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Figure S1. Genome characteristics and conserved structures of the Potato Virus Y, Cherry virus
A and Acyrthosiphon pisum virus viral sequences characterized in Tetranychus truncatus. The
ORFfinder program was used to identify the largest ORF and InterProScan program was used to
identify conserved structures.
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Figure S2. Characterization of the novel TtDV-1, TtDV-2 and AVT viruses. Phylogenetic
analysis, conducted using ModelTest-NG based on the Akaike information criterion (AIC),
determined VT+F as the optimal evolutionary model. Bootstrap values were generated from 1000
replicates. Values below 70% are not displayed.
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Figure S3. Characterization of the novel BVT-1 and BVT-2 viruses. Phylogenetic analysis,
conducted using ModelTest-NG based on the Akaike information criterion (AIC), determined VT+F
as the optimal evolutionary model. Bootstrap values were generated from 1000 replicates. Values

below 70% are not displayed.
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Figure S4. Characterization of the novel TtOV virus. Phylogenetic analysis, conducted using
ModelTest-NG based on the Akaike information criterion (AIC), determined VT+F as the optimal
evolutionary model. Bootstrap values were generated from 1000 replicates. Values below 70% are

not displayed.
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Figure S5. Characterization of the novel TtTV virus. Phylogenetic analysis, conducted using
ModelTest-NG based on the Akaike information criterion (AIC), determined VT+F as the optimal
evolutionary model. Bootstrap values were generated from 1000 replicates. Values below 70% are not
displayed.
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Figure S6. Characterization of the novel CVT virus. Phylogenetic analysis, conducted using
ModelTest-NG based on the Akaike information criterion (AIC), determined VT+F as the optimal
evolutionary model. Bootstrap values were generated from 1000 replicates. Values below 70% are not
displayed.
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Figure S7. Characterization of the novel TtNoV virus. Phylogenetic analysis, conducted using
ModelTest-NG based on the Akaike information criterion (AIC), determined VT+F as the optimal
evolutionary model. Bootstrap values were generated from 1000 replicates. Values below 70% are not
displayed.
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Figure S8. Genome characteristics and conserved structures of the characterized viral sequences
related to Dicistroviruses, Kitaviruses, and Ourmiavirus and their best hits. The structural
annotation of the characterized viruses associated with Tetranychus truncatus is depicted on the left,
while their GenBank best hits are shown on the right. The ORFfinder program was used to identify the

largest open reading frames (ORFs), and the InterProScan program was employed to identify
conserved structures within these viral sequences.
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Figure S9. Genome characteristics and conserved structures of the characterized viral sequences
related to Tobamoviruses, Citriviruses, Nodaviruses, and Phenuiviruses and their best hits. The
structural annotation of the characterized viruses associated with Tetranychus truncatus is depicted on
the left, while their GenBank best hits are shown on the right. The ORFfinder program was used to
identify the largest open reading frames (ORFs), and the InterProScan program was employed to
identify conserved structures within these viral sequences.
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Figure S10. Characterization of the novel GVT-1, GVT-2, GVT-3 and GVT-4 viruses.
Phylogenetic analysis, conducted using ModelTest-NG based on the Akaike information criterion
(AIC), determined VT+F as the optimal evolutionary model. Bootstrap values were generated from
1000 replicates. Values below 70% are not displayed.
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Figure S11. Characterization of the novel GVT-1, GVT-2, GVT-3 and GVT-4 viruses.
Phylogenetic analysis, conducted using ModelTest-NG based on the Akaike information criterion
(AIC), determined VT+F as the optimal evolutionary model. Bootstrap values were generated from
1000 replicates. Values below 70% are not displayed.
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Figure S12. Genome characteristics and conserved structures of the Alphanudivirus truncatus
core genes sequences. The ORFfinder program was used to identify the largest ORF and InterProScan

program was used to identify conserved structures.
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Figure S13. RNA density coverage plots of known and novel viral sequences. RNA density plots
illustrating the coverage profiles of both known viruses (A-C) and newly characterized viruses (D —
L), with RNA sense depicted in blue and antisense in yellow. The Y-axis denotes the total coverage,
while the X-axis indicates the position of the base pair along the sequence's total length.
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Figure S14: RNA density coverage plots of characterized viral sequences. RNA density plots
illustrate the coverage profiles of newly characterized viruses (A-E), with RNA sense depicted in
blue and antisense in yellow. The Y-axis denotes the total coverage, while the X-axis indicates the
position of the base pair along the sequence's total length.
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Figure S15: Viral transcripts levels in libraries subjected to different temperature treatments.
The Y-axis represents the normalized abundance in TPM, while the X-axis categorizes the libraries
into two treatment groups: High Temperature and Ordinary Temperature. The plot provides a visual
comparison of TPM abundance, offering insights into the impact of temperature treatment on virus

expression levels in the libraries.
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Figure S16: Alpha diversity analysis of temperature and abamectin stress in Tetranychus
truncatus virome. Boxplot illustrating alpha diversity in libraries corresponding to temperature
treatment (A) and abamectin treatment (B) conditions, including. The Y-axis represents alpha
diversity, and the X-axis categorizes libraries based on the sample conditions.
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Figure S17. UMAP projections illustrate distinct transcriptional profiles of mites under different
endosymbiont profiles. Samples derived from mites exclusively infected by Wolbachia are denoted
in blue (W+S-), while exclusively infected with Spiroplasma in green (W-S+), coinfected by both
Spiroplasma and Wolbachia in purple (W-+S+), and uninfected in red (W-S-).
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Figure S18. Pathways related to Enriched Gene Sets in Tetranychus truncatus exclusively infected
by Wolbachia. The bubble plot illustrates pathways enriched in mites solely infected with Wolbachia,
as determined by differential analysis in comparison to uninfected samples. Pathways are represented
on the y-axis, while the Enrichment Score is depicted on the x-axis. The size of each bubble
corresponds to the gene set size, and the color of the bubble scales with the adjusted p-value (padj).
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Figure S19. Pathways related to Enriched Gene Sets in Tetranychus truncatus exclusively infected
by Spiroplasma. The bubble plot illustrates pathways enriched in mites solely infected with
Spiroplasma, as determined by differential analysis in comparison to uninfected samples. Pathways
are represented on the y-axis, while the Enrichment Score is depicted on the x-axis. The size of each
bubble corresponds to the gene set size, and the color of the bubble scales with the adjusted p-value

(padj).
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Figure S20. Pathways related to Enriched Gene Sets in Zetranychus truncatus coinfected by
Wolbachia and Spiroplasma. The bubble plot illustrates pathways enriched in Wolbachia and
Spiroplasma coinfected mites, as determined by differential analysis in comparison to uninfected
samples. Pathways are represented on the y-axis, while the Enrichment Score is depicted on the x-axis.
The size of each bubble corresponds to the gene set size, and the color of the bubble scales with the
adjusted p-value (padj).



