Supplementary Materials

1 Electrical design

A custom 2-layer printed circuit board (PCB) was designed to accommodate all the electronics
needed for the robot. The board contains a microcontroller development board (Seeed Studio
XIAO ESP32-C3), equipped with Wi-Fi for communication, on top of the board S1(A) with a
switch for the power. On the bottom S1(B), a dual H-bridge motor driver (DRV8833, Texas
Instruments) is used for controlling the motors, a voltage regulator (TPS7A0533PDBZR, Texas
Instruments) for power distribution, 6-pin JST SH connectors for connecting the motors with
encoders, and a battery connector for 3.7V 1000 mA h lithium polymer battery (ASR00012,
TinyCircuits) to power the robot. The robot consumes 0.1 A at 3.7V on average, hence can run

for approximately 10 hours with a fully charged battery.

Rigid and flexible connections

For a reconfigurable multi-robot system, the functionality of an assembly depends on the strength
and shape of the robot connection and configuration. In magnetic and other active mechanical
structures, connection strength requires high power consumption. For a passive connection,
where no power is dedicated to the coupling mechanism, strong connections may require high
power to couple or decouple. To enable strong connections from the limited onboard power, we
designed an asymmetric flexible anchor mechanism along with rigid connections. By combin-
ing two different connection mechanisms and assembling them in different directions, we can
achieve structures with high strength.

The design objectives for the flexible anchor are threefold: firstly, to ensure it is sufficiently
pliable for robots to establish coupling through locomotion alone; secondly, to possess the
strength to support the collective weight of multiple robots, while still being able to decouple;
and thirdly, to offer a degree of rotational flexibility, enabling connected components to undergo

slight rotations. The design is shown in Figure S2A and B. We tested the force-displacement

2

A) XIAO ESP32-C3 (MCU) B) Em’tfreggver)

Backward

Offset 1 mm

Anchor Centere
Offset 0 mm

Offset -1 mm

Anchor Offset 1 mm

C o4 N E— D 15¢7
——Offset-tmm| | — ||----- Average Robot Force
= Offset 0 mm Anchor Offset = 1mm
Offset 1 mm Anchor Centered
0.3 | Backward
2 z
® 0.2 ©
° o
o (e}
[T [T
0.1
0 i
0 1 2 3 4 0 1

Displacement (mm) Displacement (mm)
Figure S2: (A) Force experiment setup of pushing from the front or back. (B) The differ-
ent pushing positions for the force profile. (C) Forces with different offset distances from the

centered position versus displacement. (D) Forces of pushing from the anchor in the centered
position, offset position, and backward positions versus displacement.

profiles of the anchor from different positions. Figure S2A and B show the experiment setup
of pushing the anchor when it is aligned with the opening on the other robot (anchor centered
offset 0 mm), deviated by 1mm from the center (offset +/- 1mm), and also from the back of
the anchor. Figure S2C shows the forces of these corresponding pushing positions based on the
displacement from its resting position. Since the sensor is pushing in parallel with the center of
the anchor, the forces drop once it passes the critical displacement position. Since the anchor
has two legs, Figure S2D shows the total forces required from the other robot to achieve a given
displacement. The average force one mobile robot can provide is 0.7189 N, which is signifi-
cantly higher than the forces required to push an anchor inside the other robot (both anchor is
centered position and 1 mm offset position). The backward force, i.e., the forces needed for the
robot to pull out the anchor directly, is significantly greater than the forces that one single robot
can provide. This shows that the robot can easily couple with another robot, while it cannot pull
out the anchor directly. Instead, the robots can decouple by locomoting with a specific motion

pattern, which will be introduced in the method section.

2 Additional force experiments

As illustrated in Figure S3, we conducted measurements on the load experienced by the rigid
side knobs. Despite being designed as a rigid structure, deformation still occurs. This is mainly
due to the whole robot body, including the chassis and the knobs, being fabricated using Ther-
moplastic Polyurethane (TPU), which allows for a buckling effect that facilitates coupling be-
tween robots, as discussed in (?). The force sensor reaches its limit at approximately 3.2N. The
pilot robot weighs 104.2 g, while the non-pilot is heavier due to the metal ball bearings, weigh-
ing 109.7 g. Combining the forces from both knobs, the robot can support a weight equivalent to
around seven times the body weight of one robot. While the actual load might exceed this value,

the measured capacity already meets the requirements for all our intended robot formations.

4

Knob Force vs Displacement

~=Knob 1
35 Knob 2
z
(0]
o
o
L
1 L
0.5
0 1 1 1 1 1
0 1 2 3 4 5

Displacement (mm)

Figure S3: Force plot of the two side knobs.
3 Simulation setup

In this research, we evaluated our robots using the Bullet physics engine (?). We generate the
robot’s structure based on our mesh and output a URDF (Unified Robot Description Format)
file, which outlines the robot using only the primitive shapes - boxes, cylinders, and spheres.
Experimentally, this method has proven to be more reliable and precise for contact and collisions
compared to using original mesh files. The robot main body is modeled as a rigid body without
self-collision checking. For the two side wheels of the non-pilot robot, we connect the wheels
to the main body using a revolute joint. The effort and joint torques are setup from the force
experiments as in Figure S2.

To mimic the flexibility of the anchor, it is modeled as a three-bar linkage, where the middle
bar is attached to the base of the anchor, and the side bars are connected to the middle bar with

rotating joints. These joints simulate the force shown in Figure S2.

Connection points for
planning

Figure S4: Connection points on a robot for computing the connection pair task queue in Fig-
ure ??A.

e Anchor connection point

o Anchor augmented
connection point

Figure S5: Anchor connection points for planning, the augmented anchor connection point, and
the polygon constraints for coupling and connection maintenance.

o Knob augmented
connection point

& o Knob connection point

e

Figure S6: Knob connection points for planning, and the augmented connection points for
coupling and connection maintenance.

4 Connection pair augmentation

As shown in Figure S4, we define six connection points on the robot body for initial task as-
signment. To obtain the task queue as shown in Figure ??, the planner iterate though all the
possible connection pairs for a given target configuration, and generate the set of tasks based on
minimum total distance with the Hungarian algorithm (?).

Contrary to the typical collision-avoidance behavior on most robotic systems, our objective
is controlled collisions that allow the robots to couple with each other. For collision avoid-
ance in a relatively uncluttered environment, the geometry of the robots does not need to be
precisely considered; simplifying their shapes into disks or other basic convex forms suffices.
This simplification allows for efficient and effective navigation without detailed consideration
of each robot’s geometry structure. However, when aiming for collision-seeking behavior to
enable coupling, the specific geometry of the robots becomes crucial. Given the inherent con-
cave nature of the robot bodies in our design, simple convex approximations are inadequate
for this purpose. To address this, we introduce augmented points of alignment that are out of
the minimum convex boundary enclosing the robots. These points enable accurate alignment

between robots, avoiding unintended collisions.

Algorithm 1 Augment Connection Pairs
Input: C = {(C;,C}),...}: set of connection pairs
Output: C: augmented set of connection pairs
Initialize: C={}

1: function AUGMENTPAIRS(C)

2: for (C;,C;) in C do
(C;, C;).status = decoupled
(C, C;).type = anchor or knob
(C;, C;).anchor_index = getAnchorIndex(C;, C})
(Ci, Cj).head = (C}, C) based on anchor_index
C.append((C;, C;))

return C

3
4
5
6:
7
8

After obtaining the goal connection pairs based on a distance-induced graph, we augment
the pairs as in Algorithm 1. In Algorithm 1, we iterate through the set of all connection pairs
and augment them based on characteristics such as current anchor status and type. Then the
augmented set of connection pairs is returned.

While iterating through the connection pair list, we assess whether the status of each con-
nection pair needs to be updated. As illustrated in Algorithm 2, we determine the connection
status, considering the current positions of the robots, by verifying if the connection point (the
anchor head) falls within the polygon of other robot, with a slight tolerance margin denoted by
€. Subsequently, C.,,.,,, which is the set of already connected pairs and Cl4;,., Which is the set

of active connection pairs that are not yet coupled, are modified.

5 Coupling constraints

Before introducing the polygon constraints with the dynamics of robots, we first address the
problem of determining whether a point resides within a polygon. The Point-in-Polygon (PIP)
problem is a classic problem within computational geometry. Traditional methods for solving

the PIP problem, such as ray-casting or the winding number approach, are computationally

Algorithm 2 Update Connection Pair Lists

Input: C.,,,: connected pairs, C,.sive: active pairs, C: augmented pair list, e: threshold
Output: C.,,,: connected pairs, C,erive: active pairs
1: function UPDATEPAIRS(Conns Cactives C €)

2. for (C;,C;) inC do
3: a = (C;, C;).anchor_index
4: b = (C;, C;).body_index
5: if (C;, C;).status is decoupled then
6: if R,.head in polygon(R;, €) then
7: (C;, C;).status <— head_aligned
8: if (C;, C;).status is head_aligned then
9: if R, .head in polygon(R;, €) then
10: (C;, C;).status <— head_inserted
11: if R,.head not in polygon(Ry, ¢) then
12: (C;, C;).status <— decoupled
13: if (C;, C;).status is head_inserted then
14: Cactive-remove((C;, C;))
15: Ceonn-append((C;, C}))
16: return Ceonn, Cactive

heavy to integrate into a real-time control frameworks.

This section introduces our approach to mathematically deriving the linear inequality con-
straints that ensure a point is within a convex polygon. This method offers a more direct and
computationally efficient way to integrate spatial constraints into the MPC framework, enabling
real-time decision-making and control for robotic systems.

As shown in Figure S7, a convex polygon on a 2D plane is defined by a series of points
Ciy...,Cy, Cry1, - .., Ck. The coordinate of each point C, € R? is (x4, yx). A convex polygon
is characterized by the property that all interior points lie on the same side of each boundary
line segment (?), for example C}C} 1. For simplicity and without loss of generality, we assign
numbers to the vertices of our convex polygon in an incremental order, counter-clockwise along
the boundary points. Thus, all the points inside the polygon lie on the left-hand side of m .

Consider a point P = (x,y) € R? inside this convex polygon. It is on the left-hand side of the

o Cr+1(Xkt1) Yi+1)

P(x,y)

é Cr (> Vi)

Figure S7: Point in polygon.
—
vector C'yC}11. According to the right-hand rule of cross-product, we have
— ——
POkXPCk_HZO (1)

We substitute the coordinate variables into this equation. Then we have

i R v
(@r = 2)(Yrr1 — ¥) — (Y — Y)(@Thy1 —) > 0
[Wer1 = yx —(Trs1 — 21)] (m - B’;D <0)

Denote the augmented connection point frame in Figure S5 to be P, € SE(2). The homo-

geneous transformation from the robot ¢ body frame R; to the connection point frame is

1 0 a,
grp, = |0 1 a (3)
00 1
where a, and a, are constant based on the anchor’s resting position. On our robot, a, = —0.032

and a, = 0, both in meters. Consider the constraint polygon sit on robot j with its body frame
denoted as I?;. We transform the connection point frame into the body frame R; where the
constraint vertices are defined. As defined in the Method, the pose of robot i is (z;, y;, 0;), and

similar for robot j. We also denote the world frame to be V.

10

IR, P, = 9R,W 9WR; IRP, 4)

= 9w, IWR; IR.P, S
i B B EZINE N 1 0 a,]

_[reey —reay [2)] e [2]] {5 0 o ©
|0 1] lo 1] loo 1]
[-fﬂ'__ [a .I"_
R(—0;) —R(—0 J R(6;) R(;)| " ‘

_[reoy —reay [B]] Ry = ||+ 2] o

0 1 0 1

where the R(6) € SO(2) denote the rotation matrix from angle . We extract the translation
part and obtain
R(-0) (=) 22| + [7]) - re-0) |7 ®
Qy A Yj
For a distributed setup, the states of neighboring robots are numerical constants. Consider
robot ¢ to be the ego robot, z;, y;, 0, are constants throughout the MPC planning horizon. We
substitute this Equation (8) into the coordinates of the point P = [z, y|T in Equation (2), and

denote this as:
. ey
pip(Py, CrCryr) <0 9)

Note that despite the non-linearity of the system with respect to the states x;, y;, 0;, this in-
equality constraint remains differentiable, with analytical expressions for both gradients and
Hessians. This is particularly helpful for MPC optimization, given that our chosen optimizer,
ip-opt (?), uses the interior point method. The availability of explicit derivatives facilitates the
optimizer’s efficiency and effectiveness in navigating the solution space, thereby enhancing the

overall computational performance of the optimization process.

11

0.02 || © anchor retract
° anchor extend
0.01¢
0 L
-0.01 ¢
-0.02

-0.02 -0.01 0 0.01 0.02 0.03

Figure S8: Projected anchor head positions when two robots are coupled. The plot shows the
projected positions when the anchor is fully retracted and fully extended.

6 Modeling constraint geometry

To create the bounding polygon as a constraint to the passive soft anchor as shown in Figure S7,
we collected data points on the robot poses when robots are coupled together. By driving them
with various velocities while keeping the robots coupled, we collected 1153 data points. We
then project the anchor head positions F, at its retracted position and its extended position onto
the body frame of the other robot. The result is shown in Figure S8. We use this data to create
a bounding polygon to constrain the anchor head in the MPC setup.

Apart from the point-in-polygon constraint, we also have the body line cutting plane con-
straints in Figure S9. We constrain the corner points of the robots to be on the other side of
the cutting plane defined by the front (or back) of the other robot body. For Figure S9A and

Figure S9B constraints respectively, we have

Iro, < —LJ2 (11)

where 9k,c, represents the translation of corner point C; in x-axis of the robot body frame R;,

12

Figure S9: The cutting plane constraints for inter-robot connections.

and similarly for the other constraint. . denotes the body length of a robot. We represent these

constraints as line(z;, ;) < 0 where x; € R? is the state of robot i.

7 Distributed MPC framework details

Algorithm 3 demonstrates a simplified pseudocode of the overall controller algorithm. We first
initialize a set u for the control signals and a cost variable. Then, we calculate the control signal
for each robot in parallel, adding its cost cost; to the running total cost for that time step. A
diagram of the MPC is shown in Figure ??. The objective function is minimized, and the control
signal u; is obtained and returned, then added to w. This is then passed to either the simulation
interface to control the robots in the simulator, or to the lower-level PID controller to be sent to

the hardware platform via WiFi.

13

TqyUq

H-1
min wgl|e;(H) — ¢ll3 +we Y [lei(k) —¢l3
k=0

+wsHlelui(k) —ui(k+1)|3 (12)
s.t.ai(k = 1670: 0 (13)
zi(k +1) = f(zi(k), wi(k)) (14)
zi(k) € X,u(k) €U, k=0,... . H (15)
pip(Pa(k), Cos(k)Crriia (k) <0, k=0,..., H, (16)
line(w;(k),z;(k)) <0, k=0,..., H, (17)

The MPC formulation for a couping behavior is shown above. For robot 7, the objective in
Equation 12 includes the intermediate stage cost of the alignment error for the target connection
pair between robot 7 and 7 with a weight w,, the final cost weight of this error is denoted as wj.
A smoothness term is also added with a weight of w; for the control signals. To simplify

notation, we denote the MPC horizon to be H € Z™*.

Algorithm 3 Distributed MPC for Coupling Behavior

Input: 7" target configuration, x: robot states at time ¢, C.on,: connected pairs, Cyerive: active
pairs

Output: u: control input for robots

Initialize: v =[], cost =0

1: function COUPLEPAIRS(T, z, Ceonns Cactive)

2: for robot; in robots do > done in parallel

3 x; = state of robot;

4: Ui MPC(SL’“ Cconn’ Cactive)
5: add u; to u
6:
7

add cost; to cost
return v

14

8 Costs of other behaviors

For a Model Predictive Control (MPC) framework, the setup of cost and weights are crucial
for each different behavior. To ensure the correct operation of a connect segment assembly,
we consider the robots that have active tasks to operate the segment leader. The goal of this
segment leader will have the largest weight in the cost function, while all the other robots
within this segment will have less weight and copy the goal of this segment leader. During the
task assignment, each segment is guaranteed to have only one segment leader, thus guaranteeing
there are no conflicting goals for each segment.

For each segment leader in the configuration formations, the MPC formulation follows the

same as in Equation (12). For a none leader robot within a segment, the objective of the MPC

becomes
H-1 H-1
wrl|%i(H) = Xieader |3 + we Y 1%i(k) = Xieager |3 + ws Y [[us(k) —wi(k+1)|3 (18)
k=0 k=0

This ensures the connected segment follows the leader for the target behavior. The connec-
tion constraints remain the same as in the the leader constraints for configuration formation
Equation (12). The weights wy, w, for the non-leader robots are significantly smaller than the
weights for leader robots.

The trajectory following behavior also has a different objective formulation. Consider a
given reference trajectory is parametrized by a set of waypoints x"¢/. Only the leader robot

within a segment is considered during the trajectory following behavior. The objective is
H-1
willxi(H) = x" (H)|5 +we) Ixi(k) —x" (k)3 (19)
k=0

The constraints remain the same as in the previous section. The non-leader robots follow the

MPC formulation as in Equation (18).

15

9 Statisical analysis of performance on rough terrain

The mobility characteristics of PuzzleBots were individuals, and connected pairs were com-
pared across rough terrains for three different metrics. These metrics, the tracking error, the
percent traversal, and velocity capture the mobility and precise locomotion characteristics of
PuzzleBots across terrains with various roughness. Five different surfaces were tested, includ-
ing a flat terrain, with a surface variance of 0 mm, and then artificial, 3D printed rough terrains
with surface variances of 1 mm, 2 mm, 3 mm, and 4 mm.

The locomotion data of the PuzzleBots were collected as described in the Results section.
To determine if the mobility of individuals and paired PuzzleBots are different on different
terrains, pairwise t-tests were performed for all three metrics on all five terrains (a total of 15
pairwise t-tests were performed). Table 1 summarizes the p-value of the pairwise t-tests between
individual and linked puzzled bots across terrains and metrics. All tests were performed with
the ttest 2 function in MatLab 2021b with a degree of freedom of 18, and resultant p-values
were compared to o = 0.01, for a confidence interval of 99%.

On flat terrain (a surface variance of 0 mm, individual and linked PuzzleBots did not perform
statistically significantly different, and since both individual and linked PuzzleBots completed
the entire trajectory (100% for traversal percentage), a pairwise t-test could not be performed.
On all terrains with surface variances between 0 mm (flat terrain) and 4 mm, individual and
linked Puzzlebots did not perform statistically significantly different in any metric with a 99%
confidence interval. However, when the surface variance increases to 5 mm, individual and
paired PuzzleBots are statistically significantly different in all three metrics for the pairwise
t-tests. Figure ?? shows that the paired PuzzleBots outperformed individual PuzzleBots for the
traversal percentage and velocity, meaning that paired PuzzleBots could complete longer paths

with higher velocities. However, paired PuzzleBots have an increase in the tracking error.

16

Surface variance (mm) Tracking error Percent traversal Velocity

0 1.13E-01 - 1.36E-01
1 2.06E-02 9.06E-01 9.63E-01
2 8.67E-02 3.22E-01 3.71E-01
3 6.44E-01 5.74E-02 5.94E-02
5 5.56E-03 2.79E-03 2.80E-03

Table 1: Experiment analysis for terrain traversal.

10 Limitations

This study has demonstrated the efficacy of leveraging the collective capabilities of multiple
robots for navigating challenging terrains. Nonetheless, it is important to acknowledge several
limitations inherent to our current approach.

Firstly, in our modeling framework, we model each individual robot with unicycle dynamics.
This is simple and accurate, and achieves high precision in trajectory tracking, with accuracy
within one millimeter. However, this level of precision is challenging when modeling a con-
nected assembly of multiple robots. The primary challenge lies in our approach to modeling
these robots purely from a kinematic perspective, disregarding the contact forces and modes
between them. Though this simplification has facilitated an efficient real-time optimization
framework, as discussed in the Methods section, it does not accurately capture the complex dy-
namics of robot interactions. While the modeling error may be negligible for a small assembly
of robots, it becomes increasingly significant as the number of robots in the assembly grows.
This limits the scalability of our approach for precise control over larger assemblies. Moving
forward, we aim to adopt data-driven methodologies to model the interactions among coupled
robots more accurately, enhancing both scalability and precision.

Secondly, our use of passive connections, despite offering significant benefits, limits the
robots’ ability to navigate positive obstacles, such as climbing stairs or overcoming barriers.

The current system is effective for traversing negative obstacles, like gaps and height drops,

17

due to its reliance on gravity and environmental interactions. To address this limitation, future
research will explore the integration of minimal actuation into the robots’ coupling mechanisms,
enabling them to navigate over positive obstacles.

Thirdly, the reliance on indoor Vicon localization systems for precise control and coupling
poses another limitation. This dependency constrains the operational environment of the robots
to indoor lab settings equipped with such systems. To broaden the applicability and auton-
omy of the robots, future developments will consider incorporating onboard sensors and other
localization technologies, reducing reliance on external systems for navigation and control.

In conclusion, while our findings highlight the potential of collective robot forces in over-
coming complex terrains, the outlined limitations underscore the need for continued research

and development to enhance the versatility, scalability, and autonomy of robotic assemblies.

18

