
Abstraction-based segmental simulation of

reaction networks using adaptive memoization

—

Supplementary Material

Contents

A Details to chemical reaction networks 1

B Population level abstraction for segmental
simulations 2

C Improving memory consumption 4
C.1 Adaptive memoization . 4
C.2 Segment-distribution approximation 5

D Abstraction-based hybrid simulation 6

E Segmental simulation parameters 7

F Discussion about theoretical accuracy 9

G Earth Mover’s Distance (EMD) 10

H Additional experimental evaluation results 12

I Models 16

A Details to chemical reaction networks

We give a more detailed formal definition of Chemical Reaction Networks (CRN).
A CRN N = (Λ,R) is a pair of finite sets, where Λ is a set of species, |Λ| de-
notes its size, and R is a set of reactions. Species in Λ interact according to the
reactions in R. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ), where rτ ∈ N|Λ|

is the reactant complex, pτ ∈ N|Λ| is the product complex and kτ ∈ R>0 is the
coefficient associated with the rate of the reaction. rτ and pτ represent the

1

stoichiometry of reactants and products. A reaction τ1 = ([1, 1, 0], [0, 0, 2], k1)

is written as τ1 : λ1 + λ2
k1−→ 2λ3.

Under the usual assumption of mass action kinetics, the time-evolution of
CRNs is governed by the Chemical Master Equation (see e.g. [2]) that leads to
a (potentially infinite) discrete-space, continuous-time Markov chain (CTMC)
X(t) = (X1(t), X2(t), . . . , X|Λ|(t))t≥0 describing how the probability of the
copy-numbers of each species evolve in time. The state change associated
with the reaction τ is defined by υτ = pτ − rτ , i.e., the state X is changed
to X′ = X + υτ . A reaction can only happen (is enabled) in a state X if all
reactants are present in sufficient numbers. The transition rate correspond-
ing to a reaction τ is given by a propensity function that, in general, depends
on the stoichiometry of reactants, their populations, and the coefficient kτ .
We focus on mass action kinetics where the propensity function is defined as

aτ (X) = kτ
∏|Λ|

i=1

(
Xi

rτi

)
but our approach can principally handle also alternative

kinetics including Michaelis–Menten and Hill kinetics.

B Population level abstraction for segmental
simulations

A population-level abstraction partitions the state space of a system into regions
called abstract states. While in principle one can use any population-level ab-
straction for segmental simulation, inconsistencies like negative copy-numbers,
jump over abstract states, and the application of disabled reactions can arise if
we do not choose the abstraction carefully.

Example Consider the system visualized in Fig. 1 with only the reaction
r : 2X → ∅ and the partitioning into three abstract states a1, a2, a3: a1 =
{0, 1} with representative 0, abstract state a2 = {2, 3, 4} with representative
3 and a3 = {5, 6, ...} with representative 10. In the segmental simulation, the
representative’s segments are applied to each concrete state of the abstract state
where a segment is a sequence of reactions until a different abstract state is
reached. The only possible segment starting at the representative of a3 is the
sequence 10

r−→ 8
r−→ 6

r−→ 4 leading to abstract state a2. However, when we
apply this segment to the concrete state 5 of the same abstract state, we get
5

r−→ 3
r−→ 1

r−→ −1. This is not consistent with the model as negative copy
numbers are reached. Further, when applying the same segment to the concrete
state 7 we get 7

r−→ 5
r−→ 3

r−→ 1 reaching abstract state a1. While this is a
feasible sequence of the system, this segmental step jumped over the abstract
state a2, effectively ignoring the local dynamics.

Interval population-level abstraction In this work, we only consider popu-
lation-level abstractions that are the result of partitioning each dimension using
intervals. For each dimension, we define consecutive intervals that are anno-
tated with a representative. We write [x, y, z] with x ≤ y ≤ z to denote the

2

#X 0 1 2 3 4 5 6 7 8 9 10 11 12

a1 a2 a3

#X 0 1 2 3 4 5 6 7 8 9 10 11 12

#X 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Problematic segmental simulation steps because of unsuitable abstrac-
tion. (top) Population abstraction with three abstract states a1, a2, a3. Circles
are concrete states. The representatives are bigger and black. The solid arrow
is a segment for a3 consisting of three reactions drawn as dotted arrows. (mid-
dle) Applying the segment to concrete state 5 leads to a negative copy number.
(bottom) Applying the segment to concrete state 7 jumps over a2.

interval containing the values {x, x+ 1, ..., z − 1, z} with representative y, e.g.,
[3, 4, 6] = {3, 4, 5, 6} with representative 4. An abstract state in a d-dimensional
system is a hyper-rectangle that is described by d intervals, one for each di-
mension. The representative of an abstract state is the concrete state that
corresponds to the representatives of all its intervals. E.g., the abstract state
in a two dimensional system for intervals [3, 4, 6] and [10, 21, 42] contains all
concrete states (x, y) with 3 ≤ x ≤ 6 and 10 ≤ y ≤ 42 and has representative
(4, 21).

Table 1: Exponential population-level abstraction for the Predator-Prey model
with population growth factor c=1.5.
level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

min 0 1 3 6 11 19 31 49 76 117 179 272 442 622 937
rep 0 1 4 8 14 24 39 62 96 147 225 341 516 779 1173
max 0 2 5 10 18 30 48 75 116 178 271 441 621 936 1409

The abstraction function for a given population-level abstraction maps each
concrete state to its abstract state denoted as the vector of levels, e.g., for the
interval abstraction in Tab. 1 the concrete state (16, 269) is mapped to abstract
state (4, 10) because 16 is in the interval 4 and 269 is in level 10.

Abstraction suitable for segmental simulation For a population-level
abstraction to be suitable for segmental simulation, it must hold that applying

3

the representative’s segments to any corresponding abstract state

1. does not apply reactions that are disabled, and

2. does not lead to a non-neighboring abstract state.

Note (1) implies that the same set of reactions is enabled in all concrete states
of an abstract state and negative copy numbers cannot be reached. Further, to
ensure that segmental simulation adequately approximates the dynamics of the
system, it must hold that the states within each abstract state emit a similar
probability space of the trajectories.

Exponential population-level abstraction Let N = (Λ,R) be a CRN
and c ∈ R≥1 be the population growth factor. For each species s ∈ Λ, we
first compute ms = maxτ∈R(rτ) the highest multiplicity of s in any reaction’s
reactant complex. If s does not react, i.e., ms = 0, then we do not split the
dimension of s into multiple segments as the number of s molecules is not impor-
tant for reusing segments.1 Otherwise, we add the intervals [0, 0, 0], [1, 1, 1],...,
[ms−1,ms−1,ms−1] and define the following intervals iteratively: After the
interval i = [x, y, z] with x ≤ y ≤ z and size |i| := z − x+ 1 we add the interval
i′ = [x′, y′, z′] where x′ := z+1 and y′ := z+|i| and z′ := ⌈c·|i|⌉. Intuitively, the
next interval starts after the previous interval, it has the desired size of ⌈c · |i|⌉,
and its representative is the largest value that does not enable jumps over the
previous interval. An example of an exponential abstraction is given in Tab. 1.
In case we want to force additional user-defined levels, e.g., for more precision
in a certain range of copy numbers, we can generate intervals using a similar
(but more complicated) heuristic or with a constraint solver.

C Improving memory consumption

C.1 Adaptive memoization

Because memory is limited, one needs to decide for which abstract states one
wants to remember segments to achieve the best possible speedup. Or in other
words, we want to use the available memory as efficiently as possible.

The memory efficiency of an abstract state depends on the following three
values: (1) the expected speedup we gain by reusing a segment instead of gen-
erating a new one, (2) the frequency with which future simulations visit the
abstract state, and (3) the memory that is spent on the abstract state.

efficiency =
speedup× frequency

memory

As it is infeasible to compute the efficiency directly, we need to approximate it.
Because this involves the generation of multiple segments to judge the expected

1 For some applications like measuring the accuracy it can be important to force a partition
by setting ms := max(ms, 1).

4

speedup and thus takes significant time, we need to approximate the efficiency
on-the-fly.

For a given memory limit, our adaptive memorization works as follows: A
small fraction, typically 10%, of the memory is used for the identification of
the most frequently visited abstract states. Specifically, we will use a least-
frequently-used cache with dynamic aging (LFU-DA) [7]. This data structure
is ideal for our use case as it supports all operations in amortized O(1) and
updates usage counters that allow estimating the relative frequencies of abstract
states. Dynamic aging regularly halves all usage counters, effectively reducing
the impact of old usage data. This ensures that the frequencies adapt in cases
where the predicted behavior of segmental simulation changes significantly, e.g.,
if the memory is used for simulations with different initial state or end time.
Therefore, the adaptive memoization allows us to effectively apply the segmental
simulation in more advanced experimental scenarios where initial conditions or
simulation time is not fixed [5].

The rest of the available memory is used to store segments for each abstract
state in the cache and all data needed for the efficiency estimation. This ensures
that the majority of the memory is used to speed up the simulation. To esti-
mate the expected speedup of an abstract state, we measure the average time to
generate a new segment and compare it to the average time to reuse a saved seg-
ment.2Additionally, we keep track of the memory spent on each abstract state.
Once the total used memory exceeds the defined memory limit, we evaluate the
efficiency of all abstract states in the LFU-DA cache in order to free a specified
fraction of the available memory, typically 15%. This is achieved by marking
inefficient abstract states as inactive and removing their stored segments. In
an inactive abstract state, we do not apply segmental simulation and instead
evolve the system using SSA to reduce the error. If an inactive state becomes
efficient enough, e.g., because it is visited more frequently, it will be reactivated
in the next efficiency evaluation in order to collect new segments.

C.2 Segment-distribution approximation

When we reuse segments, we effectively sample from approximation of the ac-
tual segment distribution. If we sample from more segments we reduce the
corresponding error, however, this costs more memory per abstract state and
delays the simulation speedup. Up to this point, we required constant number
of segment k before we start reusing. We will now generalize and allow users
to define a memory function f(x) that determines the number of generated seg-
ments to sample from when visiting an abstract state for the x-th time. The
memory function for a constant k is f(x) = k. A family of functions that al-
lows reuse earlier while generating an infinite amount of segments in the limit

2 If efficiency is estimated using measured run times, the result of a segmental simulation
does not just depend on the seed used for random number generation but also on the hardware.
In cases where this is a problem, we propose to instead use the number of reactions to judge the
expected speedup. Beware that this might not be a good metric if advanced base simulators
are used.

5

≈
x7x1

x2
x1

Figure 2: (left) Approximation of a segment distribution made up of 100 sum-
maries. All summaries with the same direction have the same color, e.g., there
are 20 orange summaries in direction (+1,+1) or northeast. (right) A very
similar but much more memory-efficient approximation with 30 summaries. For
directions with many summaries, all but 10 random summaries were discarded.
In order to keep the distribution similar the weights of those directions are in-
creased. E.g., in the northeast direction the number of summaries was halved,
but their weight doubled.

is f(x) = log(sx + 1)/s for some s > 0. However, any other non-decreasing
function is adequate.

While this determines the number of segments to sample from, it is not nec-
essarily useful to save all these segments to memory. In fact, when all segments
are similar, it is much more memory efficient if we just save one of them. How-
ever, if we generate a segment that corresponds to an unlikely event, it will differ
from the known segments and should be saved. Thus, we classify segments ac-
cording to their direction defined as the sign of the effect on each species, e.g., a
segment that changes the state by ∆(+3,−1, 0) has direction (1,−1, 0). Rather
than saving all segments, we only save a small number, usually 10, segments
per direction per abstract state. If we generated a segment for a direction with
enough examples, we discard it and instead increase the likelihood of segments
in this direction by increasing their weight when sampling a segment for reuse
as visualized in Fig. 2.

D Abstraction-based hybrid simulation

Reaction classification The reaction classification is done per abstract state.
First, each species is assigned a target classification according to the size of the
interval in the corresponding dimension. If the interval is larger than some pa-
rameter tfast, typically 400, the target is fast, otherwise, it is slow. Next, each
reaction is classified according to the slowest species affected by the reaction.
Finally, we compare the combined speed of all slow reactions with the combined
speed of all fast reactions. If the propensity of the fast reactions is not signif-
icantly larger, typically ofast=4 times larger, we instead classify every reaction
as slow to avoid the overhead needed to approximate the ODE. Further, instead
of classifying into just slow and fast reactions, we add a third class of reactions
with a medium speed that is evolved using τ -leaping. Typically, we use the
parameters tmedium=5 and omedium=2.

6

s

m
ed
iu
m

(τ
-l
ea
p
in
g)

slow
(SSA)

slow
(SSA)

fas
t

(O
DE)

s

s′

s

s′′

Figure 3: A hybrid simulation step starting in state s of an abstract state. (left)
For every speed, the effects are first calculated separately. (middle) Then, the
effects are combined leading out of the abstract state to state s′. (right) As the
combined effect was too large, the events are replayed in random order. Between
every discrete reaction, there is a continuous evolution. The first state outside
of the abstract state is s′′ ̸= s′.

Hybrid step To perform one step of the hybrid simulation, we first determine
the time ∆t=min(∆tslow,∆tmedium,∆tfast) for the next hybrid simulation step.
Here, ∆tslow is the time of the next slow reaction according to SSA, ∆tmedium:=τ
according to the τ -leaping approach of [1] and ∆tfast is the time needed for the
fast reactions to change the abstract state according to the ODE. Next, we
evolve the state according to the ODE for fast reactions up to time ∆t. Finally,
we sample the discrete reactions that occur in this step and apply their effect.
The number of occurrences for medium reactions is determined by τ -leaping for
τ := ∆t. In case ∆t < ∆tSSA, the next slow reaction was too late. Otherwise,
the next slow reaction occurs and is sampled according to SSA.3 This process
is illustrated in Fig. 3.

Overshooting Our hybrid simulation needs to handle cases where a single
hybrid step is significantly larger than expected. This is typical whenever τ -
leaping is used as it is unlikely but possible to sample very large values from the
Poisson distributions. This could lead to negative copy numbers. A common
solution for these rare events in τ -leaping is to discard the step and retry with
a smaller τ . In our hybrid simulation approach we reclassify reactions once
we leave the abstract state. Thus, we also consider steps too large if they do
not stop right after the abstract state border. As this is quite common, we do
not discard the sampled step but replay all reactions in random order until the
abstract state is left (see right part of Fig. 3).

E Segmental simulation parameters

We explain the hyper-parameters of the simulation methods presented in this
work and note their default values.

3 The interaction between slow and medium reactions is analogous to critical and non-
critical reactions in [1].

7

• population-level growth factor c ∈ R≥1 (default: c=1.5).
It determines the exponential growth of the population-level abstraction
(see Sec. B). Intuitively, each dimension is partitioned into intervals start-
ing with intervals of size one for small copy-numbers, and the n-th interval
is c times as large as interval (n−1). For c=1, every concrete state is in a
different abstract state.

• τ -leap rate tolerance ε ∈ R>0 (default: ε=0.03) A bound for the acceptable
relative change in propensities is used to determine the next time window
in τ -leaping as defined by [1]. Intuitively, we sample and apply all reactions
that occur in the next τ seconds at once because the rate of each reaction
does not change by more than a factor of ε.

• segmental memory function f : N 7→ R≥0 (default: f(x) = log(sx + 1)/s
with s = 0.0359)
A function determining the number of effective segments to sample the
next segment from if x is the number of visits to the current abstract state.
The function typically should be monotonic and non-decreasing. Exam-
ple: If the current abstract state was visited 1000 times, then f(1000) =
log(0.0359 · 1000 + 1)/0.0359 = 100.491 and the next segment is chosen
out of 101 segments.

• memory limit in bytes m ∈ N (default: m=5.000.000, or 5GB)
The segmental simulation will use at most this much memory for storing
segments.

• memory fraction for abstract state cache mcache ∈ R (default: mcache =
0.1)
The segmental simulation will reserve this fraction of the total memory to
store the known abstract states. If the cache is full and a new abstract
state is hit, the least frequently used abstract state and all its segments
will be removed from memory.

• memory freeing fraction mfree ∈ R (default: mfree = 0.85)
If segmental simulation hits the memory limit because of too many saved
segments, it removes the segments of the least efficient abstract states.
Specifically, the memory reserved for segments is mseg := m · (1−mcache)
bytes. After the memory freeing, at most mseg ·mfree bytes are used.

• maximum frequency in LFU DA cache fmax ∈ N (default: fmax = 1000)
The LFU DA cache counts the number of uses of each element in order
to keep the most frequently used abstract states in the cache. To avoid
overflow of this counter, we limit it to fmax. Elements with maximal usage
count can only be increased after the next dynamic aging event.

• maximum frequency fDA ∈ R (default: fDA = 0.1)
A dynamic aging event happens once the average use counter in the cache
exceeds fmax · fDA. This halves all usage counters. If an abstract state is

8

not used anymore, but the memory is full, dynamic aging will reduce the
abstract state’s counter until it is removed from memory.

• minimum interval size for ODE tfast ∈ N (default: tfast=400).
In the abstraction-based hybrid simulation, a species can only be treated as
continuous if the interval of the current abstract state in the corresponding
dimension has at least size tfast. This makes sure that only large copy
numbers are evolved in a deterministic manner. In abstraction-based τ -
leaping (TAU) we set tfast=∞ to disable ODE.

• minimum interval size for τ -leaping tmedium ∈ N (default: tmedium=5).
In the abstraction-based hybrid simulation, a species can only be evolved
using τ -leaping if the interval of the current abstract state in the corre-
sponding dimension has at least size tmedium. This makes sure that species
with very few molecules are evolved using SSA and thus only change one
reaction at a time.

• overhead factor for ODE ofast ∈ R≥1 (default: ofast=4)
If the total propensity of all fast reactions is not at least ofast, then they
get classified as SSA instead to circumvent the overhead of solving an
ODE for a few reactions.

• overhead factor for τ -leaping omedium ∈ R≥1 (default: omedium=2)
If the total propensity of all medium reactions is not at least omedium, then
they get classified as SSA instead to mitigate the overhead of performing
a τ -leaping step.

• ODE solver sODE (default: DormandPrince54Integrator)
To evolve the CRN deterministically, we numerically solve the underly-
ing system of ODEs. We make use of the Apache commons library for
ODEs and use the Apache Commons math library for JAVA. The default
Dormand-Prince solver is an embedded Runge-Kutta integrator of order
5(4) with automatic step size control and uses the following parameters:
minimum step size 1.0E-12, maximum step size 100, absolute tolerance
1.0E-3, relative tolerance 1.0E-8.

F Discussion about theoretical accuracy

SEG has the following two error sources.
Segment distribution approximation error: By reusing a finite number of

saved segments, we effectively sample an approximation of the actual segment
distribution starting at the representative of an abstract state. If the number of
saved segments is too small, the abstract might miss important local behavior or
skew the probabilities of events. However, the error decreases when the number
of segments is increased and vanishes when the number of segments approaches
infinity.

9

https://commons.apache.org/

Abstraction error: Recall that SEG does not sample the segment distribution
for the current state but instead samples the distribution for the representative
of the current abstract state. Because the propensities, and thus the rates of
reactions, are different for different states, this inherently introduces an error.
The abstraction error is reasonably small in practice as the segment distributions
for states within one abstract state are quite similar: Consider that within any
abstract state, the propensity and thus rate for a mass-action reaction varies by
at most the factor cr where c is the growth factor of the exponential abstraction
and r is the number of reactants. Decreasing the size of abstract states decreases
the abstract error and it vanishes for c=1, where every state corresponds to a
different abstract state.

While SEG changes the probability measure over the space of runs, we make
sure that it never produces spurious behavior, i.e., every simulated reaction was
enabled. This is achieved by choosing a suitable population-level abstraction,
as described in Sec. B.

G Earth Mover’s Distance (EMD)

To assess the accuracy of a simulation method, we want to compare the transient
distribution approximated by generating a large number of simulations with the
true transient distribution. Thus, we need a metric that measures the similarity
of arbitrary, possibly high-dimensional, distributions. One such metric is the
first Wasserstein distance or Kantorovich–Rubinstein metric, also known as
Earth Mover’s Distance.

General definition of Earth Mover’s Distance (EMD) Let M be a com-
pact metric set. The Earth-Mover’s Distance (EMD) of the probability distri-
butions µ and ν on M is defined as

EMD(µ, ν) = inf
π∈Π(µ,ν)

E(x,y)∼π[||x− y||]

where Π(µ, ν) is set of all joint distributions π(x, y) with first marginal µ and
second marginal ν [6]. When comparing transient distributions of a CRN with
n dimensions, then M = Rn. Intuitively, when we interpret both distributions
as piles of dirt, then the EMD is the minimal cost of transforming one into the
other when the cost is the amount of dirt moved times the distance it is moved.

Computing the EMD Even in the case where the distributions have finite
support, e.g., because we approximated a transient distribution using a finite
number of simulations, one must solve a large transportation problem using
linear programming to compute the EMD. This makes computing the general
EMD infeasible in practice. However, for distributions with finite support in one
dimension, there is a simple algorithm that computes the EMD in (quasi-)linear
time (see Alg. 1). Thus, we instead use the total EMD

10

Algorithm 1 Computing EMD in 1D with finite supports

Require: probability distributions µ, ν with finite supports Sµ, Sν ⊂ R
Ensure: d = EMD(µ, ν)
1: S := Sµ ∪ Sν

2: d := 0.0, movingmass := 0.0, last := 0.0
3: for x ∈ sortAscending(S) do
4: d := d+ |movingmass · (last− x)|
5: movingmass := movingmass− µ(x) + ν(x)
6: last := x
7: end for

totalEMD(µ, ν) =
∑

1≤i≤n

EMD(µi, νi)

where µi and νi are the projections of the distributions to dimension i and n is
the number of species.

Total Level EMD In our work, we report the EMD not for the concrete
transient distribution but instead for the transient distribution over the abstract
domain. Intuitively, we are interested in the general level of the species, not their
exact value. The total level EMD is

totalLevelEMD(µ, ν) = totalEMD(a(µ), a(ν))

where a is the abstraction function extended to modify the support of probability
distributions.

11

H Additional experimental evaluation results

Figs. 4 and 5 compare plots of SSA simulations to both segmental simulation
approaches. Fig. 6 shows the speedup we achieve when generating an increasing
number of simulations with segmental simulation instead of SSA. Tab. 2 gives
details about the memory usage when generating 10.000 simulations. A more
detailed speedup comparison of segmental simulation and the hybrid simulation
approach of [4] is given in Tab. 3.

Time (in s)

Figure 4: Comparison of SSA simulation (left) and segmental simulation using
SSA (right) for different models.

12

Time (in s)

Figure 5: Comparison of the concrete simulations produced by SSA simulations
(left) and hybrid SEG (right) for different models.

13

Figure 6: Speedup achieved by segmental simulation over SSA when generating
a given number of simulations.

Table 2: Memory usage and the number of abstract states/segments in memory
after 10.000 segmental simulations. Compared to [3], the memory requirements
are reduced because of adaptive memory management and segment distribution
approximation. This enables segmental simulation for models of any size. (*)
Even more abstract states were visited but could not be saved. (**) The method
is not adaptive and thus does not handle cases where the memory limit of 5GB
is reached.

Model
abstract
states

Segments Memory
total in approxim. CMSB [3] adaptive

PP 300 38,000 5,700 (15%) 2.6MB 390kB
VI 430 42,000 10,000 (24%) 3.5MB 840kB
TS 10,000 7.2E5 2.5E5 (35%) 69MB 24MB
RP 29,000 2.4E6 6.2E5 (26%) 230MB 61MB

TSxRP 6.3E6(*) 5.0E7 2.5E7 (50%) OOM(**) 5GB
EC 4.4E6 5.5E7 1.7E6 (31%) OOM(**) 5GB

Table 3: Runtime comparison with [4] for 100,000 simulations. Speedups are
relative to the respective SSA implementation.
Model

[4] Our results
SSA Adaptive hybrid SSA TAU HYB SEG u. SSA SEG u. HYB

RP 232 hours 3.0 hours (77x) 233 hours 30 hours (7.9x) 9.7 hours (24x) 1.5 hours (160x) 0.47 hours (500x)
TS 47 days 1.1 days (43x) 24 days 3.8 days (6.4x) 2.0 days (12x) 2.1 hours (280x) 1.9 hours (310x)

14

Generating training inputs for Nessie [8]. For this experiment we con-
sider the TS model with parameterised rates: the value of each rate r′i, i ∈ [0, 13],
is always within an order of magnitude wrt. value ri considered in Table 6:
r′i ∈ [1

10 · ri, 10 · ri]. Training data included 40,000 uniformly sampled param-
eter valuations, for which transient distributions were computed using either
SSA (our implementation in SAQuaiA) or SEG+HYB with the growth factor
c = 1.1. Given parameter valuation, from one SAQuaiA run for end time 100s,
we extracted transient distributions for times 1,. . . ,100s. The resulting tran-
sient distributions are marginalized to represent distributions over the quantity
of the protein sA, representing 4,000,000 training points for Nessie. Similarly,
distributions for 100 and 500 random parameter valuations were used as valida-
tion and testing data, respectively; distributions for these training points were
obtained by running 10,000 SSA simulations. Nessie was run with default set-
tings. The scripts used to generate training data, the resulting neural networks
and their outputs are available at https://github.com/randriu/saquaia.

15

https://github.com/randriu/saquaia

I Models

The exact definitions of all models used in the evaluation are given in Tabs. 4
to 9. This includes their reactions together with their respective propensity
functions, their initial state, and the time horizon of interest.

Table 4: Definition of the Predator Prey (PP) model.
Predator Prey

Species (2) Pred,Prey
Initial state (200×Pred, 200×Prey)
End time 200s

Reactions rep : Prey
1·Prey−−−−→ 2Prey

(3) eat : Pred+Prey
0.005·Pred·Prey−−−−−−−−−−→ 2Pred

starve : Pred
1·Pred−−−−→ ∅

Table 5: Definition of the Viral Infection (VI) model.
Viral Infection

Species (4) DNA,RNA,P,V
Initial state (1×RNA)
End time 200s

Reactions d0 : DNA+P
1.125E−5·DNA·P−−−−−−−−−−−→ V

(6) x : RNA
1000·RNA−−−−−−→ RNA+P

t : DNA
0.025·DNA−−−−−−−→ DNA+RNA

p : RNA
1·RNA−−−−→ DNA+RNA

d2 : RNA
0.25·RNA−−−−−−→ ∅

d5 : P
1.9985·P−−−−−→ ∅

16

Table 6: Definition of the Toggle Switch (TS) model.
Toggle Switch

Species (6) mA,mB, sA, sB,pA,pB
Initial state ∅
End time 50000s

Reactions r0 : ∅ 1−→ mA r7 : mB+ sA
20·mB·sA−−−−−−→ sA

(14) r1 : ∅ 1−→ mB r8 : mA+ sB
20·mA·sB−−−−−−→ sB

r2 : mA
0.1·mA−−−−→ ∅ r9 : pB

0.1·pB−−−−→ ∅
r3 : mB

0.1·mB−−−−→ ∅ r10 : sA
0.01·sA−−−−→ ∅

r4 : pA
0.1·pA−−−−→ ∅ r11 : sB

0.01·sB−−−−→ ∅
r5 : mA

5·mA−−−→ sA r12 : sA
10·sA−−−→ sA+ pA

r6 : mB
5·mB−−−→ sB r13 : sB

10·sB−−−→ sB+ pB

Table 7: Definition of the Repressilator (RP) model.
Repressilator

Species (6) mA,mB,mC,pA,pB,pC
Initial state (10×mA, 500× pA)
End time 50000s

Reactions spawnA : ∅ 0.1−−→ mA despawnC : mC
0.01·mC−−−−−→ ∅

(15) spawnB : ∅ 0.1−−→ mB degradeA : mA+pB
50·mA·pB−−−−−−→ pB

spawnC : ∅ 0.1−−→ mC degradeB : mB+pC
50·mB·pC−−−−−−→ pC

prodA : mA
50·mA−−−−→ mA+ pA degradeC : mC+pA

50·mC·pA−−−−−−→ pA

prodB : mB
50·mB−−−−→ mB+ pB dissolveA : pA

0.01·pA−−−−−→ ∅
prodC : mC

50·mC−−−−→ mC+ pC dissolveB : pB
0.01·pB−−−−−→ ∅

despawnA : mA
0.01·mA−−−−−→ ∅ dissolveC : pC

0.01·pC−−−−−→ ∅
despawnB : mB

0.01·mB−−−−−→ ∅

17

Table 8: Definition of the Toggle Switch × Repressilator (TSxRP) model.
Toggle Switch × Repressilator

Species (12) m,m′, s, s′,p,p′,mA,mB,mC,pA,pB,pC
Initial state (10×mA, 500× pA)
End time 50000s

Reactions r0 : ∅ 1−→ m r7 : m′ + s
20·m′·s−−−−→ s

(29) r1 : ∅ 1−→ m′ r8 : m+ s′
20·m·s′−−−−→ s′

r2 : m
0.1·m−−−→ ∅ r9 : p′ 0.1·p′−−−→ ∅

r3 : m′ 0.1·m′
−−−−→ ∅ r10 : s

0.01·s−−−→ ∅
r4 : p

0.1·p−−−→ ∅ r11 : s′
0.01·s′−−−−→ ∅

r5 : m
5·m−−→ s r12 : s

10·s−−→ s+ p

r6 : m′ 5·m′
−−→ s′ r13 : s′

10·s′−−−→ s′ + p′

spawnA : ∅ 0.1−−→ mA despawnC : mC
0.01·mC−−−−−→ ∅

spawnB : ∅ 0.1−−→ mB degradeA : mA+ pB
50·mA·pB−−−−−−→ pB

spawnC : ∅ 0.1−−→ mC degradeB : mB+ pC
50·mB·pC−−−−−−→ pC

prodA : mA
50·mA−−−−→ mA+ pA degradeC : mC+ pA

50·mC·pA−−−−−−→ pA

prodB : mB
50·mB−−−−→ mB+ pB dissolveA : pA

0.01·pA−−−−→ ∅
prodC : mC

50·mC−−−−→ mC+ pC dissolveB : pB
0.01·pB−−−−→ ∅

despawnA : mA
0.01·mA−−−−−→ ∅ dissolveC : pC

0.01·pC−−−−→ ∅
despawnB : mB

0.01·mB−−−−−→ ∅

18

Table 9: Definition of the E. coli (EC) model.
E. coli

Species (23) PLac,RNAP,PLacRNAP,TrLacZ1,RbsLacZ,TrLacZ2,
TrLacY1,RbsLacY,TrLacY2,Ribosome,
RbsRibosomeLacZ,RbsRibosomeLacY,TrRbsLacZ,
TrRbsLacY,LacZ,LacY,dgrLacZ,dgrLacY,
dgrRbsLacZ,dgrRbsLacY, lactose,LacZlactose,
product

Initial state (PLac, 35×RNAP, 350×Ribosome)
End time 2000s

Reactions r0 : PLac+RNAP
0.17·PLac·RNAP−−−−−−−−−−−→ PLacRNAP

(22) r1 : PLacRNAP
10.0·PLacRNAP−−−−−−−−−−−→ PLac+RNAP

r2 : PLacRNAP
1.0·PLacRNAP−−−−−−−−−−→ TrLacZ1

r3 : TrLacZ1
1.0·TrLacZ1−−−−−−−−→ PLac+RbsLacZ+ TrLacZ2

r4 : TrLacZ2
0.015·TrLacZ2−−−−−−−−−−→ TrLacY1

r5 : TrLacY1
1.0·TrLacY1−−−−−−−−→ RbsLacY+ TrLacY2

r6 : TrLacY2
0.36·TrLacY2−−−−−−−−−→ RNAP

r7 : RbsLacZ+Ribosome
0.17·RbsLacZ·Ribosome−−−−−−−−−−−−−−−→ RbsRibosomeLacZ

r8 : RbsLacY+Ribosome
0.17·RbsLacY·Ribosome−−−−−−−−−−−−−−−→ RbsRibosomeLacY

r9 : RbsRibosomeLacZ
0.45·RbsRibosomeLacZ−−−−−−−−−−−−−−−→ RbsLacZ+Ribosome

r10 : RbsRibosomeLacY
0.45·RbsRibosomeLacY−−−−−−−−−−−−−−−→ RbsLacY+Ribosome

r11 : RbsRibosomeLacZ
0.4·RbsRibosomeLacZ−−−−−−−−−−−−−−→ RbsLacZ+ TrRbsLacZ

r12 : RbsRibosomeLacY
0.4·RbsRibosomeLacY−−−−−−−−−−−−−−→ RbsLacY+ TrRbsLacY

r13 : TrRbsLacZ
0.015·TrRbsLacZ−−−−−−−−−−−→ LacZ

r14 : TrRbsLacY
0.036·TrRbsLacY−−−−−−−−−−−−→ LacY

r15 : LacZ
6.42E−5·LacZ−−−−−−−−−−→ dgrLacZ

r16 : LacY
6.42E−5·LacY−−−−−−−−−−→ dgrLacY

r17 : RbsLacZ
0.3·RbsLacZ−−−−−−−−→ dgrRbsLacZ

r18 : RbsLacY
0.3·RbsLacY−−−−−−−−→ dgrRbsLacY

r19 : LacZ+ lactose
9.52E−5·LacZ·lactose−−−−−−−−−−−−−−−→ LacZlactose

r20 : LacZlactose
431.0·LacZlactose−−−−−−−−−−−−→ LacZ+ product

r21 : LacY
14.0·LacY−−−−−−−→ LacY+ lactose

19

References

[1] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Efficient step size
selection for the tau-leaping simulation method. The Journal of chemical
physics, 124(4):044109, 2006.

[2] Daniel T Gillespie. A rigorous derivation of the chemical master equation.
Physica A: Statistical Mechanics and its Applications, 188(1-3):404–425,
1992.

[3] Martin Helfrich, Milan Češka, Jan Křet́ınský, and Štefan Martiček.
Abstraction-based segmental simulation of chemical reaction networks. In
Computational Methods in Systems Biology (CMSB), pages 41–60. Springer,
2022.

[4] Benjamin Hepp, Ankit Gupta, and Mustafa Khammash. Adaptive hybrid
simulations for multiscale stochastic reaction networks. The Journal of
chemical physics, 142(3):034118, 2015.

[5] Simeone Marino, Ian B Hogue, Christian J Ray, and Denise E Kirschner.
A methodology for performing global uncertainty and sensitivity analysis in
systems biology. Journal of theoretical biology, 254(1):178–196, 2008.

[6] Svetlozar T Rachev. The monge–kantorovich mass transference problem
and its stochastic applications. Theory of Probability & Its Applications,
29(4):647–676, 1985.

[7] John T. Robinson and Murthy V. Devarakonda. Data cache management
using frequency-based replacement. In Conference on Measurement and
Modeling of Computer Systems, page 134–142. Association for Computing
Machinery, 1990.

[8] Augustinas Sukys, Kaan Öcal, and Ramon Grima. Approximating solutions
of the chemical master equation using neural networks. Iscience, 25(9), 2022.

20

	Details to chemical reaction networks
	Population level abstraction for segmental simulations
	Improving memory consumption
	Adaptive memoization
	Segment-distribution approximation

	Abstraction-based hybrid simulation
	Segmental simulation parameters
	Discussion about theoretical accuracy
	Earth Mover's Distance (EMD)
	Additional experimental evaluation results
	Models

