 **SUPPLEMENTARY INFORMATION:**


2 **Results directly based on the species-level absolute and relative cover data**

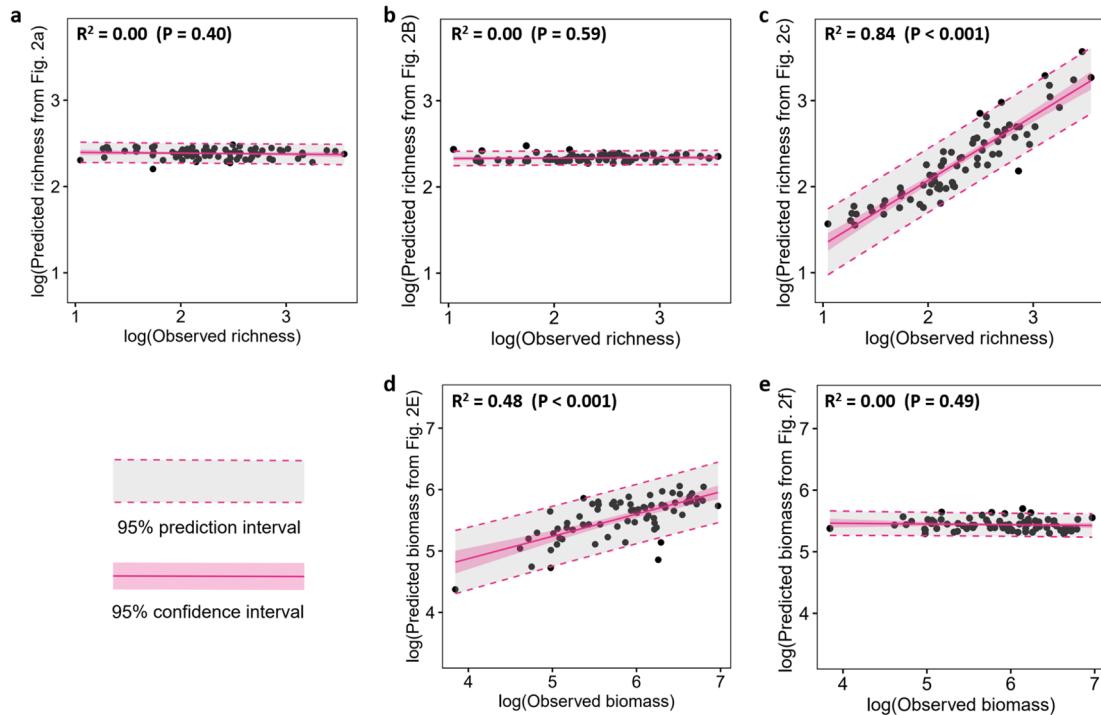
3

4

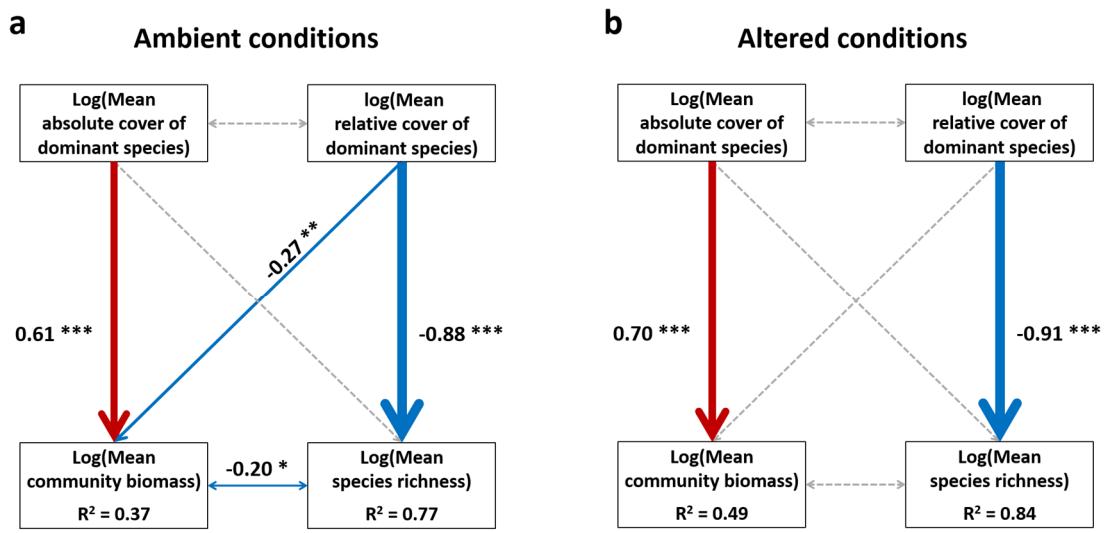

5 **Fig. S1 | (a) Structural equation meta-model and site-level patterns from 76**
6 **grassland sites throughout the world under ambient conditions (b) cumulative**
7 **absolute cover curve and (c) cumulative relative cover curve.** Number in circles in
8 (a) represent bivariate relationships. The x-axis in (b) and (c) is the rank of species from
9 most to least abundant. Line colors in (b) and (c) represent the site-level mean relative
10 cover of 2 most dominant species at each of the 76 sites under ambient conditions from
11 low to high (from 25.9% to 99.5%). The words after the numbers in parentheses are the
12 sites names.

13

14 **Fig. S2 | Grassland richness and biomass relationships under ambient conditions.**


15 The relationship between mean richness and (a) mean community biomass, and (b)
 16 mean absolute cover of the two most dominant species, and (c) mean relative cover of
 17 the two most dominant species; and (d) between mean relative cover and mean absolute
 18 cover of the two most dominant species; and between mean community level biomass
 19 and (e) mean absolute cover of the two most dominant species, and (f) mean relative
 20 cover of the two most dominant species, at 76 sites under ambient conditions (each site
 21 ≈ 3 blocks; each block ≈ 10 plots). All data were natural log-transformed. The
 22 correlation between the y-axis and x-axis variables of each panel on the site-level is
 23 indicated as significantly positive (red), uncorrelated (gray), and significantly negative
 24 (blue). A dashed line indicates that the relationship is not significant ($P > 0.05$), and a
 25 solid line indicates that the relationship is significant ($P < 0.05$).

26


27 **Fig. S3 | Grassland richness and biomass relationships under altered**
 28 **environmental conditions.** The relationship between mean richness and (a) mean
 29 community biomass, and (b) mean absolute cover of the two most dominant species,
 30 and (c) mean relative cover of the two most dominant species; and (d) between mean
 31 relative cover and mean absolute cover of the two most dominant species; and between
 32 mean community level biomass and (e) mean absolute cover of the two most dominant
 33 species, and (f) mean relative cover of the two most dominant species, at 76 sites under
 34 altered environmental conditions (1-15 years; each site \approx 3 blocks; each block \approx 10
 35 plots). All data were natural log-transformed. The correlation between the y-axis and x-
 36 axis variables of each panel on the site-level is indicated as significantly positive (red),
 37 uncorrelated (gray), and significantly negative (blue). The purple lines are regression
 38 curves for the ambient conditions in Fig.2. The purple fonts are R^2 and P values for the

39 ambient conditions in Fig.2. A dashed line indicates that the relationship is not
40 significant ($P > 0.05$), and a solid line indicates that the relationship is significant ($P <$
41 0.05).

42

43 **Fig. S4 | The regression model for ambient conditions predicts the outcome for**
 44 **global grasslands under altered environmental conditions.** The relationship between
 45 (a, b, and c) the predicted species richness according to the regression model of the
 46 ambient conditions and the actual mean species richness of altered environmental
 47 conditions of each site, and between (d, e) the predicted community biomass according
 48 to the regression model of the ambient conditions and the actual mean community
 49 biomass of the altered environmental conditions of each site. The regression models
 50 used to predict the vertical axis variables in a, b, c, d, and e, are respectively from the
 51 model in a, b, c, e, and f of Fig. 2. In these five panels, the gray-shaded area is the 95%
 52 prediction interval, and the pink-shaded area represents the 95% confidence interval,
 53 around the regression line.

54 Fisher's C = 4.648, df = 2, P = 0.098, AIC = 171.675.

Fisher's C = 5.256, df = 6, P = 0.511, AIC = 93.844.

55 **Fig. S5 | SEMs under (a) ambient and (b) altered environmental conditions from**
 56 **empirical grassland data.** All data were natural log-transformed. The red and blue lines
 57 mean significantly positive and negative relationships, respectively. The dashed and
 58 solid lines indicate that the relationship is not significant ($P > 0.05$) and significant (P
 59 < 0.05), respectively.

60 **Table S1 | (a) The R^2 of various relationships among four natural log-transformed**
 61 **variables, and (b) the R^2 of relationships between natural log-transformed gamma**
 62 **diversity and natural log-transformed mean relative cover of dominant species in**
 63 **the context of selecting different numbers of dominant species (from 1 to 5) from**
 64 **NutNet data under both ambient and altered conditions.**

65 **a.**

		The number of dominant species (DS_n)				
		n = 1	n = 2	n = 3	n = 4	n = 5
The R^2 in ambient conditions	log(Mean richness) ~ log(Mean absolute cover of DS_n)	0.06 *	0.00 NS	0.00 NS	0.00 NS	0.02 NS
	log(Mean richness) ~ log(Mean relative cover of DS_n)	0.75 ***	0.76 ***	0.73 ***	0.70 ***	0.67 ***
	log(Mean relative cover of DS_n) ~ log(Mean absolute cover of DS_n)	0.15 ***	0.03 NS	0.00 NS	0.00 NS	0.00 NS
	log(Mean community biomass) ~ log(Mean absolute cover of DS_n)	0.24 ***	0.30 ***	0.32 ***	0.34 ***	0.34 ***
The R^2 in altered environmental conditions	log(Mean richness) ~ log(Mean relative cover of DS_n)	0.00 NS	0.01 NS	0.01 NS	0.01 NS	0.01 NS
	log(Mean richness) ~ log(Mean absolute cover of DS_n)	0.05 *	0.00 NS	0.00 NS	0.01 NS	0.03 NS
	log(Mean richness) ~ log(Mean relative cover of DS_n)	0.79 ***	0.84 ***	0.84 ***	0.82 ***	0.79 ***
	log(Mean relative cover of DS_n) ~ log(Mean absolute cover of DS_n)	0.11 **	0.00 NS	0.00 NS	0.00 NS	0.02 NS

66

67 **b.**

		The number of dominant species (DS_n)				
		n = 1	n = 2	n = 3	n = 4	n = 5
The R^2 of log(Gamma diversity) ~ log(Mean relative cover of DS_n) in ambient conditions		0.45 ***	0.47 ***	0.43 ***	0.37 ***	0.31 ***
The R^2 of log(Gamma diversity) ~ log(Mean relative cover of DS_n) in altered environmental conditions		0.35 ***	0.39 ***	0.37 ***	0.33 ***	0.28 ***

68