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Supplementary Notes

Data and Samples

The GTEx v8 data consists of 17,382 RNA-seq samples from 948 post-mortem donors, with
genotype data for 838 donors from whole genome sequencing (WGS) available in a phased
analysis freeze VCF. The GTEx biospecimen collection, molecular phenotype data
production and quality control are described in detail in *. The eGTEx project '' seeks to
complement the gene expression traits determined in the GTEx project with other molecular

traits across the same tissues and individuals, including methylation.

Here, we have generated and analyzed DNA methylation (DNAm), and analyzed existing *
gene expression data from 9 tissue types: colon transverse, kidney cortex, lung, muscle
skeletal, ovary, prostate, testis, whole blood and breast mammary tissues (Supplementary
Table 1). Altogether, we analyzed a total of 987 DNAm and 3,872 gene expression samples -
depending on the tissue and analysis - corresponding to 424 and 938 individuals, respectively,

as well as genotype data from a total of 830 individuals.

Reduction of methylomes’ dimensionality

Considering the 987 profiled methylomes, B values were logit-transformed to M-values. The
dimensionality of the methylome set was reduced to two dimensions with the t-Distributed
Stochastic Neighbor Embedding (t-SNE) approach ® implemented in the Risne R package
(parameters: perplexity = 20, theta = 0.5, max_iter = 5000, pca=TRUE). We observed a set of
samples that did not optimally cluster with their corresponding tissue when projected to the
t-SNE dimensions. Hence, we estimated cluster dissimilarity for each sample: for each
dimension, t-SNE values were transformed to z-scores, and samples with t-SNE values
greater than 2.5 standard deviations in either t-SNE dimension were flagged as potential
tissue type mismatches but retained. In total, 12 samples were flagged - 7 ovary, 4 prostate
and 1 colon samples. The untransformed t-SNE estimates of the 975 unflagged samples are

visualized in Fig. la.

Evaluation of tissue similarity based on methylation and gene expression
Hierarchical clustering of the tissues (see Methods) resulted in the obtention of one clustering
tree for the DNAm-based distance and another for the transcription-based distance (Fig. 1b),

as well as bootstrap probabilities (BP, obtained by normal bootstrap resampling), which is a
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measure of clustering support with respect to the data. BP values range from 0 to 100; higher
value indicates stronger support for the clusters. All nodes of the DNAm-based tree exhibited
maximum support (BP = 100). Most (7/9) nodes of the transcription-based tree exhibited
maximum support, except the ones corresponding to muscle with ovary (BP = 53) and kidney

(BP =97) clusters.

We observe, both for gene expression and DNAm profiles, that testis and blood exhibit a
lower degree of similarity relative to other tissue types. Testis is characterized by higher gene
expression compared to other tissues, as it has been previously shown *°. In contrast, blood
appears to be the most divergent tissue for DNAm; CpGs highly methylated in whole blood
and lowly methylated in ovary are prominent features of the tissue-specific DNAm signatures

(Fig. 1b).

Definition of expression quantitative trait methylation (eQTM) mapping sets

The number of CpG-gene tests performed per tissue varied as a function of the number of
genes expressed per tissue; we analyzed a total of 5,350,829 CpG-gene pairs. For CpGs with
at least one significant (FDR < 0.05) eQTM (see Methods), we defined as significant all
CpG-gene pairs at Bonferroni-adjusted P < 0.05, resulting in a non-redundant 12,652 eQTM
set across tissues. This set, defined as ‘single-tissue eQTM set’ was complemented with
significant cases derived from a cross-tissue approach to constitute the complete set of
significant eQTMs reported, defined as ‘complete eQTM set’. This approach ?° enables joint
modeling of cross-tissue effects, and it is implemented in the R package mashr. For the
cross-tissue analysis, we considered the set of 12,652 eQTMs, i.e. CpG-gene pairs,
significant in at least one tissue derived from the single-tissue eQTM-mapping approach. We
applied Fisher's z transformation to Spearman correlation coefficients with the function
fisherz of the R package psych, and calculated corresponding standard errors. For all tissues,
we selected Fisher-transformed Spearman coefficients and corresponding standard errors for
each of the 12,652 eQTMs, as well as for 100,000 randomly selected CpG-gene pairs that
were tested across all tissues. Those estimates were used to fit the mashr model. The local
false sign rate (LFSR) generated by mashr was used to identify significant (LFSR < 0.05)
eQTMs. The complete set of significant eQTMSs, referred to as ‘complete eQTM set’, was
defined by the union of significant cases derived from the single-tissue (FDR < 0.05) and
multi-tissue (LFSR < 0.05) eQTM-mapping approaches (FDR < 0.05 or LFSR < 0.05). This

resulted in an expansion of the 15,839 eQTM-tissue significant eQTM set - corresponding to
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12,652 eQTMs - to 47,783 eQTM-tissue significant cases (Supplementary Figure la,
Supplementary Table 2). Across the article, we refer to CpGs with at least one significant
eQTM as eCpGs. Considering eQTM-based downstream analyses, the ‘single-tissue eQTM

set’ or the ‘complete eQTM set’ were used depending on the particular analysis, as noted.

The number of significant eQTMs was strongly correlated with per-tissue sample size
(Spearman’s p = 0.86), indicating power limitations to detect eQTMs in low-sampled tissue
sets, and we observed that eQTMs tend to be either tissue-specific or shared across most
tissue types (Supplementary Figure 1b). However, the limited sample size of the sets utilized
for eQTM mapping (N < 40 in 4 tissues, Supplementary Figure 1a) and the limited number of
tissues (N = 8) impose limitations in accurately estimating how much eQTMs are shared
across tissues. This analysis would benefit from a more powered and exhaustive eQTM

catalog.

Replication of eQTMs in external cohorts

We assessed eQTM replication for all tissues in the FUSION Skeletal Muscle Study cohort,
where N = 265 individuals were utilized for eQTM mapping. The FUSION cohort
characteristics, and the eQTM-mapping procedure, which is similar to the one employed
herein, are described in '’; we employed available summary statistics. For a particular tissue,
we considered for replication analyses CpG-gene pairs from the single-tissue eQTM set that
passed P < 0.05 in the tissue tested. Across tested tissues, we observed a high replication rate
(cross-tissue average ml = 0.75), being the highest for muscle (1l = 0.84), possibly due to
muscle-specific eQTMs contribution (Supplementary Table 2).

Characterization of eQTM predictors

To annotate mCpGs for gene regulatory elements, we extended the span of their genomic
location by +/- 100bps, and checked for overlap (>= 1bp) with regulatory regions. For each
regulatory element class, a Fisher’s exact test was conducted to determine enrichment of
CpGs included in the single-tissue eQTM set in gene regulatory elements, and significance
was defined at Bonferroni-adjusted P < 0.01. To assess the relative contribution of molecular
signatures to eQTMs linked to different gene regulatory elements, we stratified eQTM tests
by CpG-overlap with gene regulatory element classes. We considered one eQTM test per
CpG per tissue, corresponding to the CpG-gene test with the smallest p-value. For each

element class, in each tissue, a logistic regression model of eQTM likelihood was built to
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predict whether an eQTM test was significant given the CpG-Gene TSS distance (in Kb),
direction of the eQTM effect (‘1° for negative correlation between methylation and
expression, ‘0’ otherwise), the tissue-averaged methylation (in M-value units) and gene
expression abundance (in log2(TPM+1) units), as predictors. For all predictors in all logit
models, multicollinearity was tested with the R package vif. None of the predictors displayed
problematic variance inflation; vif score for any predictor was below 1.5. Cross-tissues
meta-effect was evaluated by modeling single-tissue effect estimates (log of odds ratio) with
a random-effects model (rma function, metafor R package). Summary statistics relative to the
characterization of eQTMs are provided in Supplementary Table 2. Additionally, to evaluate
the contribution of e/mQTLs to eQTMs, we aligned our e/mQTL colocalization results (see
Characterization of mQTL-eQTL shared signal) with eQTMs identified at FDR < 0.05, and
observed that 37% of eQTMs correspond to e/mQTL colocalizations, highlighting a

substantial contribution of genetics to CpG-gene expression correlation.

Comparison of empirical associations of DNA methylation with gene expression to

array annotations

To investigate how accurately the CpG-gene assignments provided by Illumina reflect the
eQTM results observed in GTEx data, we contrasted our eQTM findings with the EPIC array
CpG annotation file provided by Illumina. We observed that while 76% (4,489/5,898) of the
eCpGs we identify have an assigned gene provided in the annotation file, for only 45%
(2,641/5,898) of these eCpGs does the annotated gene match a CpG-gene association
detected through eQTM mapping. Moreover, only 22% (2,828/12,652) of the eQTMs we
identify in at least one tissue match any annotated CpG-gene pair. Overall, our eQTM results
can enhance our ability to assign CpGs to gene(s) with which they are biologically linked,
therefore facilitating the interpretation of methylation-derived analyses, as methylation

patterns are often interpreted in light of their predicted impact on gene regulation.

Mapping of mQTLs and eQTLs

To define mQTLs we analyzed all samples with available methylation and genotype data
(Supplementary Table 1), comprising a total of 856 samples, from 42 - muscle skeletal - to
190 - lung - per tissue, derived from 367 subjects * and interrogated a total of 754,054 CpGs
across all tissues. For each variant-CpG pair, we fit a linear regression model separately in
each tissue, and tested for significance of genotype on methylation estimates while adjusting

for additional known and unknown factors:
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where,

Y is the inverse-normal-transformed DNAm levels

By 1s the intercept

B are the corresponding effect sizes. B is the effect size of genotype on DNAm.

C represents a subset of covariates that were used in cis-eQTL mapping *. These covariates
include 5 genotype principal components, 2 covariates derived from the generation of

genotype data by whole genome sequencing - described in * - and biological sex status.

PEER epresents PEER factors ' derived from DNAm. The number of PEER factors was
selected to maximize mQTL discovery, across two sample size bins: tissues with < 50
samples and tissues with > 100 samples. The optimization was performed similarly to *, and
resulted in the selection of 5 and 20 PEER factors, respectively, for the two sample size bins.
In the optimization step, PEERs were calculated from inverse-normalized DNAm B values
from CpGs in chromosome 1 (~70K CpGs) and significant mQTLs were defined at nominal
P < 1e-05. To correct for multiple testing of variants per CpG, we permuted DNAm
estimates 1,000 times, adjusting p-values with a beta distribution approximation 3*,
Genome-wide CpG multiple testing correction was performed on top-significant CpG-variant
beta-adjusted p-values using Storey gvalue *. The set of significant mQTL CpGs (mCpGs)
identified at FDR < 0.05 was defined as ‘single-tissue mQTL set’, and complemented by

significant cases derived from cross-tissue QTL mapping (see ‘Definition of QTL sets’).

To identify independent mQTLs, we started from the set of mCpGs discovered in the first
pass of association analysis (complete mQTL set: FDR < 0.05 or LFSR < 0.05). Then, the
maximum beta-adjusted p-value (correcting for multiple testing across the variants) over
these CpGs was taken as the CpG-level threshold. The next stage proceeded iteratively for
each CpG and threshold. A cis-scan of the window was performed in each iteration, using
1,000 permutations and correcting for all previously discovered variants. If the beta-adjusted
p-value for the most significant CpG-variant, i.e. best association, was not significant at the
CpG-level threshold, the forward stage was complete and the procedure moved on to the

backward step. If this p-value was significant, the best association was added to the list of
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discovered mQTLs as an independent signal and the forward step proceeded to the next
iteration. Once the forward stage was complete for a given CpG, a list of associated variants
was produced which we refer to as forward signals. The backward stage consisted of testing
each forward signal separately, controlling for all other discovered signals. To do this, for
each forward signal we ran a cis scan over all variants in the window using FastQTL, fitting
all other discovered signals as covariates. If no variant was significant at the CpG-level
threshold the signal being tested was dropped, otherwise the best association from the scan

was chosen as the variant that represented the signal best in the full model.

We define eQTLs as cis-gene variants with a significant genotype effect on gene expression,
utilizing a single-tissue approach analogous to the mQTL-mapping one. We included the
same covariates and variant set (x1Mb from gene transcription start site, MAF < 0.01)
employed for eQTL mapping in *. A total of 3,438 samples was considered, from 73 - kidney
cortex - to 706 - muscle skeletal - samples per tissue, from a total of 829 subjects.
Analogously to mQTLs, we identified multiple independent eQTLs, and the complete set of
significant eQTLs was obtained by complementing the single-tissue mQTL set with

significant cases derived from the cross-tissue approach (see ‘Definition of QTL sets’).

Definition of mQTL and eQTL sets

To overcome QTL-mapping limited power due to per-tissue available sample sizes, and to
determine QTL tissue-specific patterns, we used an approach to perform a cross-tissue QTL
analysis by leveraging QTL signal across tissues *°, implemented in the R package mashr.
Considering the set of 286,153 mCpGs significant in at least one tissue derived from the
single-tissue mQTL-mapping approach, i.e. the ‘single-tissue mQTL set’, for every top
mQTL per CpG per tissue, mQTL effect sizes, corresponding standard errors and 301,801
randomly selected variant-CpG pairs that were tested across all tissues were used to fit the
mashr model. The mashr version employed herein (0.2.6) sets missing effect size values to 0
and corresponding standard error to 1,000,000. The local false sign rate (LFSR) generated by
mashr was used to define significant (LFSR < 0.05) mQTLs.

The ‘complete mQTL set’ set was defined by the union of significant cases derived from the
single-tissue (FDR < 0.05) and cross-tissue (LFSR < 0.05) mQTL-mapping approaches (FDR
< 0.05 or LFSR < 0.05). This resulted in an expansion of the 607,987 mCpG-tissue
significant mQTL set - corresponding to 286,152 mCpGs - to 1,385,225 mCpG-tissue

significant cases. An equivalent approach was employed to perform cross-tissue eQTL


https://paperpile.com/c/KPRGPq/hWNx3
https://paperpile.com/c/KPRGPq/oLO1b

meta-analysis. Considering mQTL- or eQTL-based (e/mQTL) analyses, ‘single-tissue
e/mQTL set’ or the ‘complete e/mQTL set’” are used depending on the particular analysis, as

noted.

Replication of mQTLs in external cohorts

We assessed mQTL replication in the BEST blood cohort (N =337, A = HumanMethylation
450K) * and the FUSION Skeletal Muscle Study cohort (N = 282, A = HumanMethylation
EPIC) ; ‘N’ and ‘A’ define the number of individuals utilized for mQTL-mapping and the
[llumina array used to profile methylation, respectively. In all cases, we tested for replication
the mCpG lead variants (best variant per mCpG) from the single-tissue mQTL set. The
mQTL-mapping procedure and the BEST cohort characteristics are described in *°; we
employed available summary statistics. In brief, DNAm B values were logit-transformed and
adjusted for potential batch effects. A linear model was fit with genotype, age, sex and 10
methylation PCs, considering variants in a +500 Kb window from the CpG locus. A relatively
similar procedure was employed to map mQTLs in the FUSION Skeletal Muscle cohort,
described in '°. Replication was assessed by means of w1, which measures the estimated true

positive rate . We observed high true positive rate values in the blood (nxl1 = 0.91) and

muscle (n1 = 0.93) cohorts, based on 7,245 and 3,548 tested variant-gene pairs, respectively.
Characterization of tissue specificity patterns of mQTLs and eQTLs

The number of mCpGs detected per tissue was strongly correlated with per-tissue sample size
(Spearman’s p = 0.92). The overall tissue specificity of mQTLs follows a skewed U-shaped
curve, i.e. for a particular CpG, genetic regulation of DNAm tends to be either highly
tissue-specific or highly shared across tissue types (Supplementary Figure 2a). The fraction
of mCpGs identified that were detected as mCpGs exclusively in a single tissue (Fig. 2b) is
assumed to be a lower bound, as we observe that the abundance of tissue-specific mCpGs is
strongly correlated (Spearman’s p = 0.80) with sample size, indicating power limitations to
detect tissue-specific QTLs in low-sampled tissue sets. This assumption is compatible with
the larger tissue-specific eGene fractions (Supplementary Figure 2b) observed for eQTLs,
mapped in larger sample sets. Differential tissue-sharing distribution of comparing eQTLs to
mQTLs was tested by means of a Wilcoxon rank-sum test, and the null hypothesis was
rejected (P = 2.9¢-03). That implies that, compared to eQTLs, mQTLs appear to be more

tissue-shared. This pattern could be due to more stable cross-tissue DNAm QTL effects
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compared to expression QTLs, but also to substantially lower mQTL sample sizes (compared

to eQTL sample sizes).
Functional genomic characterization of mQTLs and eQTLs

We observed eQTLs to be more strongly enriched in open chromatin sites than mQTLs
(Supplementary Figure 3a). Additionally, mQTLs appear to be depleted in transcribed genes

and genic enhancers but enriched in distal, active enhancers (Supplementary Figure 3b).

mQTL-eQTL colocalization

We investigated the associations between mQTLs and eQTLs (single-tissue QTL set: FDR <
0.05) by means of QTL effect size colocalization with coloc *° using default priors. For both
QTL types, we considered unconditional QTL mappings, i.e. agnostic to multiple
independent QTLs, due to computational limitations of performing colocalization on the
complete combinatorial space considering multiple independent QTLs for both QTL types.
A mQTL locus was defined as overlapping with an eQTL locus, and subsequently tested for
colocalization, if the mQTL-eQTL region a) had at least 50 variants in common and b)
included potentially causal mQTL and eQTL variants. That is, it included at least one
fine-mapped and/or conditional QTL mapping lead variant, for both mQTL and eQTL
signals. Fine-mapped QTL variants were estimated with dap-g ®, and QTL credible sets were

defined at 90% confidence.

To classify mQTL loci (mCpGs) into the mutually exclusive colocalization categories
depicted in Fig. 2e, we first annotated mQTL loci that did not overlap any eQTL locus in any
tissue. For the remaining eQTL-overlapping mQTL loci set, which was tested for eQTL
colocalization, a mQTL locus was annotated as involved in a eQTL-mQTL colocalization if it
colocalized (PP4 > 0.5) with at least one eQTL in at least one tissue. For the remaining set, a
mQTL locus was annotated as independent to eQTL signal if it exhibited a PP3 > 0.5 for at
least one eQTL colocalization test in at least one tissue. The remaining set was considered to

exhibit inconclusive colocalization signal (PPO + PP1 + PP2 > 0.5).

Across tissues, 93% (266,239/286,152) of mQTL loci do overlap with an eQTL. Using a
moderately permissive threshold for the posterior probability of sharing the same causal
variant (PP4 > 0.5), only 21% of mQTL loci are suggestively colocalized (PP4 > 0.5) with at

least one eQTL, whereas for 38% of cases there is evidence of independent variants driving
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mQTL and eQTL signals (PP3 > 0.5). For the remaining 34% of the cases analyzed, we lack
adequate power to conduct meaningful colocalization analyses (PPO + PP1 + PP2 > 0.5). Our
results indicate that a considerable fraction of mQTLs do not show clear associations with
local gene expression in the same tissue type, but we acknowledge that limited power for
e/mQTL detection, allelic heterogeneity, and colocalization assumptions may limit our ability

to accurately estimate this fraction.

mQTL-eQTL concordance in direction of effects across regulatory regions

We assessed whether the discordance/concordance rate varied as a function of mCpG location
in gene regulatory regions, considering promoters and proximal enhancers jointly, distal
enhancers and insulators. Gene regulatory element annotations were derived from ENCODES
cCREs catalog (see eQTM section above). To annotate the mCpGs, we extended the span of
their genomic location by +/- 100bps, and checked for overlap (>= 1bp) with regulatory
regions. A mCpG was annotated with promoter/proximal enhancer status if, in addition to
overlapping with an ENCODE-predicted promoter or proximal enhancer, it overlapped the
2kb region upstream from the TSS of the corresponding colocalized eGene. To compare the
discordance/concordance rate across regulatory regions, we performed a multi-sample test for

equality of proportions without continuity correction (prop.test function, stats R package).

Characterization of mQTL-eQTL regulatory pleiotropy

Regulatory pleiotropy categories are defined in Methods and illustrated in Supplementary
Figure 4a. The most common scenario, comprising 54% of the eQTL-colocalized mCpGs
(Supplementary Figure 4b), corresponds to eQTL-mQTL colocalizations involving multiple
mCpGs and a single eGene (Tier 3 in Supplementary Figure 4a). Overall, we observe a higher
mCpGs per eGene than eGenes per mCpG ratio (Supplementary Figure 4c¢). The mCpGs per
eGene ratio is correlated with sample size (Spearman’s p = -0.75), suggesting that the
observed value is a lower bound estimate due to mQTL-mapping power limitations. Across
tissues, the largest pleiotropic sets tend to involve mCpGs and eGenes located in the Major

Histocompatibility Complex (MHC).
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Colocalization of GWAS with QTL signal

The approach to identify colocalization of GWAS with QTL signal is described in Methods.
In total, 6,720 GWAS-GWAS-hit tuples were considered for downstream analyses, from 1 -
mothers’s age at death, epilepsy, self-reported schizophrenia, intracranial volume, insomnia -

to 733 - standing height - GWAS hits depending on the GWAS trait.

To evaluate the conservativeness of selected priors, we compared coloc mQTL-GWAS
colocalization results to those generated with default priors (pl = le-04, p2 = le-04, p12 =
1e-05) for the GWAS with largest amount of signal, i.e., UKB standing height GWAS. We
observed that results are strongly correlated (Spearman’s p = 0.93), but colocalization
probabilities derived from fastenloc-derived priors tend to be more conservative
(Supplementary Figure 5a). That is, at PP4 > 0.5, considering fastenloc-derived priors, we
identify 53% less colocalized cases than with the default-priors approach. That is expected,
given the higher ratio between fastenloc-derived p2 (GWAS association) and p12 (mQTL and
GWAS association) priors compared to corresponding default-priors one (Supplementary

Table 5).

Evaluation of mQTL-GWAS colocalization approach

Considering results with suggestive colocalization probability (the intersection set of coloc
PP4 > 0.1 and fastenloc RCP > 0.1), we observe a strong correlation (Spearman’s p = 0.79)
between results from both methods (Supplementary Figure 5b). We identified as significantly
colocalized those GWAS-GWAS hit-mCpG/eGene-tissue tuples with both corresponding
coloc PP4 > 0.3 and fastenloc RCP > 0.3, i.e. the intersection of cases with moderate
colocalization signal derived from both methods (RCP > 0.3 and PP4 > 0.3). Across the
article, coloc PP4 is provided as the reference colocalization probability. We identify 55% of
GWAS hits (1,505/2,734) colocalizing with at least one mQTL but with no eQTLs at RCP >
0.3 and PP4 > 0.3; this estimate can range from 44 to 66% depending on the combination of
PP4 and RCP thresholds selected. Colocalization cases involving at least one mQTL but no
eQTLs are defined as ‘mQTL-specific’ colocalizations, as opposed to ‘eQTL-specific’
colocalizations, which comprise cases involving at least one eQTL but no mQTLs.
Colocalization cases involving at least one mQTL and one eQTL are defined as

‘e/mQTL-shared’ colocalizations.
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Scope of mQTL-GWAS colocalizations

Instances of mQTL-GWAS colocalizations were observed among 81% (67/83) of tested
GWASs and involved 41% (2,734/6,720) of GWAS hits, and 3,381 and 940 colocalized
(trait-linked) mCpGs and eGenes, respectively. For 4.5% (102/2,254) of GWAS hits involved
in mQTL-GWAS colocalizations, the colocalizing signal corresponded to a secondary mQTL.
For nine GWAS traits, colocalizations were only detected for mQTLs, including osteoporosis

and certain balding and metabolic phenotypes, among other traits.

Characterization of DNAm signatures of trait-linked mCpGs

To evaluate the overlap of trait-linked mCpGs with open chromatin regions, we extended the
genomic location span of mCpGs tested for GWAS colocalization by +/- 100bps, and
checked for overlap (>= 1bp) with the aggregated set of DNAse-seq derived ENCODES open
chromatin regions utilized to characterize mQTL signatures. Trait-linked mCpGs were
classified as eQTL-shared or mQTL-specific (see Fig. 4). Enrichment significance of
eQTL-shared or mQTL-specific trait-linked mCpGs in open chromatin regions was estimated
at Fisher’s exact test P < 0.05. To evaluate the methylation signatures of mQTL-GWAS
colocalizations, for each tissue, we performed a Wilcoxon rank-sum test comparing DNAm
levels of mCpGs tested for colocalization to those significantly colocalized (RCP > 0.3 and
PP4 > 0.3). For the majority (8/9) of tissues, DNAm levels of colocalized mCpGs were
significantly (Wilcoxon P < 0.05) lower than tested ones. We applied an analogous approach
to eQTL-GWAS colocalizations, and observed an inverse pattern: for the majority (6/9) of
tissues, expression levels of colocalized eGenes were significantly (Wilcoxon P < 0.05)
higher than tested ones. Bootstrapped (N = 5,000 replicates) values for DNAm and gene
expression means - averaging mCpGs and eGenes within each tissue - for all QTL-GWAS
colocalization groups are displayed in Supplementary Figure 6; confidence intervals were

computed using bootstrapping with replacement.

Integration of trait-linked genetically-regulated methylated loci with functional maps

To identify genes involved in trait-linked mCpGs that co-located with gene regulatory
elements, we integrated mQTL-derived colocalization results with curated promoter- and
enhancer-gene target predictions ***
identified 68% (1,307/1,911) of mQTL-specific trait-linked mCpGs as co-located with

enhancers and/or as eCpGs, across 61 GWASs and 1,129 GWAS hits and reported findings in

and eQTM associations generated herein (Methods). We

13


https://paperpile.com/c/KPRGPq/9pUYO+4NhJy

Supplementary Table 6. For 35% (400/1,129) of these loci, multiple mCpGs consistently
support the same gene candidate(s). Among highly supported (by > 3 mCpGs) cases, we
identify poorly or not characterized gene-trait associations. For instance, the topmost
supported instance corresponds to the RUNX1 locus associated with asthma. For the asthma
GWASs analyzed, we observe 12 distinct mCpGs linked to RUNXI1 regulatory regions.
Given that other members of the RUNX transcription factor family are reported to play a role
in asthma *, RUNXI is a strong candidate to be involved in the etiology of the trait. Another
well-supported case corresponds to the TMEM72 locus, associated with red blood cell
counts, for which we identify 6 mCpGs linked to TMEMT72 regulatory regions. The
TMEMT72 transmembrane protein is strongly and differentially expressed in ductal cells of

the kidney ®, which plays a major role in red blood cell homeostasis .
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Supplementary Figure 1. eQTM discovery and tissue specificity patterns. (a) Number of
eQTMs per tissue, shown with per-tissue eQTM-mapping sample sizes in parentheses. (b)
Tissue sharing profile of eQTMs.
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Supplementary Figure 2. Tissue specificity of QTLs. (a) Tissue sharing profile of mQTLs
and eQTLs. (b) Cross-tissue sharing of eGenes. Cross-tissue average percent of eGenes per
tissue-sharing category is shown in parentheses. Of note, testis is an outlier for tissue

specificity, as 23.5% of eGenes were not detected in any other tissue.
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Supplementary Figure 3. Enrichment of QTLs in chromatin states. (a) QTL enrichment
(x-axis) in tissue-matching open chromatin regions derived from ENCODE DNase-seq
profiles per tissue (y-axis). Whole blood is excluded due to lack of a tissue-matching
DNase-seq profile. Enrichment differences between tissues may be due in part to per-tissue
DNase-seq data quality. (b) QTL enrichment (x-axis) in active chromatin states. OR: Odds

Ratio.
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Supplementary Figure 4. Characterization of mQTL pleiotropy. (a) Scheme of possible
scenarios of eQTL-mQTL colocalization regarding QTL variants’ pleiotropic effect on
multiple mCpGs and eGenes. (b) Quantification of mQTL-eQTL pleiotropy per tier per
tissue, in percent of mCpGs belonging to each tier. Tier details illustrated in (a). (c)
Distribution of the number of eGenes per mCpG (left panel) and mCpGs per eGene (right
panel) involved in mQTL-eQTL colocalization events, stratified by tissue.
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Supplementary Figure 5. Evaluation of mQTL-GWAS colocalization approach. (a)
Density plot of mQTL-GWAS colocalization scores based on coloc run with default (y axis)
and fastenloc-derived priors (x axis) on UKB standing height GWAS; Spearman’s rho is
shown. Each dot corresponds to a colocalization test for a particular GWAS hit, independent
mQTL and tissue combination. (b) Density plot of mQTL-GWAS colocalization scores based
on coloc (x axis) and fastenloc (y axis) approaches on all GWASs; Spearman’s rho is shown.
Each dot corresponds to a colocalization test for a particular GWAS, GWAS hit, independent
mQTL and tissue combination. Dots within the top-right quadrant correspond to significant
(RCP > 0.3 and PP4 > 0.3) colocalizations.
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Supplementary Figure 6. Signatures of trait-linked QTLs. DNAm - in M-values - of
mCpGs (left panel) and gene expression - in log2(TPM+1) - of eGenes (right panel) tested for
colocalization, stratified by tissue and colocalization group (see Fig. 4). Average DNAm and
gene expression across tissues is indicated by dashed line.
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