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[bookmark: _Ref164417479][bookmark: _Toc178598297]Codes and Data
[bookmark: _Ref172270848][bookmark: _Toc178598298]Summary
All the codes and data are provided via the GitHub repository: https://github.com/Long1Corn/SurFF   
The repository includes model codes, downloadable links for core data files and links for the entire database. An example usage provides a step-by-step guide to predict with SurFF. 
All the data files in this work are summarized in the following Table S1.1‑1.

[bookmark: _Ref163399653][bookmark: _Toc178598327]Table S1‑1 Description on all the data files
	Folders
	Content

	Data
├─Crystal
│  ├─Opt_crystal 
│  │  ├─All
│  │  ├─ID
│  │  └─OOD
│  │      ├─element2
│  │      └─element3
│  └─Raw_crystal
│      ├─All
│      ├─ID
│      └─OOD
│          ├─element2
│          └─element3
├─dataset_generation
│  ├─LMDB
│  └─Model
│      └─save_dir
│          ├─element_1
│          ├─element_2_0
│          ├─element_2_1
│          ├─element_2_2
│          ├─element_2_3
│          ├─element_2_4
│          ├─element_3_0
│          ├─element_3_1
│          ├─element_3_2
│          ├─element_3_3
│          ├─element_3_4
│          ├─element_3_5
│          ├─element_3_6
│          ├─element_3_7
├─figures
│  └─fig_save
└─Surface
    ├─Surface_Energy
    │  ├─data
    │  │  ├─ID_testset
    │  │  ├─OOD_testset
    │  │  └─trainset
    │  └─original_data
    │      ├─slab_element_1
    │      │  ├─bulk_1
    │      │  └─slab_1
    │      ├─slab_element_2
    │      │  ├─bulk_2_exp
    │      │  ├─slab_2_exp
    │      └─slab_element_3
    │          ├─bulk_3_exp
    │          └─slab_3_exp
    └─Traj
	

Optimized crystal cells.





Retrieved raw crystal cells from online database.




Dataset generated for each batch of active learning iteration.
















Codes and data for generation all figures and tables in the main text and SI;  

All surface energy dataset;




All structures for surface slab and OUC;









All DFT single points data for surface relaxation.




[bookmark: _Toc178598299]Web UI
A web UI is also designed to allow users to upload crystal structure files and get prediction directly. The usage could be also obtained from the GitHub link in S1.1.

[image: ]
[bookmark: _Toc178598344]Figure S1‑1 Web UI for direct SurFF prediction.


[bookmark: _Toc178598300]Design Space
[bookmark: _Toc178598301]Retrieved stable metallic crystals from the Material Project
Crystallographic data were obtained from the Materials Project database, utilizing the MPRester API. The database was queried to retrieve intermetallic crystals structures for developing the intermetallic crystal nanoparticle model. The selection criteria for querying the database are summarized in Table S2.1‑1.

Post-query refinement excluded materials containing at least one d-block. This step ensured the focus remained on crystals with specific relevance to catalysis. Each material meeting the selection criteria was processed to standardize its crystal structure to a conventional standard form using PyMatGen's SpacegroupAnalyzer tool. This uniformity in crystal structure aids in the comparability for later DFT calculations. 

The standardized crystal structures were stored in the POSCAR format, with each structure saved to a designated directory and accompanied by a unique identifier, crystal ID. Additionally, an index of the collected materials was created, capturing essential metadata such as material ID, formula, number of elements, and number of atoms. This index, saved as a CSV file, facilitates efficient data access and management.

This forms the base design space of about 2,618 crystals, containing elemental, bimetallic, and trimetallic crystals of 49 metal/semimetal elements and six crystal systems. The distributions of the 2,618 crystals are shown in Figure S2.1‑1, Figure S2.1‑2, and Figure S2.1‑3.

[bookmark: _Ref163382719][bookmark: _Toc178598328]Table S2‑1 Selection criteria for intermetallic crystals for design space
	Criterion
	Description

	Excluded Elements
	H, B, C, N, O, F, P, S, He, Ne, Cl, Ar, Se, Br, Kr, I, Xe, Po, At, Rn, Hg, Tc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es

	Number of Sites
	1 to 8

	Number of Elements
	1 to 3

	Energy Above Hull (eV)
	0 (stable)

	Retrieved Fields
	Structure, Material ID


[image: A graph of numbers and a bar
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[bookmark: _Ref171494412][bookmark: _Ref171494408][bookmark: _Toc178598345]Figure S2‑1 Distribution of number of elements in crystals.
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[bookmark: _Ref163399309][bookmark: _Toc178598346]Figure S2‑2 Distribution of crystal systems.
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[bookmark: _Ref163399311][bookmark: _Toc178598347]Figure S2‑3 Distribution of element occurrence.

[bookmark: _Toc178598302]Crystal structure pre-optimization
Lattice parameter optimization is performed on all the crystal structures retrieved from the Material Project to ensure the consistency of calculations for this study. The DFT parameters in Table S2.2‑1 are used for cell structure optimization in VASP. Pymatgen’s MVLSlabset module is used for generating VASP setting files. Unlisted parameters are default values of MVLSlabset or VASP.

[bookmark: _Ref163404114][bookmark: _Toc178598329]Table S2‑2 DFT parameters for lattice parameter optimization
	Parameters
	Value
	Parameters
	Value

	ALGO
	Normal
	EDIFF
	1e-6

	EDIFFG
	-0.02
	IBRION
	1

	ISIF
	3
	ISMEAR
	1

	ISPIN
	2
	LCHARG
	False

	LREAL
	Auto
	LWAVE
	False

	ENCUT
	520
	NSW
	400

	POTIM
	0.1
	PREC
	Normal

	SIGMA
	0.2
	K-Points
	Gamma 
(35/a, 35/b, 35/c)



For the crystal cell optimizations, 2,597 out of 2,618 calculations were successfully terminated. For those unsuccessful crystals, the raw structures from the Material Project were used instead in the following steps. The post-calculation checks were conducted to ensure that the space group remained unchanged after the optimization. Histogram of cell structures changes before and after optimization is shown in Figure S2.2‑1.
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[bookmark: _Ref163403257][bookmark: _Toc178598348]Figure S2‑4 Histogram of cell structures changes before and after optimization.

[bookmark: _Toc178598303]Comparison with R2SCAN meta-GGA
We have conducted thorough benchmarking using the R2SCAN meta-GGA functional, which offers higher accuracy than traditional GGA methods. By calculating a total of 353 surfaces from 20 bimetallic and trimetallic crystals using R2SCAN, we ensured the alignment of our model with higher-level DFT approaches. 
The exchange-correlation effects were modeled using the R2SCAN meta-generalized gradient approximation (GGA) functional, and all calculations were spin-polarized with a plane wave cutoff energy of 680 eV. The Methfessel Paxton method was employed for smearing, the blocked Davidson iteration scheme for electron minimization and the conjugated gradient algorithm for ion updates. Convergence was for energy, and atomic forces were set to be 10−5 eV and 0.02 eV/Å, respectively. Γ-centered k-point meshes of 35/a×35/b×35/c and 35/a×35/b×1 were used for OUC and slab calculations respectively, with non-integer values rounded up to the nearest integer.
Figure S2‑5 shows the comparison of surface energies from PBE-GGA and R2SCAN meta-GGA in the calculated batch. A low MAE (0.009 eV/Å2) indicates a good alignment between the PBE-GGA and higher-level DFT method. Table S2‑3 and Table S2‑4 show the all surfaces of two arbitrarily selected intermetallics. It also shows that the related magnitude of surfaces within a crystal keeps the same. 
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[bookmark: _Ref178227596][bookmark: _Ref178227589][bookmark: _Toc178598349]Figure S2‑5 Scatter plot of surface energies obtain from PBE-GGA and R2SCAN meta-GGA. 


[bookmark: _Ref178227799][bookmark: _Ref178227794][bookmark: _Toc178598330]Table S2‑3 A selection (NiY, mp-1364) of comparison of surface energies using PBE and R2SCAN 
	Miller Index
	Shift
	Surface Energy
PBE 
[eV/Å2]
	Surface Energy
R2SCAN
[eV/Å2]

	111
	0.184
	0.098
	0.091

	111
	0.303
	0.089
	0.082

	110
	0.500
	0.102
	0.094

	110
	1.000
	0.097
	0.090

	101
	0.000
	0.097
	0.089

	101
	0.250
	0.097
	0.089

	011
	0.000
	0.094
	0.087

	011
	0.180
	0.091
	0.084

	001
	0.108
	0.088
	0.081

	001
	0.250
	0.097
	0.089

	221
	0.179
	0.085
	0.078

	221
	0.257
	0.089
	0.082

	221
	0.494
	0.095
	0.087

	212
	0.000
	0.089
	0.082

	212
	0.090
	0.086
	0.079

	212
	0.201
	0.091
	0.084

	211
	0.000
	0.092
	0.085

	211
	0.250
	0.087
	0.080

	210
	0.250
	0.110
	0.101

	201
	0.000
	0.091
	0.084

	122
	0.053
	0.092
	0.084

	122
	0.143
	0.081
	0.074

	122
	0.250
	0.108
	0.100

	122
	0.500
	0.106
	0.099

	121
	0.007
	0.076
	0.070

	121
	0.197
	0.083
	0.078

	112
	0.066
	0.099
	0.091

	112
	0.115
	0.102
	0.092

	112
	0.250
	0.079
	0.073

	112
	0.500
	0.096
	0.090

	102
	0.000
	0.078
	0.072

	102
	0.250
	0.080
	0.074

	021
	0.071
	0.085
	0.080

	021
	0.256
	0.097
	0.089

	012
	0.049
	0.091
	0.084

	012
	0.170
	0.098
	0.092





[bookmark: _Ref178227801][bookmark: _Toc178598331]Table S2‑4 A selection (Zr6Sb2Pt, mp-12972) of comparison of surface energies using PBE and R2SCAN 
	Miller Index
	Shift
	Surface Energy
PBE 
[eV/Å2]
	Surface Energy
R2SCAN
[eV/Å2]

	111
	0.250
	0.099
	0.093

	111
	0.673
	0.128
	0.122

	111
	0.781
	0.118
	0.113

	111
	0.905
	0.111
	0.104

	110
	0.095
	0.107
	0.102

	110
	0.625
	0.112
	0.106

	110
	0.875
	0.131
	0.121

	101
	0.083
	0.116
	0.109

	101
	0.208
	0.123
	0.116

	101
	0.327
	0.099
	0.095

	101
	0.453
	0.123
	0.115

	001
	0.250
	0.109
	0.103

	212
	0.209
	0.108
	0.102

	212
	0.274
	0.113
	0.106

	212
	0.315
	0.115
	0.108

	211
	0.083
	0.131
	0.122

	211
	0.381
	0.113
	0.106

	211
	0.673
	0.113
	0.106

	211
	0.917
	0.114
	0.108

	210
	0.083
	0.108
	0.101

	210
	0.185
	0.114
	0.108

	210
	0.226
	0.104
	0.098

	210
	0.291
	0.120
	0.111

	210
	0.354
	0.104
	0.097

	201
	0.083
	0.098
	0.095

	201
	0.333
	0.116
	0.109

	2-12
	0.063
	0.114
	0.107

	2-12
	0.187
	0.111
	0.105

	102
	0.063
	0.119
	0.111

	102
	0.185
	0.113
	0.107

	102
	0.250
	0.110
	0.103





[bookmark: _Ref164417324][bookmark: _Toc178598304]Crystal Surfaces and OUCs generation as total design space 
Since crystal slab and OUC are required to calculate the surface energy. For all crystals in the design space, structures of  OUC and crystal slab are generated using PyMatgen package for facets with miller index up to two (|i|,|j|,|k|≤2 ). The slab is controlled to have at least 10 Å slab thicknesses, at least 15 Å vacuum, and symmetrized terminations. The middle layers of slabs (i.e., further than 2 Å away from both surfaces) are fixed for more efficient relaxation. Each unique surface is identified by crystal ID, miller index, and shift, and a total of 284,134 surfaces are generated. An illustration of surface slab and OUC is shown in Figure S2.3‑1 using surface 45_4 (mp-30746, Yir 210 surface, shift 0.125) as an example. The distribution of composition systems of the entire design space is shown in Figure S2.3‑2. 
[image: A diagram of a diagram of a surface slab
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[bookmark: _Ref163429260][bookmark: _Toc178598350]Figure S2‑6 Illustration of surface slab and OUC structures. 
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[bookmark: _Ref163430750][bookmark: _Toc178598351]Figure S2‑7 Distribution of composition systems of the entire design space.


[bookmark: _Toc178598305]Dataset generation
[bookmark: _Toc178598306]DFT methods
The computational method for surface energy used in this work is provided by [x], which Calculates the energies of one surface slab and one OUC for each surface. The surface energy can be calculated from the total energy of the crystal slab and crystal bulk:

where   is the surface energy of the surface with miller index (i,j,k);  the total energy of the slab model with miller index (i,j,k);  the energy per atom of the bulk oriented unit cell (OUC) with miller index (i,j,k); N the number of atoms in the slab model; and,  the cross-section area of the slab model. The DFT parameters in Table S3.1‑1. 

[bookmark: _Ref163465695][bookmark: _Toc178598332]Table S3‑1 DFT parameters for OUC and slab relaxation
	Parameters
	Value
	Parameters
	Value

	ALGO
	Normal
	EDIFF
	1e-6

	EDIFFG
	-0.02
	IBRION
	1 (OUC)
2 (slab) 

	ISIF
	2
	ISMEAR
	1

	ISPIN
	2
	LCHARG
	False

	LREAL
	Auto
	LWAVE
	False

	ENCUT
	520
	NSW
	400

	POTIM
	0.2
	PREC
	Normal

	SIGMA
	0.2
	
	

	K-Points (OUC)
	Gamma 
(35/a, 35/b, 35/c)
	K-Points (slab)
	Gamma 
(35/a, 35/b, 1)



[bookmark: _Toc178598307]Surface energies convergence check
Since this efficient surface energy calculation method was validated only on elemental crystals 1,2, we also performed an additional convergence check of this method on intermetallic crystals to ensure this accuracy of our results. Around 300 randomly drawn sample surfaces were used to generate two slabs of 10 Å and 20 Å thickness each. The surface energies obtained from different slab thickness were calculated using the above-mentioned method. As shown in Figure S3.2‑1, we compare the absolute and percentage differences between the results from the two thickness and conclude that the 10 Å thickness is sufficient for this calculation method.
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[bookmark: _Ref164066757][bookmark: _Toc178598352]Figure S3‑1 Convergence checks for surface energy. 


[bookmark: _Ref164418868][bookmark: _Toc178598308]Active learning strategies
Data-efficient active learning methods aim to improve the quality of database and minimize data generation cost by adding those most informative data, which is judged by the prediction error and uncertainty of a probabilistic model. To continuously monitor the model accuracy on the fly of data generation process, we first generated an active learning (AL) test set containing about 1,000 bimetallic surfaces (Batch 2-0) and 1,000 trimetallic surfaces (Batch 3-0) from diversity sampling. Since both bimetallic and trimetallic surfaces exist in the design space, we first generate bimetallic data and then switch to trimetallic data when the model reaches moderate accuracy. 
During the data generation process, we first generate a batch of bimetallic data (Batch 2-1) via diversity sampling as initial dataset. A probabilistic model is trained on the dataset, and then used to evaluate the current model accuracy on the bimetallic AL test set and the current model uncertainty on the entire design space. A new batch of data would be sampled based on the predicted uncertainty and diversity constraint to pool the most informative surface while limiting similar data from the same compositional systems. The surface energies of sampled batch would be DFT calculated and added into database. For the subsequent iterations, Batch 2-2, 2-3, and 2-4 are generated using the same method, and the model accuracy on bimetallic surface reaches 7.8 meV/Å2. For the subsequent iterations, we then start to sample trimetallic surfaces and test on the entire AL test set. Batch 3-1 to 3-7 are then generated. We ended the iteration here as the model reaches the desired accuracy on the AL test set and the improvement of additional data becomes less significant. 
The probabilistic model used for evaluating data uncertainty is an ensemble of five graph convolutional neural networks with GATv2Conv 3 layers. Each model in the ensemble will give a direct prediction of surface energy based on surface slab structure and the overall model uncertainties are determined by the variance of all predictions. Similar to other GCN for molecular prediction, the surface slab models are converted into graph data where the atoms are represented by nodes, atom connectivity is represented by edges, and the bonding distances are represented by edge features. The coordination of atoms in the slab is used to determine the atom connectivity and bonding information. A cut-off distance of 8 Å is used to determine neighboring atoms in the graph. Therefore, the graph can include the original crystal slab's atom and atom connectivity information. The architecture of the model mainly includes attention graph convolutional layers (GATv2Conv), a feature pooling layer, and fully connected layers (MLP). The convolution layers aim to update the features of each atom based on neighboring atoms and their distances. The pooling layer extracts features of all atoms to form the features of the whole slab. The final fully connected layers then predict the surface energy based on the features from the pooling layers. 
One thousand surfaces would be sampled for each batch. The uncertainty-based sampling would sample the surface with the highest predicted uncertainties, while the diversity-based sampling would limit the maximum amount of surface from the same compositional system in one batch to three.

[bookmark: _Toc178598309]Active learning process
Figure S3.4‑1 below shows the statistics of predicted uncertainty in the entire design space, predicted uncertainty of the sampled surface, and the model accuracy for each of the active learning iterations. Finally, after 10 iterations, we reached the desired accuracy and thus concluded the data generation. 
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[bookmark: _Ref164073839][bookmark: _Toc178598353]Figure S3‑2 Active learning process
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Figure S3.4-1 Active learning process (Cont’d)
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Figure S3.4-1 Active learning process (Cont’d)
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Figure S3.4-1 Active learning process (Cont’d)
 
 
[bookmark: _Toc178598310]Datasets for training, testing, and predicting.
Table S3.5‑1 below summarizes the size and content for all datasets used in this work. Figure S3.5‑1, Figure S3.5‑2, Figure S3.5‑3, Figure S3.5‑4, and Figure S3.5‑5 visualize the distribution of force and energy labels in different datasets. The generation method of the Train set and AL test set is described in SI-3.3. The ID test set contained numerated surfaces for twenty crystals in the design space (thermodynamically stable) to test the accuracy of both predicted surface energies and surface area fractions for ID scenarios. The OOD test set contained numerated surfaces for twenty thermodynamically unstable crystals but experimentally observed crystals to test the accuracy of both predicted surface energies and surface area fractions for OOD scenario. The selection criteria for OOD crystals are listed in Table S3.5‑2. It should be noted that it would be a challenge for the trained model to predict OOD surfaces since crystal properties and data distribution are different from ID surfaces that the model is trained on. The generation method of the Train set and AL test set would be described in SI-6.1.

[bookmark: _Ref164074058][bookmark: _Toc178598333]Table S3‑2 Summary of all datasets in this work.
	Dataset
	Size
	Notes

	
	Surfaces
	DFT single point
	DFT time (CPU-hr)
	

	Train set
	9676
	262984
	155612
	Mode training;

	AL test set
	1865
	49295
	28371
	Evaluate accuracy while dataset generation;
Test surface energy accuracy;

	ID test set
	759
	19904
	10919
	Test surface energy accuracy;
Test surface exposure accuracy;

	OOD test set
	685
	23926
	7576
	Test surface energy accuracy;
Test surface exposure accuracy;

	Pred set
	144191
	-
	-
	Predict surface energy and area for intermetallic crystals;



[bookmark: _Ref164419125][bookmark: _Ref164419122][bookmark: _Toc178598334]Table S3‑3 Intermetallic crystals for OOD test set
	Criterion
	Description

	Excluded Elements
	H, B, C, N, O, F, P, S, He, Ne, Cl, Ar, Se, Br, Kr, I, Xe, Po, At, Rn, Hg, Tc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es

	Number of Sites
	1 to 8

	Number of Elements
	2 to 3

	Energy Above Hull (eV)
	0 – 0.2 (unstable)

	Experimentally observed
	True

	Retrieved Fields
	Structure, Material ID
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[bookmark: _Ref164074107][bookmark: _Toc178598354]Figure S3‑3 Distribution of single point forces in datasets.
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[bookmark: _Ref164074108][bookmark: _Toc178598355]Figure S3‑4 Distribution of single point forces in the last half of trajectory.
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[bookmark: _Ref164074110][bookmark: _Toc178598356]Figure S3‑5 Distribution of single point energies in datasets.
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[bookmark: _Ref164074113][bookmark: _Toc178598357]Figure S3‑6 Distribution of energy difference of initial & relaxed structures
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[bookmark: _Ref164074115][bookmark: _Toc178598358]Figure S3‑7 Distribution of relaxed surface energies in datasets.


[bookmark: _Toc178598311]Model training, testing, and transferring  
[bookmark: _Toc178598312]Data structure
EquiformerV2 takes three-dimensional coordinates of target structures as input and predicts its properties, which are forces and energies in this case. Each structure would be first converted into graph representation , where   is the graph data,  is the node set that contains atom type information, and  is the edge set that contains bond lengths and directions of all neighboring atoms.  The atom features on each node are first embedded in an embedding layer. A few layers of eSCN convolutions and equivariant graph attention would then iteratively update the atoms features based on their corresponding neighboring environments. Finally, the target properties, forces and energies, will be predicted by the output heads based on the final atom features of each node.

[bookmark: _Toc178598313]Model architecture
EquiFormerV2 are designed to handle 3D molecular or crystal structures. They ensure that the model's predictions change consistently with the input's orientation and position in space, a property known as equivariance. It utilizes transformer blocks to process relationships between atoms in the structure and provide additional inductive bias based on atom types, neighboring connectivity, bond distance, and bond orientation via SO3 embedding to achieve equivariance.
The input to the model consists of crystal structures of atomic positions [N, 3]and atomic types [N, 1]. The atom encodings are formed by SO3 irreps embedding [N, num_spherical_harmonics, num_channels] based on atom types, neighboring connectivity, bond distance, and bond orientation. 
The atom encodings are the processed by a few layers of SO2 equivariant graph attention layers to update information based on neighboring atoms. For each layer, SO(2)-convolution is used to obtain the non-linear massages between atoms and sparable S2 attention is used to obtain attention weights. The product of non-linear massages and attention weights would be send to an SO3 linear layer for outputs [N, num_spherical_harmonics, num_channels]
After processing through several SO2 equivariant graph attention layers, the model aggregates the atom features to predict physical properties. For energy predictions, the energy head (SO3 linear layer) sums contributions from each atom of the structure to produce a single scalar value [1]. For forces, the force head (SO2 equivariant graph attention layer) produces a force vector for each atom [N, 3], reflecting the direction and magnitude of the force acting upon it.

[bookmark: _Toc178598314]
Hyperparameter optimization
For the optimal performance of the MLFF model, hyperparameter searching is conducted for the two most important variables as shown in Table S4.3‑2. The remaining hyperparameters are fixed and their values shown listed in Table S4.3‑1. The best model is highlighted in blue and used in this work.

[bookmark: _Ref164081523][bookmark: _Toc178598335]Table S4‑1 Fixed Hyperparameters
	Parameter
	Value
	Parameter
	Value

	Max neighbors
	20
	attn_hidden_channels
	64

	Maxradius (Å)
	6
	num_heads
	8

	sphere_channels
	128
	attn_value_channels
	16

	ffn_hidden_channels
	128
	lmax_list
	[4]

	edge_channels
	128
	mmax_list
	[2]

	batch_size
	16
	lr
	2e-4




[bookmark: _Ref164081456][bookmark: _Toc178598336]Table S4‑2 Hyperparameter Optimization
	num layers
	max_epochs
	time
	force_mae
	force_cos
	energy_mae

	8
	20
	83472
	0.0477
	0.5256
	0.4183

	6
	20
	66153
	0.0478
	0.5258
	0.4191

	12
	20
	116081
	0.0472
	0.5272
	0.4088

	4
	20
	49325
	0.0478
	0.521
	0.4183

	8
	30
	123904
	0.0472
	0.5338
	0.4199

	8
	10
	41139
	0.0478
	0.51
	0.4258




[bookmark: _Toc178598315]Training Statistics
The training statistics of the best model is shown in Figure S4.4‑1 and Figure S4.4‑2. As shown in the figure, the training force MAE, force cosine, and energy MAE keep decreasing during the entire process. The validation force cosine and energy MAE keep decreasing, while force MAE slight increases at later stage. 
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[bookmark: _Ref164081629][bookmark: _Ref164081624][bookmark: _Toc178598359]Figure S4‑1 Model training statistics (train set)
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[bookmark: _Ref164081631][bookmark: _Toc178598360]Figure S4‑2 Model training statistics (validation set)

[bookmark: _Toc178598316]Model transferring method
For the model finetuning, we searched for the optimal finetuning configuration by freezing the model and training only the last few modules. As shown in Table S4.5‑1, we tried unfrozen different number of output heads and final convolutional layers to determine the optimal finetuning method (highlighted in blue). We also compare the performance of the model without pretraining. 

[bookmark: _Ref164082169][bookmark: _Toc178598337]Table S4‑3 Finetuning parameter searching. 
	Energy
Head
	Force
Head
	-1
Layer
	-2
Layer
	-3
Layer
	Epoch
	LR
	Force MAE
	Force Cos
	Energy
MAE

	1
	0
	0
	0
	0
	10
	-5
	0.1949
	0.3039
	2.0984

	0
	1
	0
	0
	0
	10
	-5
	0.0936
	0.2976
	2.3475

	1
	1
	0
	0
	0
	10
	-5
	0.0935
	0.2976
	2.3475

	1
	1
	1
	0
	0
	10
	-5
	0.0833
	0.2939
	1.8207

	1
	1
	1
	1
	0
	10
	-5
	0.0803
	0.2933
	1.7476

	1
	1
	1
	1
	0
	20
	-5
	0.0743
	0.3060
	1.6065

	1
	1
	1
	1
	0
	30
	-5
	0.0761
	0.3230
	1.5287

	1
	1
	1
	1
	0
	50
	-5
	0.0831
	0.3436
	1.4410

	1
	1
	1
	1
	0
	30
	-4
	0.0910
	0.3799
	1.2991

	1
	1
	1
	1
	0
	50
	-4
	0.0902
	0.3814
	1.2926

	1
	1
	1
	1
	0
	80
	-4
	0.0898
	0.3799
	1.3034

	1
	1
	1
	0
	0
	50
	-4
	0.0909
	0.3792
	1.3674

	1
	1
	0
	0
	0
	50
	-4
	0.0910
	0.3750
	1.8877

	1
	1
	1
	1
	1
	50
	-4
	0.0905
	0.3809
	1.2567

	without pretrain 
	50
	-4
	0.0801
	0.1723
	2.8303

	without pretrain 
	80
	-4
	0.0798
	0.1776
	2.5748

	without pretrain 
	150
	-4
	0.0790
	0.1802
	2.6688




[bookmark: _Toc178598317]Model predicting.
For all ML relaxations in this work, we provide the initial structures of the surface slab only and use the MLFF predicted forces and energy to perform relaxation at each step. All the MLFF relaxation parameters used in this work is summarized in Table S4.6‑1 below. The details of all relaxation statistics are summarized Table S4.6‑2.

[bookmark: _Ref164082351][bookmark: _Toc178598338]Table S4‑4 MLFF relaxation parameter
	Parameter
	Value
	Parameter
	Value

	Method
	LBFGS
	relaxation_ max_step
	300

	max_step 
(Å)
	0.03
	Relaxation_fmax 
(eV/ Å)
	0.03

	memory
	50
	-
	-

	damping
	1.0
	-
	-

	alpha
	70
	-
	-







[bookmark: _Ref164082386][bookmark: _Toc178598339]Table S4‑5 Relaxation results
	Model
	dataset
	
	Relaxation Accuracy

	
	
	Energy
（meV/Å2）
	Fraction
MAE
	All
	L
	M
	H
	Top3
	Top5
	GPU Time (hr)

	Base
	OOD
	10.5
	0.074
	0.669
	0.633
	0.661
	0.744
	0.666
	0.810
	0.27

	Base
	ID
	3.0
	0.036
	0.719
	0.695
	0.692
	0.771
	0.758
	0.800
	0.23

	Base
	AL
	3.8
	-
	-
	-
	-
	-
	-
	-
	0.69

	Finetune
	OOD
	6.8
	0.080
	0.675
	0.666
	0.605
	0.744
	0.700
	0.820
	0.26

	Base
	Pred
	-
	-
	-
	-
	-
	-
	-
	-
	115



[bookmark: _Toc178598340]Table S4‑6 Single point results
	
Model
	dataset
	Single Point (SP) Accuracy

	
	
	Force MAE
	Force Cos
	Energy MAE

	Base
	OOD
	0.1949
	0.3039
	2.3473

	Base
	ID
	0.0365
	0.5720
	0.4014

	Base
	AL
	0.0472
	0.5338
	0.4199

	Finetune
	OOD
	0.0902
	0.3814
	1.2926



[bookmark: _Toc178598318]Explanation to high OOD performance.
We observed that a higher MAE in predicted relaxed surface energies for the OOD dataset did not significantly impair the performance in predicting surface synthesizability. A plausible explanation for this phenomenon is illustrated in Figure S4.8‑1. Although the model exhibits higher biases in the energy predictions for surfaces from the same crystal, it maintains lower variances. This is crucial because the Wulff construction, which determines surface synthesizability, depends on the relative magnitude of surface energies rather than their absolute values.
The bias in OOD surface energy predictions, which primarily contributes to the increased MAE, has a diminished impact on Wulff area predictions. This is because the relative magnitudes of the predicted surface energies remain comparable to those of the true surface energies. Consequently, despite the higher MAE in surface energy predictions, the accuracy in predicting surface synthesizability remains reliably high. This observation underscores the robustness of the model in delivering useful synthesizability predictions, even when faced with higher biases in surface energy calculations for OOD crystals.
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[bookmark: _Ref164537689][bookmark: _Toc178598361]Figure S4‑3 Difference in predicted and true surface energies within crystals.


[bookmark: _Toc178598319]Validation with Literature Experimental Data
[bookmark: _Toc178598320]Literature collection using LLM.
During the data collection phase, we employed a large language model (LLM), DeepSeek-V2, for literature review and filtering. The agent autonomously assessed whether an article was relevant to the desired topic based on the public available meta-data, such as title and abstract. If deemed relevant, the information of the journal article would be recorded, such as DOI. The filtered articles would be manually examined to extract qualified surface information. This approach facilitated high-throughput literature review and data extraction from a large volume of publications.
The scope of literature review includes all research papers from four catalyst related journals, namely Nature Catalysis, ACS Catalysis, Journal of Catalysis, and Applied Catalysis A. 

[bookmark: _Toc178598321]Data collection from literature.
Based on LLM reviewing results, a few hundred papers potentially contain experimental exposure data. The following two criteria are used to retrieved qualified data via manual inspection:
1. The paper contains XRD data for the structure intermetallic crystal, from which the crystal structure could be identified; and,
2. The paper contains clear TEM images for d-spacing of the observed crystal surfaces. The d-spacing must be identified to a surface of the crystal.
Finally, we successfully retrieved 41 experimental observed surfaces from literature and our original experiments. 73.1% of the surfaces are successfully predicted by SurFF. The results are summarized in Table S5.2‑1 below.

[bookmark: _Ref170570952][bookmark: _Toc178598341]Table S5‑1 Experimental observations from literature
	Crystal
	Observed
Surfaces
	Source
DOI/URL
	MP
ID
	SurFF Predictions
MillerIndex, Shift, SurfaceEnergy, SurfaceExposure
	Match
	Qty

	NiGa 4
	110
	https://pubs.acs.org/doi/10.1021/acscatal.0c01261
	mp-1941
	(1, 1, 1), 0.25, 0.08667, 0.0
(1, 1, 0), 0.5, 0.0715, 0.61144
(1, 0, 0), 0.25, 0.10465, 0.0
(2, 2, 1), 0.125, 0.08348, 0.0
(2, 1, 1), 0.25, 0.07747, 0.38856
(2, 1, 0), 0.125, 0.0886, 0.0
	1
	1

	InPd 5
	100
	https://pubs.acs.org/doi/10.1021/acscatal.0c04073
	mp-21215
	(1, 1, 1), 0.25, 0.05919, 0.0
(1, 1, 0), 0.5, 0.04484, 1.0
(1, 0, 0), 0.25, 0.06917, 0.0
(2, 2, 1), 0.125, 0.05497, 0.0
(2, 1, 1), 0.25, 0.05424, 0.0
(2, 1, 0), 0.125, 0.06146, 0.0
	0
	1

	Pt3Sn 6,7
	100, 111
	[https://pubs.acs.org/doi/10.1021/acscatal.0c05370, https://pubs.acs.org/doi/10.1021/acscatal.1c00639]
	mp-20971
	(1, 1, 1), 0.5, 0.07677, 0.24667
(1, 1, 0), 0.25, 0.08715, 0.01364
(1, 0, 0), 0.25, 0.09433, 0.01308
(2, 2, 1), 0.125, 0.08264, 0.13303
(2, 1, 1), 0.125, 0.08113, 0.59358
(2, 1, 0), 0.125, 0.09555, 0.0
	2
	2

	InNi 8
	110, 201
	['https://pubs.acs.org/doi/10.1021/acscatal.2c00671']
	mp-20997
	(1, 1, 1), 0.25, 0.07558, 0.0
(1, 1, 0), 0.5, 0.05973, 1.0
(1, 0, 0), 0.25, 0.09135, 0.0
(2, 2, 1), 0.125, 0.07273, 0.0
(2, 1, 1), 0.25, 0.06981, 0.0
(2, 1, 0), 0.125, 0.07911, 0.0
	1
	2

	InNi2 8
	110, 212
	['https://pubs.acs.org/doi/10.1021/acscatal.2c00671']
	mp-21092
	(1, 1, 1), 0.125, 0.08891, 0.0
(1, 1, 0), 0.5, 0.07312, 0.67333
(2, 1, 2), 0.25, 0.08685, 0.0
(2, 1, 1), 0.02083, 0.08825, 0.0
(2, 1, 1), 0.125, 0.08882, 0.0
(2, 1, 1), 0.22917, 0.08706, 0.0
(2, 1, 0), 0.08333, 0.08268, 0.0
(2, 1, 0), 0.25, 0.08573, 0.0
(2, 0, 1), 0.02083, 0.09398, 0.0
(2, 0, 1), 0.125, 0.0939, 0.0
(2, 0, 1), 0.22917, 0.09163, 0.0
(2, -1, 2), 0.125, 0.09354, 0.01204
(1, 0, 1), 0.04167, 0.08871, 0.0
(1, 0, 2), 0.04167, 0.09451, 0.11156
(1, 0, 2), 0.25, 0.08121, 0.0
(1, 0, 1), 0.25, 0.09705, 0.0
(1, 0, 1), 0.45833, 0.08493, 0.0
(1, 0, 0), 0.16667, 0.08753, 0.0
(1, 0, 0), 0.5, 0.0819, 0.0
(0, 0, 1), 0.125, 0.08512, 0.20306
(2, 2, 1), 0.0625, 0.08335, 0.0
(2, 1, 2), 0.04167, 0.09401, 0.0
	1
	2

	In3Ni2 8
	110
	['https://pubs.acs.org/doi/10.1021/acscatal.2c00671']
	mp-21385
	(1, 1, 1), 0.07058, 0.06447, 0.0
(1, 1, 1), 0.24755, 0.06299, 0.0
(0, 0, 1), 0.5, 0.06683, 0.0
(2, 2, 1), 0.03529, 0.06242, 0.0
(2, 2, 1), 0.12377, 0.06024, 0.0
(2, 2, 1), 0.25, 0.05695, 0.0
(2, 1, 2), 0.09608, 0.06703, 0.00091
(2, 1, 2), 0.25, 0.06583, 0.0
(2, 1, 1), 0.11862, 0.06278, 0.22538
(2, 1, 0), 0.08333, 0.06001, 0.0
(2, 1, 0), 0.25, 0.06212, 0.0
(2, 0, 1), 0.04804, 0.07113, 0.0
(1, 1, 1), 0.5, 0.05983, 0.0
(2, 0, 1), 0.12623, 0.06931, 0.0
(2, 0, 1), 0.25, 0.07179, 0.0
(2, -1, 2), 0.07058, 0.06464, 0.0
(2, -1, 2), 0.25, 0.06727, 0.0
(1, 0, 2), 0.09608, 0.07169, 0.0
(1, 0, 2), 0.25, 0.0786, 0.0
(1, 1, 0), 0.5, 0.05507, 0.77371
(1, 0, 1), 0.23725, 0.07179, 0.0
(1, 0, 1), 0.5, 0.07486, 0.0
(1, 0, 0), 0.16667, 0.06336, 0.0
(1, 0, 0), 0.5, 0.06967, 0.0
(0, 0, 1), 0.07058, 0.07216, 0.0
(0, 0, 1), 0.24755, 0.0767, 0.0
	1
	1

	InNi3 8
	201
	['https://pubs.acs.org/doi/10.1021/acscatal.2c00671']
	mp-22784
	(1, 1, 1), 0.5, 0.08645, 0.6949
(1, 1, 0), 0.25, 0.10962, 0.0
(1, 0, 0), 0.25, 0.11411, 0.03298
(2, 2, 1), 0.125, 0.09908, 0.02822
(2, 1, 1), 0.125, 0.10114, 0.22641
(2, 1, 0), 0.125, 0.11017, 0.01749
	1
	1

	CoFe 9
	110, 221
	['https://pubs.acs.org/doi/10.1021/acscatal.5b02296']
	mp-2090
	(1, 1, 1), 0.25, 0.16396, 0.001
(1, 1, 0), 0.5, 0.14419, 0.5746
(1, 0, 0), 0.25, 0.16243, 0.09018
(2, 2, 1), 0.125, 0.15852, 0.0362
(2, 1, 1), 0.25, 0.15642, 0.25479
(2, 1, 0), 0.125, 0.16129, 0.04323
	2
	2

	PdZn 10
	101
	https://pubs.acs.org/doi/10.1021/acscatal.6b01677'
	mp-1652
	(1, 1, 1), 0.25, 0.08884, 0.0
(1, 1, 0), 0.5, 0.0726, 0.22822
(1, 1, 2), 0.25, 0.08242, 0.0
(1, 0, 2), 0.125, 0.08524, 0.0
(1, 0, 1), 0.5, 0.06858, 0.67571
(1, 0, 0), 0.25, 0.08853, 0.0
(0, 0, 1), 0.25, 0.09164, 0.01539
(2, 2, 1), 0.125, 0.08411, 0.0
(2, 1, 2), 0.125, 0.08174, 0.00108
(2, 1, 1), 0.25, 0.08213, 0.0
(2, 1, 0), 0.125, 0.08632, 0.0
(2, 0, 1), 0.125, 0.07641, 0.07961
	1
	1

	PdCu 11
	111
	https://pubs.acs.org/doi/10.1021/acscatal.8b03106
	mp-1225656
	(1, 1, 1), 0.5, 0.08441, 0.25815
(1, 1, 0), 0.25, 0.08823, 0.07276
(2, 1, 0), 0.125, 0.09524, 0.00275
(2, 0, 1), 0.125, 0.09339, 0.01599
(1, 2, 2), 0.125, 0.08912, 0.13844
(1, 2, 1), 0.125, 0.09337, 0.04228
(1, 2, 0), 0.125, 0.09839, 0.00213
(1, 1, 2), 0.125, 0.09122, 0.02439
(1, 0, 2), 0.125, 0.09479, 0.0008
(0, 2, 1), 0.125, 0.09691, 0.02131
(0, 1, 2), 0.125, 0.09479, 0.00076
(1, 0, 1), 0.25, 0.08896, 0.0548
(1, 0, 0), 0.25, 0.09691, 0.00535
(0, 1, 1), 0.25, 0.09478, 0.02689
(0, 1, 0), 0.25, 0.09013, 0.09449
(0, 0, 1), 0.25, 0.07938, 0.14848
(2, 2, 1), 0.125, 0.08809, 0.04406
(2, 1, 2), 0.125, 0.08897, 0.0135
(2, 1, 1), 0.125, 0.0916, 0.03267
	1
	1

	PdCu 12
	110, 001
	https://www.nature.com/articles/s41929-022-00757-8
	mp-1018029
	(1, 1, 1), 0.25, 0.10318, 0.0
(1, 1, 0), 0.5, 0.08645, 0.65755
(1, 0, 0), 0.25, 0.09995, 0.05929
(2, 2, 1), 0.125, 0.0947, 0.0961
(2, 1, 1), 0.25, 0.09667, 0.09173
(2, 1, 0), 0.125, 0.097, 0.09533
	2
	2

	Pt3Co 13
	111, 200
	https://pubs.acs.org/doi/10.1021/acscatal.9b04419
	mp-922
	(1, 1, 1), 0.5, 0.10574, 0.38914
(1, 1, 0), 0.25, 0.12684, 0.0
(1, 0, 0), 0.25, 0.12987, 0.05199
(2, 2, 1), 0.125, 0.11509, 0.21482
(2, 1, 1), 0.125, 0.11768, 0.34405
(2, 1, 0), 0.125, 0.13691, 0.0
	2
	2

	Pt2In3 14
	110, 102
	https://www.nature.com/articles/s41929-021-00730-x
	mp-1069815
	(1, 1, 1), 0.08135, 0.05759, 0.0
(1, 1, 1), 0.25614, 0.05638, 0.0
(2, 2, 1), 0.04067, 0.05399, 0.0
(2, 2, 1), 0.12807, 0.05348, 0.0
(2, 2, 1), 0.25, 0.05127, 0.0
(2, 1, 2), 0.08532, 0.06079, 0.0
(2, 1, 2), 0.25, 0.06029, 0.0
(2, 1, 1), 0.11994, 0.05702, 0.06701
(2, 1, 0), 0.08333, 0.05259, 0.0
(2, 1, 0), 0.25, 0.05492, 0.0
(2, 0, 1), 0.04266, 0.06432, 0.0
(2, 0, 1), 0.12193, 0.06199, 0.0
(1, 1, 1), 0.5, 0.05349, 0.0
(2, 0, 1), 0.25, 0.06478, 0.0
(2, -1, 2), 0.08135, 0.0576, 0.0
(2, -1, 2), 0.25, 0.0619, 0.0
(1, 0, 2), 0.08532, 0.06321, 0.0
(1, 0, 2), 0.25, 0.06879, 0.0
(1, 1, 0), 0.5, 0.04817, 0.93299
(1, 0, 1), 0.23989, 0.06639, 0.0
(1, 0, 0), 0.16667, 0.05461, 0.0
(1, 0, 0), 0.5, 0.06209, 0.0
(0, 0, 1), 0.08135, 0.06223, 0.0
(0, 0, 1), 0.25614, 0.06874, 0.0
(0, 0, 1), 0.5, 0.05529, 0.0
	1
	2

	PtSn 15
	100
	https://www.sciencedirect.com/science/article/pii/S0021951717303627'
	mp-19856
	(1, 1, 1), 0.125, 0.06232, 0.01637
(1, 1, 0), 0.5, 0.06088, 0.35669
(2, 1, 1), 0.10417, 0.06262, 0.0
(2, 1, 1), 0.22917, 0.07047, 0.0
(2, 1, 0), 0.08333, 0.06356, 0.0
(2, 1, 0), 0.25, 0.05572, 0.0
(2, 0, 1), 0.02083, 0.05878, 0.0
(2, 0, 1), 0.14583, 0.07518, 0.0
(2, -1, 2), 0.125, 0.06572, 0.0
(1, 0, 2), 0.04167, 0.07044, 0.49303
(1, 0, 2), 0.25, 0.0609, 0.0
(1, 0, 1), 0.20833, 0.05907, 0.0
(1, 0, 1), 0.45833, 0.08481, 0.0
(1, 0, 0), 0.16667, 0.08137, 0.0
(1, 0, 0), 0.5, 0.04908, 0.0
(0, 0, 1), 0.125, 0.08853, 0.0
(2, 2, 1), 0.0625, 0.06193, 0.13391
(2, 1, 2), 0.04167, 0.06125, 0.0
(2, 1, 2), 0.25, 0.06653, 0.0
	0
	1

	PdCu 16
	111
	https://www.sciencedirect.com/science/article/pii/S0021951718300861
	mp-580357
	(1, 1, 1), 0.5, 0.08263, 0.52145
(1, 1, 0), 0.25, 0.09736, 0.0
(1, 0, 0), 0.25, 0.0932, 0.19956
(2, 2, 1), 0.125, 0.0917, 0.15461
(2, 1, 1), 0.125, 0.09406, 0.11525
(2, 1, 0), 0.125, 0.10153, 0.00913
	1
	1

	CoPt3 17
	111
	['https://www.sciencedirect.com/science/article/pii/S002195171830126X']
	mp-922
	(1, 1, 1), 0.5, 0.10574, 0.38914
(1, 1, 0), 0.25, 0.12684, 0.0
(1, 0, 0), 0.25, 0.12987, 0.05199
(2, 2, 1), 0.125, 0.11509, 0.21482
(2, 1, 1), 0.125, 0.11768, 0.34405
(2, 1, 0), 0.125, 0.13691, 0.0
	1
	1

	ZnPd 18
	200, 111, 110
	https://www.sciencedirect.com/science/article/pii/S0021951719306153
	mp-1652
	(1, 1, 1), 0.25, 0.08884, 0.0
(1, 1, 0), 0.5, 0.0726, 0.22822
(1, 1, 2), 0.25, 0.08242, 0.0
(1, 0, 2), 0.125, 0.08524, 0.0
(1, 0, 1), 0.5, 0.06858, 0.67571
(1, 0, 0), 0.25, 0.08853, 0.0
(0, 0, 1), 0.25, 0.09164, 0.01539
(2, 2, 1), 0.125, 0.08411, 0.0
(2, 1, 2), 0.125, 0.08174, 0.00108
(2, 1, 1), 0.25, 0.08213, 0.0
(2, 1, 0), 0.125, 0.08632, 0.0
(2, 0, 1), 0.125, 0.07641, 0.07961
	1
	3

	Ni3Cu 19
	111
	['https://www.sciencedirect.com/science/article/pii/S0021951720300208']
	mp-1184054
	(1, 1, 1), 0.125, 0.12491, 0.00221
(1, 1, 0), 0.25, 0.13216, 0.0
(2, 1, 0), 0.125, 0.14108, 0.0
(2, 0, 1), 0.0625, 0.13972, 0.0
(1, 1, 2), 0.25, 0.11042, 0.7771
(1, 0, 2), 0.125, 0.1322, 0.03576
(1, 0, 1), 0.125, 0.13821, 0.0
(1, 0, 1), 0.375, 0.14434, 0.0
(1, 0, 0), 0.25, 0.12622, 0.09038
(0, 0, 1), 0.125, 0.1288, 0.09304
(2, 2, 1), 0.0625, 0.1299, 0.00151
(2, 1, 2), 0.125, 0.12913, 0.0
(2, 1, 1), 0.0625, 0.12347, 0.0
(2, 1, 1), 0.1875, 0.13382, 0.0
	1
	1

	CoNiSe2 20
	101, 102
	['https://www.sciencedirect.com/science/article/pii/S0926337318309111']
	mp-1226013
	(1, 1, 1), 0.13158, 0.11013, 0.0
(1, 1, 1), 0.38158, 0.11242, 0.0
(2, 2, 1), 0.19079, 0.11263, 0.0
(2, 1, 2), 0.03509, 0.10993, 0.0
(2, 1, 2), 0.25, 0.10591, 0.0
(2, 1, 1), 0.10088, 0.11006, 0.09467
(2, 1, 1), 0.22588, 0.10923, 0.0
(2, 1, 0), 0.08333, 0.10925, 0.0
(2, 1, 0), 0.25, 0.11087, 0.0
(2, 0, 1), 0.01754, 0.10463, 0.0
(2, 0, 1), 0.14254, 0.10502, 0.0
(2, -1, 2), 0.13158, 0.10861, 0.0
(1, 1, 0), 0.5, 0.11319, 0.0
(1, 0, 2), 0.03509, 0.10963, 0.67571
(1, 0, 2), 0.25, 0.10229, 0.0
(1, 0, 1), 0.20175, 0.09666, 0.0
(1, 0, 1), 0.45175, 0.12248, 0.0
(1, 0, 0), 0.16667, 0.10613, 0.22962
(1, 0, 0), 0.5, 0.0992, 0.0
(0, 0, 1), 0.13158, 0.12279, 0.0
(0, 0, 1), 0.38158, 0.13453, 0.0
(2, 2, 1), 0.06579, 0.11222, 0.0
	1
	2

	NiPt₃ 21
	111, 200
	['https://www.sciencedirect.com/science/article/pii/S0926337319300682']
	mp-1186117
	(1, 1, 1), 0.5, 0.10061, 0.4498
(1, 1, 0), 0.25, 0.12267, 0.0
(1, 0, 0), 0.25, 0.12332, 0.08257
(2, 2, 1), 0.125, 0.10994, 0.24451
(2, 1, 1), 0.125, 0.1148, 0.22311
(2, 1, 0), 0.125, 0.12855, 0.0
	2
	2

	PdAu3 22
	111
	['https://www.sciencedirect.com/science/article/pii/S0926337321002770']
	mp-973834
	(1, 1, 1), 0.5, 0.05128, 0.81287
(1, 1, 0), 0.25, 0.06723, 0.0
(1, 0, 0), 0.25, 0.06688, 0.06838
(2, 2, 1), 0.125, 0.06299, 0.0
(2, 1, 1), 0.125, 0.06223, 0.04007
(2, 1, 0), 0.125, 0.06556, 0.07868
	1
	1

	FeSe2 23
	012
	['https://www.sciencedirect.com/science/article/pii/S0926337321007633']
	mp-760
	(1, 1, 1), 0.17524, 0.08904, 0.0
(1, 1, 1), 0.38281, 0.10003, 0.0
(0, 1, 1), 0.5, 0.08999, 0.0
(0, 1, 0), 0.10884, 0.10493, 0.0
(0, 1, 0), 0.25, 0.13304, 0.0
(0, 0, 1), 0.0664, 0.11843, 0.0
(0, 0, 1), 0.25, 0.11397, 0.0
(2, 2, 1), 0.04936, 0.09249, 0.0
(2, 2, 1), 0.15732, 0.1009, 0.0
(2, 1, 2), 0.12918, 0.09779, 0.0
(2, 1, 1), 0.03738, 0.10335, 0.0
(2, 1, 1), 0.14116, 0.09792, 0.0
(1, 1, 1), 0.45757, 0.10905, 0.0
(2, 1, 1), 0.25, 0.10045, 0.0
(2, 1, 0), 0.05442, 0.09929, 0.0105
(2, 1, 0), 0.125, 0.09698, 0.0
(2, 0, 1), 0.0332, 0.09256, 0.0
(2, 0, 1), 0.125, 0.09907, 0.0
(1, 2, 2), 0.05024, 0.09893, 0.0
(1, 2, 2), 0.17524, 0.10073, 0.0
(1, 2, 1), 0.01704, 0.09676, 0.0
(1, 2, 1), 0.0664, 0.09876, 0.0
(1, 2, 1), 0.25, 0.10902, 0.0
(1, 1, 0), 0.10884, 0.09847, 0.0
(1, 2, 0), 0.01616, 0.09644, 0.0
(1, 2, 0), 0.125, 0.10371, 0.0
(1, 1, 2), 0.14116, 0.10289, 0.00014
(1, 0, 2), 0.0586, 0.10208, 0.20713
(0, 2, 1), 0.04936, 0.11832, 0.0
(0, 2, 1), 0.15732, 0.12006, 0.0
(0, 2, 1), 0.23296, 0.10843, 0.0
(0, 1, 2), 0.12082, 0.09192, 0.78224
(1, 1, 0), 0.5, 0.10809, 0.0
(1, 0, 1), 0.1836, 0.09645, 0.0
(1, 0, 1), 0.5, 0.10272, 0.0
(1, 0, 0), 0.25, 0.10396, 0.0
(0, 1, 1), 0.07476, 0.10198, 0.0
(0, 1, 1), 0.28232, 0.10379, 0.0
	1
	1

	CuNi 24
	002
	['https://www.sciencedirect.com/science/article/pii/S092633732100850X']
	mp-1184069
	(1, 1, 1), 0.25, 0.127, 0.0
(1, 1, 0), 0.5, 0.12011, 0.01353
(2, 1, 1), 0.04167, 0.11673, 0.0
(2, 1, 1), 0.29167, 0.12414, 0.0
(2, 1, 0), 0.08333, 0.12879, 0.0
(2, 1, 0), 0.33333, 0.11643, 0.0
(2, 0, 1), 0.20833, 0.12769, 0.0
(2, 0, 1), 0.45833, 0.11069, 0.0
(2, -1, 2), 0.25, 0.12442, 0.01586
(1, 0, 2), 0.16667, 0.11795, 0.0
(1, 0, 2), 0.41667, 0.11827, 0.0
(1, 0, 1), 0.08333, 0.11178, 0.0
(1, 0, 1), 0.58333, 0.13282, 0.0
(1, 0, 0), 0.33333, 0.1101, 0.0
(1, 0, 0), 0.83333, 0.14084, 0.0
(0, 0, 1), 0.25, 0.10667, 0.97062
(2, 2, 1), 0.125, 0.12667, 0.0
(2, 1, 2), 0.16667, 0.12441, 0.0
(2, 1, 2), 0.41667, 0.1279, 0.0
	1
	1

	Pd₃Pb 25
	111
	['https://www.sciencedirect.com/science/article/pii/S0926337322004064']
	mp-20849
	(1, 1, 1), 0.5, 0.05861, 0.61028
(1, 1, 0), 0.25, 0.07023, 0.01015
(1, 0, 0), 0.25, 0.0704, 0.1152
(2, 2, 1), 0.125, 0.06641, 0.05759
(2, 1, 1), 0.125, 0.06731, 0.20678
(2, 1, 0), 0.125, 0.07508, 0.0
	1
	1

	CoSe 26
	101
	['https://www.sciencedirect.com/science/article/pii/S0926337323001467']
	mp-426
	(1, 1, 1), 0.125, 0.11658, 0.12101
(1, 1, 0), 0.5, 0.12224, 0.0
(2, 1, 1), 0.10417, 0.12146, 0.0
(2, 1, 0), 0.08333, 0.11793, 0.0
(2, 1, 0), 0.25, 0.11825, 0.0
(2, 0, 1), 0.02083, 0.10873, 0.0
(2, 0, 1), 0.14583, 0.11471, 0.0
(2, -1, 2), 0.125, 0.11595, 0.15531
(1, 0, 2), 0.04167, 0.1206, 0.48775
(1, 0, 2), 0.25, 0.1134, 0.0
(1, 0, 1), 0.20833, 0.10663, 0.0
(1, 0, 1), 0.45833, 0.12949, 0.0
(1, 0, 0), 0.16667, 0.11445, 0.0
(1, 0, 0), 0.5, 0.10925, 0.0
(0, 0, 1), 0.125, 0.12592, 0.23594
(2, 2, 1), 0.0625, 0.12133, 0.0
(2, 1, 2), 0.04167, 0.11435, 0.0
(2, 1, 2), 0.25, 0.11665, 0.0
	0
	1



[bookmark: _Toc178598322]Data collection from original experiments
For original data, we conducted experiments to synthesize and characterize three intermetallics, namely ZnRh, ZnPd, and ZnPt. The intermetallics were prepared by Zn-ETO method reported in our previous work 27. In brief, the monometallic M/SiO2 (M = Pt, Pd, Rh) and ZnO were physically mixed and then treated by a temperature-programmed reduction (TPR) procedure. HAADF-STEM and EDX images were obtained using a transmission electron microscope (FEI Titan Cubed G2 300) at 300 kV equipped with an aberration corrector for the probe-forming optics. All samples were ultrasonically dispersed in ethanol for 30 min and then dropped onto a carbon film supported on a copper grid. Table S5‑2 summarize the comparison between our experimentally observed surfaces and predicted surface.Figure S5‑1, Figure S5‑2, and Figure S5‑3 show the original STEM images of the three intermetallics for identification.

[bookmark: _Ref178229228][bookmark: _Toc178598342]Table S5‑2 Experimental observations from original experiments
	Crystal
	Observed
Surfaces
	MP
ID
	SurFF Predictions
MillerIndex, Shift, SurfaceEnergy, SurfaceExposure
	Match
	Qty

	PdZn
	110
	mp-1652
		(1, 1, 1)
	0.125
	0.10657
	0

	(1, 1, 1)
	0.5
	0.08476
	0

	(1, 1, 0)
	0.25
	0.08662
	0.53032

	(1, 0, 0)
	0.125
	0.09505
	0.06297

	(2, 2, 1)
	0.0625
	0.09603
	0.04675

	(2, 1, 1)
	0.125
	0.0956
	0.12175

	(2, 1, 0)
	0.0625
	0.09272
	0.23821



	1
	1

	PtZn
	110, 100
	mp-894
		(1, 1, 1)
	0.25
	0.09819
	0

	(1, 1, 0)
	0.5
	0.08546
	0.10193

	(1, 1, 2)
	0.25
	0.09471
	0

	(1, 0, 2)
	0.125
	0.0936
	0.01638

	(1, 0, 1)
	0.5
	0.07516
	0.48838

	(1, 0, 0)
	0.25
	0.10606
	0

	(0, 0, 1)
	0.25
	0.10526
	0.00457

	(2, 2, 1)
	0.125
	0.0963
	0

	(2, 1, 2)
	0.125
	0.07922
	0.34712

	(2, 1, 1)
	0.25
	0.09502
	0

	(2, 1, 0)
	0.125
	0.10019
	0

	(2, 0, 1)
	0.125
	0.08663
	0.04162



	1
	2

	RhZn
	110, 100
	mp-6938
		(1, 1, 1)
	0.25
	0.13352
	0

	(1, 1, 0)
	0.5
	0.10468
	0.60471

	(1, 0, 0)
	0.25
	0.11948
	0.05865

	(2, 2, 1)
	0.125
	0.11716
	0.01262

	(2, 1, 1)
	0.25
	0.11485
	0.20924

	(2, 1, 0)
	0.125
	0.11596
	0.11479



	1
	2





[image: ][image: ]
[bookmark: _Ref178229292][bookmark: _Toc178598362]Figure S5‑1 STEM images of PdZn (mp-1652) nanoparticle and corresponding FFT images. 
The d-spacing of 0.294 nm and 0.206 nm corresponds to PdZn(110) and PdZn(010) surface respectively.
[image: ][image: ]
[bookmark: _Ref178229294][bookmark: _Toc178598363]Figure S5‑2 STEM images of PtZn (mp-894) nanoparticle and corresponding FFT images. 
The d-spacing of 0.290 nm and 0.219 nm corresponds to PtZn(010) and PtZn(10-1) surface respectively.
[image: ][image: ]
[bookmark: _Ref178229296][bookmark: _Toc178598364]Figure S5‑3 STEM images of RhZn (mp-6938) nanoparticle and corresponding FFT images. 
The d-spacing of 0.212 nm corresponds to RhZn(10-1) surface. 

[bookmark: _Toc178598323]Predictions.
[bookmark: _Ref164419310][bookmark: _Toc178598324]Workflow
Here we used the trained base MLFF model to predict the surface energies and surface area fraction for bimetallic and trimetallic crystals with low energy-above-hull available from the Material Project Similar to previous workflow, we retrieved the cell structures from the Material Project (Selection criteria shown in Table S6.1‑1); performed lattice parameter optimization (DFT configurations shown in Table S2.2‑1); generated surface slabs to form the prediction set (SI-2.3); performed structural relaxations using the trained MLFF (relaxations configuration shown in Table S4.6‑1), and, applied the Wulff construction for all crystals. The detailed statistics is shown in SI-6.2 below.

[bookmark: _Ref164417174][bookmark: _Toc178598343]Table S6‑1 Intermetallic crystals for prediction.
	Criterion
	Description

	Excluded Elements
	H, B, C, N, O, F, P, S, He, Ne, Cl, Ar, Se, Br, Kr, I, Xe, Po, At, Rn, Hg, Tc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es

	Number of Sites
	1 to 8

	Number of Elements
	2 to 3

	Energy Above Hull (eV)
	0 - 0.2 (stable and unstable)

	Retrieved Fields
	Structure, Material ID




[bookmark: _Ref164417487][bookmark: _Toc178598325]Statistics
The prediction set contains a total of 6162 bimetallic and trimetallic crystals as shown in Figure S6.2‑1, from which we generated about 140 thousand surfaces. The distribution of crystal system is shown in Figure S6.2‑2, the distribution of element occurrence in predicted crystals is shown in Figure S6.2‑3, and the distribution of energy above hull is shown in Figure S6.2‑4. And the resulted surface energies and surface area fractions are summarized in Figure S6.2‑5 and Figure S6.2‑6. From the results more than 110 out of 140 thousand surfaces tend to have zero area fraction on the Wulff shape. The result suggests that we could focus more on the remaining 21% of surfaces with moderate or high synthesizability while screening at large scale.
[image: A graph of a number of materials

Description automatically generated]
[bookmark: _Ref164417605][bookmark: _Toc178598365]Figure S6‑1 Distribution of number of elements in predicted crystals.

[image: A graph of crystals with numbers

Description automatically generated]
[bookmark: _Ref164417642][bookmark: _Toc178598366]Figure S6‑2 Distribution of crystal systems in predicted crystals.

[image: A graph of graphing in different sizes

Description automatically generated with medium confidence]
[bookmark: _Ref164417674][bookmark: _Toc178598367]Figure S6‑3 Distribution of element occurrence in predicted crystals.

[image: A graph of energy above hull in crystals

Description automatically generated]
[bookmark: _Ref164417692][bookmark: _Toc178598368]Figure S6‑4 Distribution of energy above hull in predicted crystals.
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Description automatically generated]
[bookmark: _Ref164417806][bookmark: _Toc178598369]Figure S6‑5 Distribution of relaxed surface energy in predicted surfaces.

[image: A graph of a graph

Description automatically generated]
[bookmark: _Ref164417809][bookmark: _Toc178598370]Figure S6‑6 Distribution of relaxed surface area in predicted surfaces.
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