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Supplementary Figures and Tables
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Fig. S1 Properties of halogen ions, Hofmeister series
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Fig. S2 Coulombic efficiency of Zn||Cu asymmetric cell with different electrolytes by
Aurbach’s method under the conditions (a) (1 mA cm?, 5 mAh cm?)+(1 mA cm?, 1

mAh cm2)*10, (b) (5 mA cm2, 10 mAh cm™)+(5 mA cm, 5 mAh cm2)*20
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Fig. S3 Coulombic efficiency of Zn||Cu asymmetric cells in electrolytes with single

anion addition (a) 2M+0.06M CI-, (b) 2M+0.06M Br, and (c) 2M+0.06M I electrolytes
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Fig. S4 Long-cycle performance of Zn||Zn symmetric cells with different electrolytes

at 10 mA cm? and 5 mAh cm™
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Fig. S5 Average Coulombic efficiency of Zn||Cu asymmetric cells using different
electrolytes at (a) 1 mA cm?, 1 mAh cm™, (b) 5 mA cm™?, 5 mAh cm?, (c) 10 mA cm’
2,10 mAh cm, and (d) 10 mA cm™ and 5 mAh cm™
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Fig. S6 Ex-situ XRD of stainless steel collector in cells using (a) baseline electrolyte
and (b) HESE. (c) XRD pattern of zinc metal after 5 days of immersion in two

electrolytes (inset is the optical photograph)

Supplementary Note 1: The corrosiveness of halogen ions in solution is an important
issue that cannot be ignored. XRD was used to detect the corrosion of the electrolyte
on the stainless-steel collector and the surface by-products of zinc sheets, which
demonstrated a slower corrosion rate of zinc in HESE and a significant inhibitory effect

of HESE on by-products.
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Fig.S7 The calculated configurational entropy (Sconf) (2) before and (b) after mixed
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Fig. S8 Raman spectra fitting results of v-O-H portion (strong, medium, and weak H-

bonds) in (2) 2M ZSO, (b) 1HESE, (c) HESE, (d) 3HESE, and (e) SHESE
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Fig. S9 The lifetime and the numbers of H-bonds of HESE and 2M ZSO

Supplementary Note 2: This phenomenon might result from the intense bonding
effects between halogen ions and water, which substantially elevates the number of
hydrogen bond in HESE. The relatively stable number of hydrogen bonds in the zero-
charge state may help the battery maintain stable performance during the cycling
process and extend the service life. The increase in the number of hydrogen bonds in
the negatively charged state may help to increase the rate of ion transport, thus
improving the efficiency of the battery's charge and discharge. Increased hydrogen

bonds in the positively charged state may enhance battery capacity.
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Fig.S10 Raman spectra fitting results of v-O-H portion (strong, medium, and weak H-

bonds) in (a) 2M+0.06M CI~, (b) 2M+0.06M Br~, and (c) 2M+0.06M I~ electrolyte, (d)

Statistical results
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Fig. S11 3D snapshot and local amplification of MD simulations of 2M ZSO electrolyte

system
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Fig. S12 The coordination between Zn and each other atoms in HESE system
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Fig. S13 (a) 3D snapshot and local amplification, (b) The coordination between Zn and

I of 2M+0.06M I electrolyte system
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Fig. S14 Average Zn?* cluster sizes in different electrolytes

15




$,0.85A

G(r) (A?)

{.I.I.I.I.I.I.I.I.I.I.I. 0 1

Y0 2 a4 8 1012141618202224262830 06 0.8 1.0
r (A) r(A)
Fig. S15 The pair distribution function (PDF) spectra of two electrolyte solutions

16




600 600
(a) 2M ZS0 (b) HESE
m 30T m 307C
500 - e 4T 500 s 40T
A 50°C A 50°C
< 4001 goc & 400} 60 C
[3 ¢ 70°C E ¢ 70°C
© 4 80°C o 4 80°TC
g 300} G 300f
200 | [ I | 200 |
" - " = mEEEg
H_ o000, L [ 1 my
100 -"‘J;XA.AAAA“{.\ . 100 | nceee .o..\ l.-l-\
100 200 300 400 500

0 100 200 300 400 500 600 0 600
Z'(Q cm?) Z'(Qcm?)
(C) -4.0
@ 2MZSo
@ HESE
-4.5 —— Fitting
—— Fitting
G ot
- E,=34.59 kJ mol"!
‘f 55}
E,=24.22 kJ mol""
0}
6.5

28 29 30 3.4 3.2 33
1000/T (K™)

Fig. S16 EIS curves of Zn||Zn symmetric cells at different temperatures in (a) 2M ZSO
and (b) HESE, and (c) the calculated activation energy (Ea)
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Fig. S22 EIS and Distribution of relaxation times (DRT) fitting curves of Zn||Zn
symmetric cell with (a-b) 2M ZSO, (b) HESE. (1): the relaxation of electrons, (2): the
adsorption and desolvation process of Zn(H20)s*" at the interface, (3): the migration
and crystallization of Zn ions on the electrode, (4): the charge transfer process across

the interface, (5): ion diffusion.

Supplementary Note 3: The decrease of the closed-circuit peak area of HESE is lower
than that of ZSO, indicating reduced electrochemical resistance. In particular, the
impedance values of adsorption and desorption processes, charge transfer processes and
ion diffusion processes were reduced. Meanwhile, during the resting period of 9 h after
battery assembly, the impedance of adsorption and desolution processes showed a rapid
increase, indicating that the inert Zn passivation reaction kinetics was slow. In contrast,
HESE helps to reduce the resistance of this process, indicating that the exposed

zincophilic sites are favorable for reaction kinetics.
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Fig. S23 CV curves of Zn||Cu asymmetric cells in (a) 2M ZSO, (b) HESE, (c)
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Fig. S25 Digital photographs of the initial nucleation and growth processes of zinc in

two electrolytes
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Fig. S26 Distribution and SEM micrographs of zinc deposition (5 mAh cm) on copper

(Cu) substrate in two electrolytes
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Fig. S27 SEM images of deposited zinc morphology obtained under different

deposition condition
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Fig. S30 In-situ Raman spectra of v-O-H at the Zn/electrolyte interface in (a) 2M ZSO



Fig. S31 Raman spectra fitting of the v-O-H portion, the proportion statistics of strong
and weak H-bonds (S-H and W-H) in 2M ZSO electrolyte during (a) stripping and (b)

plating
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Fig. S32 Raman spectra fitting of the v-O-H portion, the proportion statistics of strong
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cells assembled with two electrolytes varies with the working time, (c) The regional

corresponding distribution of cell thickness and cycle time
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Fig. S47 Digital photos and SEM images of high-loading (=19 mg cm) cathode

electrodes and mapping of key elements
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Fig. S49 Cross-section SEM images of high-loading (~37.0 mg cm™) cathode

electrodes and mapping of key elements
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Fig. S53 Digital photo of Ah-level multi-layer pouch cell material
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Table S1 CEs test results of different electrolytes

Conditions ZS0 ZSO + CI~ ZS0O +Br- ZSO+ I~ HESE
(L.5) 80.07% 97.30% 96.62% 96.15% 99.06%
(1,1)*10 . 0 . 0 . 0 . 0 . 0
(5.10) 92.68% 99.17% 99.01% 98.83% 99.69%
(5,1)*60 . 0 . 0 . 0 . 0 . 0
(5.10) / 98.32% 97.76% / 99.45%
(5,5)*20 ' ' '
Overpotential (mV) 119.4 90.4 74.2 69.0 57.4
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Table. S2 The types of solvation structures and their corresponding proportion in 2M

ZS0 electrolyte system

S0O4%-H,0 Proportion (%)
0-6 30.261
1-5 62.364
2-4 2.661
3-3 1.973
4-2 1.365
5-1 1.015
Others 0.361
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Table. S3 The types of solvation structures and their corresponding proportion in

HESE system
SO4?-H,0O-CI-Br-I- Proportion (%)

0-6-0-0-0 3.399
1-5-0-0-0 1.000
1-3-1-1-0 10.589
1-3-1-0-1 11.325
1-4-0-1-0 20.315
1-4-1-0-0 24.039
1-4-0-0-1 10.169
2-3-0-1-0 1.958
2-3-1-0-0 1.759
2-3-0-0-1 1.252
2-4-0-0-0 0.136
0-5-1-0-0 4516
0-5-0-0-1 3.516
0-5-0-1-0 4.464
1-3-0-2-0 0.252
1-3-2-0-0 0.377
1-3-0-0-2 0.155

Others 0.779

Table. S3-2 Classified statistics

Name SO4%-H,O-(CI-Br-I) Proportion (%) Summary (%)
0-6-(0) 3.399
Zn?*-Solvent 1-5-(0) 1.000 4.535
2-4-(0) 0.136
0-5-(1) 12.496
Mono-hologated
cIp 1-4-(1) 54.523 71.988
2-3-(2) 4.969
Multi-hologated
1-3-(2) 22.698 22.698
CIP
/ Others 0.779 0.779
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Table S4 Electrostatic potential and forming energy of main Zn solvation structure

Name Electrostatic potential Formation Name Electrostatic potential Formation
(S0,4-H,0-CI-Br-l) P energy (eV) (80,4-H,0-CI-Br-l) P energy (eV)

- 3807e1 - -1.536e-2
- 35251 - 584202

(0-6-0-0-0) - 320401 -16.692 (1-4-0-1-0) - 101561 -38.895
- 2962e1 - 1.445e1
- 2681e1 - 1.876e-1
- 1.972¢1 170002
- 2428e1 - 34412

(1-2-1-1-1) - 288401 -49.809 (1-4-1-0-0) _ g5w2e2 -38.801
- -3.340e1 - 1.37261
- 3791 - 188601
- -1.630e-1 - -2786e-1
- 1.97%1 - -3126e1

(1-3-1-0-1) - 232861 -45.559 (2-3-0-0-1) - 346501 -50.769
|- 26771 |- -3805e-1
- -3.026e-1 - -4.145¢1
- -1.291e1 = o
i WY, e

(1-3-1-1-0) - 21771 -46.766 (2-3-0-1-0) V o ‘, | assset -51.610
- 2621e1 . 38001
= - 41931
- 1.91%¢3 - -2.956e1
- 473102 | 326601

(1-4-0-0-1) g n— 96552 -38.135 (2-3-1-0-0) @ n- 357501 -51.942
- -1.458e-1 208481
- 1.950e-1 - -4.134e-1
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Table S5. Performance comparison of symmetric Zn||Zn cells from the previously

reported works involving electrolyte additives and our work

mA cm™ . CPC
Electrolytes Ads - DOD Lifespan (h) " Refs.
mAh cm (mAh cm™)
2 M ZnSOq4 8 mM ZnF: 1/1 1.71% 600 300 [1] AFM 21018861
5/5 30.0% 200 500 [2] JACS 2022, 144, 25,
3 M ZnSOq4 10 mM a-CD
10/1 6.0% 160 800 111292
11 1.71% 2100 1050
2 M ZnSOq4 50 mM TXA [3] ESM 2023,1028003
5/5 8.55% 700 1750
11 1.71% 1820 910
[4] Angew
2 M ZnSOq4 1% Py 5/5 8.55% 550 1375
£202302302*
2/6.3 80% 575 575
11 2.1% 3000 1500 [5] Small 2023,
1 M ZnSOq4 0.2 MKI
5/5 10.7% 400 1000 2207664°
1/1 1.71% 3500 1750
[6] EES 2022, 15,
2 M ZnSOq4 0.1 M Ims 5/5 8.54% 400 1000 4748
10/20 85% 350 1750
10/10 17.1% 650 3250
20 mM
2 M ZnSOq4 20/5 8.55% 450 4500 [7] AS 22014337
CH3COONHg4
20/20 34.2% 130 1300
2 M ZnSOs4 2g L1 CeCls 40/10 17.1% 180 3600 [8] AM 22031048
[9] ACS Nano 2022, 16
2 m Zn(0OTf)2 7 M DEC 5/2.5 4.3% 3500 3500
(6), 9667°
8.85/8.85 15% 975 4310 [10] EES 2023,16,
2 M ZnSOq4 1.5 wt% L-CN
20/20 34.2% 220 2200 268410
1/1 3.42% 3000 1500 [11] Angew
1 M ZnSOq4 2 wt.% PDD
10/10 34.2% 300 1500 2023027011
Hybrid eutectic 2/4 2.73% 2000 2000 [12] NC 2023 14, 3067
2 M Zn(OTf).
co-solvents 2/8 5.47% 1600 1600 Swagelok-type cellst?
50 mg mL*! 10/10 17.1% 800 4000
1 m Zn(CF3S03)2 [13] AEM 230174313
Dextran 50/10 17.1% 55 1375
11 3.42% 4260 2130
2 M ZnSOq4 0.1 M L-Asp [14] AEM 2301670
10/10 85.5% 240 1200
1.77/1.77 10% 5000 4425
50% H20+50% [15] Angew
2 M Zn(TFMS): 5/20 42.7% 400 1000
DME+50 mM I £20230959415
8.85/13.35 75.5% 300 1335
11 3.42% 5600 2800
10/5 17.1% 1000 5000
2 M ZnS0Oq4 0.02 M CI',Br,I 10/10 34.2% 850 4250 This work
201 3.42% 1500 11000
40/20 68.4% 210 4200

Note: [x] corresponding to the annotation in Fig.S42.
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Table S6. Performance comparison of Zn||Cu cells from the previously reported works

involving electrolyte additives and our work

mA cm™ DOD CPC (mAh cm™)
Electrolytes Ads - Refs.
mAh cm (%) CE
2 M ZnSOq4 0.08 M ZnF2 40/3.0 / 3000/99.14% [1] AFM 21018861
3 M ZnSOq4 10 mM a-CD 11 / 600/99.90% [2] JACS 2022 144, 252
2 M ZnSOq4 50 mM TXA 5/1 / 500/99.4% [3] ESM 2023 1028003
/ 1200/99.50%
2 M ZnS04 1% Py / [4] Angew €202302302*
2/1 500/99.3%
1M ZnSO4 0.2 MKI 10/5 10.7% 1250/99.83% [5] Small 2023, 2207664°
5/1 1.71% 2000/99.9%
2 M ZnS04 0.1 M Ims [6] EES 2022, 15, 47486
40/10 17.1% 2000/99.8%
20mM
2 M ZnS04 2/1 / 3000/99.23% [7] AS 22014337
CH3COONH;4
212 6.84% 1000/99.8%
1 M ZnS04 2wt.% PDD [8] Angew 202302701
10/10 34.2% 1600/99.1%
2 M ZnSOq4 0.1 M L-Asp 11 3.42% 1600/99.6% [9] AEM 2301670
2 M ZnSOq4 2g Lt CeCls 10/10 / 600//99.7% [10] AM 22031048
ZnSOq4 Gel/SA-acetate 1/1 / 2800/99.9% [11] Angew 231097016
1M Zn(CFsS03)2 50 mg mL* Dextran 5/1 1.71 3400/99.97% [12] AEM 230174313
5/1 3.42% 7800/99.94%
2 M ZnSO04 0.02 M CI',Br,I 20/10 34.2% 5700/99.76% This work
40/10 34.2% 2520/99.83%

Note: [x] corresponding to the annotation in Fig. S44.
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Table S7. Performance comparison of Zn||Ti cells from the previously reported works

involving electrolyte additives and our work

mA cm™ DOD CPC (mAh cm™)
Electrolytes Ads L Refs.
mAh cm (%) CE
2 M ZnSOq4 0.1 M Ims 20/10 17.1% 2000/99.70% EES, 2022, 15, 4748°
Angew 2021, 60,
3 M Zn(CFsS0s). 20 mM Zn(NO3)2 1/0.5 / 100/99.40%
13035%7
50 mg mL™
1 M Zn(CF3SOs). 2/1 3.42% 1730/98.54% AEM 230174313
Dextran
50% H20+50%
2 M Zn(TFMS)2 2/1 5.7% 1000/99.66% Angew 20230959415
DME+50 mM I
2 M ZnS04 0.1M La(NOs)s 2/1 / 2500/99.9% NC 2022, 13, 325218
2 M ZnS04 13 mM L-CN 101 / 1000/98.85% EES 2023,16, 268410
2 M ZnSOq4 0.02 M DASS 5/5 / 1000/99.44% AEM 202302770%°
2 M ZnSOq4 20mM TN 5/1 / 900//99.60% AFM 202311773%
2 M ZnSOq4 0.02 M CI',Br,I 20/10 34.2% 2400/99.64% This work
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Table S8. Performance comparison of full cells from the previously reported works

involving electrolyte additives and our work

Cycles .
Electrolytes Ads Cathode y i Capacity/mAh g! N:P Refs.
Retention
2 M ZnSOq4 0.08 M ZnF: LiMn204 100/75.64% 0.2AgY77.3 >100 AFM 2101886
JACS 2022,
3 M ZnSOq4 10 mM a-CD V205 800/84.2% 3.0 Agl/325 11
144, 111292
ESM 2023, 59,
2 M ZnSOq4 50 mM TXA NH4V4010 500/85.9% 1A gY146.1 >100
1028003
Angew
2 M ZnS0O4 1% Py NaV3Os 550/91.3% 4.0Agl/125 21
£2023023024
Small 2023,
1 M ZnSO4 0.2 MKI AC 2000/81.64 4.0 Ag'¥/169 /
2207664°
540/91.15% 0.5 Ag'/302.5 12.15
EES 2022, 15,
2 M ZnSOq 0.1 M Ims NaVsOs 1000/96% 40Ag%95.3 4.81 47480
3000/88% 20.0 Ag'/159 >10
Angew 2021,
3 M Zn(CF3S0s)2 20 mM Zn(NOs)2 MnO: 700/96.5% 10 C/1334
60, 13035%7
2 M ZnSOq4 0.1 M L-Asp PEDOT-V20s 1000/91.6% 10A g'1/320 40 AEM 2301670
1000/91.3% 4.0 AgY/153.4 1.52 )
2 M ZnSOq4 0.02 M CI',Br,I NaV3Os This work
3000/85.4% 10.0 Ag/151 6.54
Electrolytes Method Cathode  Cycles Retention  Capacity/mAh cm-? N:P E/C Wh kg ! Refs.
12 uL mAh 1 NC 2021
2 M ZnSO4 FCOF@Zn MnO2 250/0.5mAh cm 2 3mA cm?/2.0 ~2 55/130
3.7 uL mg 12:66062
Hybrid eutectic ZnVO 250/~90% 45 mA gl/4.4 1.08 4.7 uL mg * 7.3/45.1 NC 2023
2 M Zn(OTf)2
co-solvents AC 300/~88% 45 mA g%/3.2 2.15 8.1 uL mg 1 9.7/82.5 14:3067%2
4.5 9.2 uL mg ! x/64 Angew
2 M ZnS0Oq4 1% Py NaV3Os / /
2.1 20 uL mg 1 x/37.5 €2023023024
PEDOT- 12 uL mAh 1
2 M ZnSOq4 0.1 M L-Asp 200/84.4% 0.05A g%/4.62 24 41.1/119.8 AEM 2301670
V205 45pL mg*t
2MZnSO4+  Stress-governed MO 200/61.8% 3.2 mA cm?/14.78 374 25uLmAh? x/47.6 EES 2023,16,
nO:
0.1 M MnSOs  VVLP separator 80/71.9%(pouch) 1.6 mMAcm?17.43 135 0.77 pLmg™ x/115.1 213322
0.02M 6 pL mAh !
2 M ZnSOq4 NaV3Os 100/~94.7% 1.0 Ag%9.23 ~2 57.6/152.2
Cl,Br,I- 2.4 '_[L mg -1
This work
0.02 M 12 pL mAh 1
2 M ZnSOq4 NaV3Os 1500/~80.4% 4.0A g%2.92 152 19.5/84.5
CIBr,I 5.3 uL mg *
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Table S9. Battery design parameters for zinc ion full cell based onZn||[NVO in HESE

Name Material NaVOH
Discharge capacity / mAh g 232 (1A g, after 100 cycle)
Active material loading / % 70
Cathode
Cathode weight / mg cm- 37.00
Areal capacity / mAh cm 9.23
Separator Radius/ cm; Weight / mg 1.9; 15.60
Electrolyte Volume / pL; Weight / mg 90; 119.43
Zn Anode Radius/ cm; Weight / mg 1.2; 40.40
N:P / ~2
Working voltage \Y/ ~1.2

M=mc+ms+me+ma
=37.00/0.7+15.6/(3.14>0.953+119.43+40.40/(3.14>0.6F
=52.86+5.50+119.43+35.74

=213.53 mg cm™

Welectrode=U >9.23/Melectrode

=1.2>9.23/(37+35.74)
=152.2 Wh kg
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Table S10. COSTING. Summary of prices of various reagents of one coin cell. Price

data of all this were collected from Internet (https://www.alibaba.com/)

Name online Price Mole_cular Consumption  Total cost
weight of per cm? %)
ZnS0s 7H20 0.6 $ kgt 287.5 51.76 mg 3105610
ZnCl, 1.12 $ kgt 136.3 0.74 mg 0.829x10
ZnBr, 2.0$ kgt 225.2 1.22 mg 2.440x10
Znl; 2.0$ kgt 319.2 1.72 mg 1.720x10°
DZ 0.1 $ kg 18 63.99 mg 6.399>10
Cathode (NVO) (M=1:3.51) /
(V20s+NaCl) 150+0.05 $ kg 37.00mg 12:320:40°
Cathode (C) 25 $ kgt / 10.57 mg 26.425%10°
Cathode (PTFE) 7.2 $ kgt / 5.29 mg 38.08810°
Separator (GF/A) 50.5 $ kg! / 5.50 mg 27.775%10
Anode (Zn,50pm) 2.5$ kg / 35.74 mg 89.350<10°
Current collector (SS) 0.8$m? / 91.50 mg 73.200106
SUM / / 259.28 mg 28.212x10*

Price of HESE: 1 kg containing 433.384 g ZnS0a, 2.054 g ZnCl,, 3.394 g ZnBr>,

4.819 g Znl,, and 556.349 g H,0. ~0.334 $ kg !

And, 2 M ZS0 is ~0.317 $ kg *
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