

Functional Insights into Novel Extremophilic Bacteria Isolated from the NASA Phoenix Mission Spacecraft Assembly Cleanrooms

Júnia Schultz

King Abdullah University of Science and Technology

Tahira Jamil

King Abdullah University of Science and Technology

Pratyay Sengupta

Indian Institute of Technology Madras

Shobhan Karthick Muthamilselvi Sivabalan

Indian Institute of Technology Madras

Anamika Rawat

King Abdullah University of Science and Technology

Niketan Patel

King Abdullah University of Science and Technology

Srinivasan Krishnamurthy

Institute of Microbial Technology

Intikhab Alam

King Abdullah University of Science and Technology

Nitin Kumar Singh

Jet Propulsion Laboratory

Karthik Raman

Indian Institute of Technology Madras

Alexandre Soares Rosado

King Abdullah University of Science and Technology

Kasthuri Venkateswaran

kjvenkat1955@gmail.com

Jet Propulsion Laboratory

Article

Keywords: Extreme environment, Cleanroom, Phylogenomics, Novel species, Phoenix mission, BGCs.

Posted Date: September 2nd, 2024

DOI: <https://doi.org/10.21203/rs.3.rs-4830964/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: No competing interests reported.

Functional Insights into Novel Extremophilic Bacteria Isolated from the NASA Phoenix Mission Spacecraft Assembly Cleanrooms

Júnia Schultz¹, Tahira Jamil¹, Pratyay Sengupta^{2,3,4}, Shobhan Karthick Muthamilselvi Sivabalan⁴, Anamika Rawat¹, Niketan Patel¹, Srinivasan Krishnamurthy⁵, Intikhab Alam¹, Nitin K. Singh⁶, Karthik Raman^{3,4,7}, Alexandre Soares Rosado^{1,8*}, Kasthuri Venkateswaran^{6*}

¹Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia

²Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India

³Center for Integrative Biology and Systems Medicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, India

⁴Robert Bosch Centre for Data Science and Artificial Intelligence (RB-CD-DSAI), Indian Institute of Technology Madras, Chennai, 600036, India

⁵Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology, Chandigarh, 160036, India

⁶NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

⁷Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Bombay, Mumbai, India.

⁸Bioscience Program, Biological and Environmental Science and Engineering (BESE), Division, King

Bioscience Program, Biological and Environmental Science and Engineering (BSE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia

* These authors share senior authorship.

These authors share senior authorship.

Correspondence:

kjvenkat1955@gmail.com; Orcid: 0000-0002-6742-0873

Keywords: Extreme environment, Cleanroom, Phylogenomics, Novel species, Phoenix mission, BGCs.

31 **Abstract**

32 Human-designed oligotrophic environments, such as cleanrooms, harbor unique microbial
33 communities shaped by selective pressures like temperature, humidity, nutrient availability, cleaning
34 reagents, and radiation. During the Phoenix spacecraft mission, genomes of 215 bacterial isolates
35 were sequenced and based on overall genome related indices, 53 strains belong to 26 novel species
36 were recognized. Metagenome mapping indicated less than 0.1% of the reads associated with novel
37 species, suggesting their rarity. Genes responsible for biofilm formation, such as Bola (COG0271)
38 and CvpA (COG1286), were predominantly found in proteobacterial members but were absent in
39 other non-spore-forming and spore-forming species. YqgA (COG1811) was detected in most spore-
40 forming members but was absent in *Paenibacillus* and non-spore-forming species. Cell fate regulators,
41 COG1774 (YaaT), COG3679 (YlbF, YheA/YmcA), and COG4550 (YmcA, YheA/YmcA),
42 controlling sporulation, competence, and biofilm development processes, were observed in all
43 spore-formers but were missing in non-spore-forming species. COG analyses further revealed
44 resistance-conferring proteins in all spore-forming novel species (n=13) and eight actinobacteria,
45 responsible for enhanced membrane transport and signaling under radiation (COG3253),
46 transcription regulation under radiation stress (COG1108), and DNA repair and stress responses
47 (COG2318). Additional functional analysis revealed that *Agrococcus phoenicis*, *Microbacterium*
48 *canaveralium*, and *Microbacterium jpeli* contained biosynthetic gene clusters (BGCs) for ϵ -Poly-L-lysine,
49 beneficial in food preservation and biomedical applications. Two novel *Sphingomonas* species
50 exhibited zeaxanthin, an antioxidant beneficial for eye health. *Paenibacillus canaveralius* harbored genes
51 for bacillibactin, crucial for iron acquisition. *Georgenia phoenicis* had BGCs for alkylresorcinols,
52 compounds with antimicrobial and anticancer properties used in food preservation and
53 pharmaceuticals. Despite strict decontamination and controlled environmental conditions,
54 cleanrooms foster novel bacterial species which can form biofilms, resist various stressors, and
55 produce biotechnologically valuable compounds.

56 **Introduction**

57 Cleanrooms and other human-designed oligotrophic environments present distinct ecosystems that
58 may expedite microbial speciation due to unique selective pressures¹. These pressures may arise from
59 specialized construction materials, controlled temperature and humidity, and exposure to cleaning
60 agents, diverging from more nutrient-rich natural settings². Such environments select microbes that
61 can survive nutrient-poor conditions, potentially giving rise to new species³. Globally, human
62 activities transport microbes to different oligotrophic environments, like cleanrooms, facilitating
63 distinctive evolutionary trajectories². Despite the resource-limited conditions, microbial communities
64 in these controlled environments are complex and competitive. This complexity fosters the isolation
65 of rare microbes, shaped by specific microbial interactions and environmental conditions, unfolding
66 over years to decades.

67 Ensuring the biological cleanliness of the National Aeronautics and Space Administration's (NASA)
68 mission-associated cleanrooms, where spacecraft are assembled and tested, is imperative to meet
69 planetary protection requirements⁴. These facilities undergo constant monitoring to detect and assess
70 the presence of any microorganisms that could potentially survive a transfer to an extraterrestrial
71 environment via robotic exploration devices⁵⁻⁷. Despite meticulous control measures, including
72 regulation of airflow, humidity, temperature, and air particulate concentrations, along with rigorous
73 cleaning using chemical detergents, UV radiation, and hydrogen peroxide, certain microorganisms
74 can persist in this challenging and nutrient-limited environment⁸⁻¹¹.

75 The “cleanroom effect” may provide a platform for microorganisms to adapt to selective pressures
76 (i.e., extremely oligotrophic, low-humidity, and desiccation conditions), bolstering their growth,
77 survival, lifestyle, and resilience under extreme conditions, and the production of specialized
78 metabolites^{11,12}. It is crucial to characterize these resistant microbes, which defy conventional
79 biological control measures and potentially identify novel microbial species. This effort is pivotal for
80 monitoring the risk of forward microbial contamination and safeguarding extraterrestrial
81 environments against unintentional colonization of exploring planets¹³.

82 During the Phoenix mission, 215 strains were isolated from the Kennedy Space Center - Payload
83 Hazardous Servicing Facility (KSC-PHSF) cleanroom floors under various extreme conditions⁹ and
84 whole genome sequencing (WGS) of all 215 isolates was performed. The central objectives of this
85 study were to characterize a cohort of 53 strains, representing 26 previously unidentified bacterial
86 species discovered among Phoenix mission isolates. These strains were subjected to extensive
87 examination, which included characterizing their physiological attributes, and conducting thorough
88 genome analysis, followed by in-depth phylogenomic assessments. Evaluations were performed to
89 determine the incidence, prevalence, and persistence of these novel species even after nine years by
90 analyzing metagenomic reads sourced from several NASA cleanrooms, including KSC-PHSF. In
91 parallel, an investigation into the genomic functions of these extremophiles was undertaken, with a
92 particular emphasis on the discovery of potential genes responsible for radiation resistance and
93 secondary metabolites, indicative of their adaptive capacity and biotechnological applications
94 (Supplementary Figure S1).

95 **Results**

96 Based on WGS, the bacterial strains (n=215) isolated from the KSC-PHSF were classified into three
97 phyla: *Actinomycetota*, *Bacillota*, and *Pseudomonadota*. Furthermore, around 25% of the bacterial strains
98 (53 out of 215 isolates), were novel species and most of them belong to the members of the class
99 *Bacilli* (47.7%), *Alphaproteobacteria* (24.5%), *Gammaproteobacteria* (13.9%), and *Actinomycetia* (13.9%).
100 The percent occurrence of the novel species at family level is given in Supplementary Figure S2.

101 Among 53 strains, 26 belong to yet-to-be-described bacterial species, encompassing 18 genera.
102 Within these 53 novel bacterial strains, 33 strains were isolated before the arrival of the Phoenix
103 mission spacecraft to the KSC-PHSF cleanroom (21 novel species), 7 were cultured during the
104 assembly and testing of the spacecraft (3 novel species), and 13 were isolated from the cleanroom
105 floors after moving the spacecraft for the launch (2 novel species). Among the 53 novel extremo-
106 tolerant strains, 22 were isolated under the alkaline condition (>pH 10; alkalophile), eight after heat-
107 shock (80°C; 15 min; heat-tolerant), seven grown at 4°C (psychrophile), six at 25°C (mesophile), five
108 under anaerobic atmosphere, and five after exposing to UVC condition (254_{nm}; 1,000 J/m²).

109 ***Genome features and relatedness indices***

110 The isolation source, conditions, and WGS assembly statistics of the 53 novel strains is presented in
111 Supplementary Table S1. The draft genomes of the novel species generated using the Nanopore
112 platform were constructed with high-quality sequences, with assembly quality ranging from the
113 complete genome ($n=20$) to 8 scaffolds, and many of the strains exhibited >99% completeness. The
114 similarities among the closely related species of the novel species based on marker genes (16S rRNA
115 and gyrB), average nucleotide index (ANI), average amino acid index (AAI), and digital DNA:DNA
116 hybridization (dDDH) are given in Table 1. Moreover, ANI indices (<95%) and dDDH values
117 (<70%) fell below the threshold levels of bacterial species identity, confirming that the examined
118 Phoenix mission strains ($n=53$) were novel species. The ANI index ranged from 79 to 94%, with
119 most of the 53 novel strains having less than 90% of ANI similarity with the closest relatives. Since
120 no set threshold values for AAI and bacterial genus discrimination exist, it could not be definitively
121 determined whether any of these novel species belong to new genera.

122 ***Phylogenomic analysis***

123 The phylogenomic analysis based on 16S rRNA gene, gyrB, and WGS was performed, and these
124 novel organisms were placed in their respective phylogenetic trees to determine their precise
125 taxonomic placement.

126 Members of *Actinomycetota* phylum showed varied ANI index similarities when compared to
127 established species. The ANI index of *Agrococcus phoenicis* 1P02AA revealed a low similarity (79-86%)
128 with already recognized *Agrococcus* species, with *Agrococcus carbonis* being the closest species at 86%
129 ANI. However, based on the single-copy core genes, *Agrococcus baldri* was the closest species, with
130 85.63% ANI. Our three strains from *Arthrobacter phoenicis* exhibited 100% similarity among
131 themselves and were closely related to *Arthrobacter oryzae*, with 83% ANI. The species *Curtobacterium*
132 *phoenicis* was closely related to *Curtobacterium luteum*, exhibiting an ANI similarity of 89%. The strains
133 belonging to *Georgenia phoenicis* (1P01AC and 1P07AB) were 100% similar to each other and
134 presented an ANI of 89% to the closest relative, *Georgenia satyanarayanae*. The species belonging to
135 *Microbacterium* genus (*M. canaveralium*, *M. jeppli*, *M. phoenicis* and *M. pratiae*) presented ANI values
136 ranging from 84 to 93% compared with their closest relatives.

137 Four novel species were identified as belonging to *Pseudomonadota* phylum. *Noviberaspirillum phoenicis*
138 were closely related to *Noviberaspirillum soli*, exhibiting an ANI of 94%. The novel species
139 *Brevundimonas phoenicis* comprising 18 strains, clustered together with 100% ANI and showed 93%
140 ANI similarity with *Brevundimonas diminuta*. Similarly, the four strains of *Pseudomonas phoenicis* were
141 grouped with 100% ANI and showed ~86% similarity with the closest species *Pseudomonas*
142 *cremoriscolorata*. The novel species *Sphingomonas canaveralia* was placed near *Sphingomonas jatropheae* with
143 an 79% ANI, and *Sphingomonas phoenicis* was adjacent to *Sphingomonas metalli* with an of 83% ANI.

144 Additionally, among the strains belonging to the *Bacillota* phylum, the *Alkalihalobacillus* and *Shoucheilla*

genera were placed in the same phylogenomic tree due to their similarity. *Alkalihalobacillus phoenicis* 1P02AB was closest to *Alkalihalobacillus alkalophilus* with an ANI of 92%, while the strains of *Shouchella phoenicis* were similar among themselves and closest to *Shouchella hunanensis* with an ANI of 81%. The novel species *Bacillus jepli*, and *B. kalamii* were not closely related, with ANI value of 80%, and similar patterns were observed when compared with other strains of *Bacillus* genus (ANI ranging from 76 to 83%). *Lysinibacillus canaveralius* clustered with *Lysinibacillus odysseyi*, presenting an ANI of 84%, while *Lysinibacillus phoenicis* was closely related to *Lysinibacillus fusiformis* with an ANI of 85%. Two species of *Neobacillus*, *N. canaveralius* and *N. phoenicis*, were distant from each other, with an ANI of 79%. Phylogenetic analysis revealed that *N. canaveralius* is closer to *N. niacini*, with an ANI of 87%, while *N. phoenicis* is closer to *N. bataviensis*, with an ANI of 79%. The single species *Oceanobacillus phoenicis* presented a high ANI percentage with its closest relative, *Oceanobacillus kimchi* with ANI of 90%. The novel representatives of *Paenibacillus*, *P. jepli* and *P. canaveralius*, were closely related to *P. daejeonensis* (ANI 81%) and *P. chitinolyticus* (ANI 90%), respectively. Two strains of *Peribacillus phoenicis* clustered together with 100% ANI, and showed 94% similarity to *Peribacillus frigoritolerans*, its closest relative. The species *Robertmurraya phoenicis* was similar to *Robertmurraya massiliosenegalensis*, with an 91% ANI.

To further validate the placement of the novel species within the bacterial tree of life, a phylogenetic tree was generated by comparing them with 4,441 complete, non-anomalous representative genomes of bacteria (Supplementary Figure S3). The tree of life showed that these novel genomes are almost distributed across the entire spectrum, indicating that spacecraft assembly cleanrooms can harbor a wide range of bacterial diversity. Additionally, 17 phylogenetic trees were constructed at the genus level, with Figure 1 representing non-spore-formers and Figure 2 representing spore-formers.

167 Morphological characterization

To analyze the bacterial isolates in further detail, Gram staining was performed on each isolate. Of all the isolates, 69% were Gram-negative, while the rest (31%) were characterized as Gram-positive bacteria. For in-depth morphological characterization scanning electron microscopy (SEM) analysis was carried out for all the isolates characterized as novel species. Many of the bacterial cells exhibited round or rod-shaped morphologies, presenting either as single cells or in aggregation of multiple cells. The details of the microscopic characterization of each isolate are presented in Table 2, based on SEM images (Figure 3) and Gram staining images (Supplementary Figure S4). The novel species etymologies are given in Table 2.

176 Persistence of novel species

Quality-filtered shotgun metagenomic reads were mapped onto 26 isolated novel species to assess their abundance based on the fraction of mapped reads and coverage breadth. Non-spore-formers had significantly more reads than spore-formers (Figure 4A). Due to the limited proportion of mapped reads to novel species (<1%), a read assembly was conducted to assess coverage breadth against isolated genomes. The average coverage breadth ranged from 0.0007% to 64.4% in JPL-SAF during 2016, from 0.00045% to 3.93% in JPL-SAF during 2018, and from 0.0004% to 6.8% in KSC-PHSF during 2018 (Supplementary Table S2). Using a 1% cutoff, the distribution of coverage breadth for novel species showing >1% coverage (n=23 species) in at least one sample is plotted in Figure 4B. *B. phoenicis* demonstrated the highest mapping percentage, an anomaly, comprising 64.4% of total reads in a sample from location 9 in JPL-SAF. Additionally, *M. jepli* and *G. phoenicis* were present in more samples (n=108) with >1% coverage, followed by *P. phoenicis* (n=105) and *A. phoenicis* (n=104). Furthermore, three novel species (*A. phoenicis*, *O. phoenicis*, and *P. jepli*) were <1% in

189 their abundance in any of the samples and are not shown in Figure 4B. This indicates that none of
190 these 26 novel species dominate the cleanrooms and might be rare.

191 ***Functional characterization***

192 Putative functions of the 26 novel bacterial species were annotated using Prokka and COG-
193 classifier. A total of 212,520 CDS with 3,807 distinct COG annotations were identified
194 (Supplementary Table S3). Among the annotated subsystems, the top categories based on average
195 gene counts included amino acids transport and metabolism (259 genes), followed by transcription
196 (232 genes), translation, ribosomal structure and biogenesis (229 genes), and carbohydrate transport
197 and metabolism (225 genes). Further analysis of these organisms from the Phoenix spacecraft
198 mission revealed that, on average, they possessed 74 genes predicted for defense mechanisms,
199 primarily related to resistance to antibiotics and toxic compounds, and invasion and intracellular
200 resistance.

201 Key genes potentially related to radiation resistance were observed across different bacterial isolates
202 (Figure 5A). The COG3253 proteins that were responsible for enhanced membrane transport and
203 signaling under radiation were present in all spore-formers (n=13) and eight novel actinobacterial
204 species during this study. COG0608 genes, highlighting their role in DNA repair, were absent in all
205 eight actinobacterial species but present in 18 other novel species. COG1108 genes, related to
206 transcription regulation under radiation stress, were present in all novel species except alpha- and
207 beta-proteobacteria (n=24). COG1971 proteins involved in DNA repair after radiation exposure
208 were found in all 13 spore-formers and five out of 13 non-spore-forming novel species. COG2318
209 proteins, associated with DNA repair and stress responses, were identified in spore-formers and *A.*
210 *phoenicis*. COG4365 genes, responsible for increased radiation resistance, were present in all spore-
211 formers but absent in other novel species. The involvement of COG4119 proteins in nucleotide
212 excision repair pathways was reported in *Bacillus subtilis*, and in this investigation, this protein was
213 present only in *N. canaveralensis* whereas 12 other novel spore-formers lacked it.

214 The KMAP approach was used to recover the dataset of proteins of interest (POIs) from the novel
215 species (Supplemental Figure S4A). While exploring the metabolic potential of these novel species,
216 various noteworthy observations were made, including the annotation of several hundred proteins in
217 different application categories. Notably, higher numbers of proteins related to bioprocess
218 engineering, medicine and pharmaceuticals, and analytics were observed, particularly those involved
219 in synthesis, drug development, agriculture, the food industry, and molecular biology. POIs relevant
220 to withstanding extremophilic conditions (such as high temperature and alkalinity) were also
221 identified.

222 ***Biofilm formation***

223 The biofilm-associated COG proteins observed across various bacterial isolates are depicted in
224 Figure 5B. The DNA-binding global transcriptional regulator BolA, which affects cell shape, cell
225 division, and biofilm formation (COG0271), was identified exclusively in proteobacterial members
226 (5 species; 25 strains). Like BolA, the colicin V production accessory protein CvpA, a regulator of
227 purF expression and biofilm formation (COG1286), was also present in proteobacterial members
228 but absent in non-spore-forming species. Conversely, all novel spore-formers (12 species; 14 strains)
229 except *Pa. jepli* contained COG1286. The membrane protein YqgA (COG1811), associated with
230 biofilm formation, was found in most spore-forming members but was absent in both *Paenibacillus*
231 species and all non-spore-forming members during this study. Membrane-bound acyltransferase
232 YfiQ (COG3936), involved in biofilm formation and previously found in *Yersinia pestis*, was
233 present only in *L. phoenicis* and not in any other 25 novel species identified in this research. A group

234 of functionally related cell fate molecular regulators that controlled sporulation, competence, and
235 biofilm development processes and events through modulation of gene and protein expression, such
236 as COG1774 (YaaT), COG3679 (YlbF, YheA/YmcA), and COG4550 (YmcA, YheA/YmcA), was
237 detected in all spore-formers but was absent in non-spore-forming species during this study.

238 **Antimicrobial resistance**

239 Several AMR gene families were identified across the genomes, indicating resistance to ten distinct
240 drug classes, with a predominance for fluoroquinolones, tetracyclines, disinfecting
241 agents/antiseptics, phosphonic acids, and glycopeptides (Figure 5C). The 53 genomes exhibited
242 potential resistance to vancomycin and tetracycline antibiotics (Supplementary Table S4). The
243 species *B. canaveralinus*, *B. jepli*, *B. phoenicis*, *L. phoenicis*, *L. canaveralinus*, *P. canaveralinus*, *P. jepli*, *R. phoenicis*,
244 *N. canaveralinus* and both strains of *Pe. phoenicis* (IP06PA-2 and 1P06PB) presented the higher amount
245 of resistance genes. In terms of antibiotic resistance, five mechanisms were identified: the most
246 common was antibiotic efflux, followed by antibiotic target alteration, antibiotic inactivation, and
247 less commonly, antibiotic target protection and antibiotic target replacement. Overall, the genomic
248 mining predicted the presence of 21 AMR genes, however, phenotypic investigation is necessary to
249 validate the mechanism.

250 **Biosynthetic Gene Clusters**

251 A biosynthetic gene cluster (BGC) analysis revealed 11 cluster types across 26 novel species, with
252 T3PKS and terpene clusters being the most abundant (Supplementary Figure S4B). *P. jepli* 1P07SE
253 and *S. phoenicis* 1P01AA exhibited the highest number of BGCs, with 12 and 10 BGCs each,
254 respectively. BGCs from isolates showing >80% similarity with known gene clusters, including
255 alkylresorcinol, carotenoid, ε-Poly-L-lysine, and paeninodin, were observed in 17 isolates
256 (Supplementary Table S5. The ε-Poly-L-lysine, known for its wide-spectrum inhibitory activity, heat
257 stability, and biodegradability as a food preservative, was identified in three species (*A. phoenicis*, *M.*
258 *canaveralium*, *M. jepli*) with 100% similarity. A gene cluster neighborhood comparison of ε-Poly-L-
259 lysine with known producers revealed functional ε-Poly-L-lysine synthetase genes. Protein sequence
260 comparison showed 48% identity with the fungal producer *Epichloe festucae* and around 67% identity
261 with the bacterial producer *Corynebacterium variabile*, with the highest 70.8% identity in *M. canaveralium*
262 (Figure 6). Domain analysis indicated conserved non-ribosomal peptide synthetases adenylation (A)
263 and thiolation (T) domains, six transmembrane (TM) domains, and three C-terminal tandem
264 domains, crucial for substrate binding and lysine polymerization. This suggests potential for
265 producing ε-Poly-L-lysine, effective against foodborne pathogens like *E. coli* O157:H7, *Listeria*
266 *monocytogenes*, *Staphylococcus aureus*, and *Serratia marcescens*.

267 **Discussion**

268 Several factors contributed to the higher percentage of novel cultivable species (~25%; 53 out of
269 215 strains) retrieved from cleanrooms compared to 6 to 12% in natural environments^{14,15}. Studies
270 demonstrated that extreme and controlled environments might select unique microbial communities
271 capable of thriving under harsh conditions (low-nutrient, desiccation, etc.), which potentially drive
272 microbial speciation and adaptation¹⁶⁻²⁰. In cleanrooms, traditionally spore-formers are often
273 reported. However, non-spore-formers such as *Arthrobacter*, *Brevundimonas*, *Georgenia*, *Microbacterium*,
274 and *Pseudomonas* species, which can survive in oligotrophic, arid, and radiation conditions²¹⁻²⁵, should
275 also be considered when setting bioburden requirements for future NASA missions. Additionally,
276 the isolation of spore-formers like *Peribacillus* and *Shoucheilla* species, which require different cultural
277 conditions compared to *Bacillus* species, underscores the importance of WGS in characterizing yet-
278 to-be-recognized cultivable microbial species^{26,27}. Research on microbial isolates from the Atacama

279 Desert further supported the notion that oligotrophic conditions and unique environmental
280 pressures led to the discovery of more novel microbial taxa^{28,29}. The comprehensive genome analysis
281 of the novel species revealed the presence of already established/peer-reviewed genetic adaptations
282 that enable bacteria to survive extreme conditions, including genes responsible for resistance to
283 radiation, desiccation, and other environmental stressors.

284 Experimental studies on *HemQ* (COG3253), also known as coproheme decarboxylase/chlorite
285 dismutase, have demonstrated its significant role in coenzyme transport and metabolism, as well as
286 inorganic ion transport and metabolism. In gram-positive bacteria (*Bacillota* and *Actinomycetota*) *HemQ*
287 plays an essential role and has been associated with respiration, detoxification of reactive oxygen
288 (ROS) and nitrogen species, gas sensing, and transport³⁰, a crucial property for stress survivability.
289 This linkage (COG3253) was observed in all spore-formers (n=13) and eight novel actinobacterial
290 species in this study. Knockout experiments of COG0608 genes resulted in increased radiation
291 sensitivity, demonstrating their role in DNA repair³¹. These genes were absent in all eight
292 actinobacterial species found in this study but present in 18 other novel species. Except in alpha-
293 and beta-proteobacteria, all other novel species (n=24) exhibited COG1108 genes, which are related
294 to transcription regulation under radiation stress, potentially confirming their protective role³². All 13
295 spore-formers and five out of 13 non-spore-forming novel species exhibited the presence of
296 COG1971 proteins involved in DNA repair after radiation exposure, as reported to be upregulated
297 in *D. radiodurans*³³. Spore-formers and *A. phoenicis* had COG2318 proteins, which were
298 experimentally proved to respond to radiation using a transcriptomic study in *D. radiodurans*,
299 indicating potential roles in DNA repair and stress responses. All spore-formers, but not other novel
300 species, exhibited the presence of COG4365 genes that were shown to be responsible for increased
301 radiation resistance, confirming their potential role in DNA repair³⁴. Radiation exposure studies in *B.*
302 *subtilis* confirmed the involvement of COG4119 proteins in nucleotide excision repair pathways³⁵.
303 However, the absence of COG4119 proteins in 12 out of 13 spore-forming novel species in this
304 study requires further investigation. Despite rigorous decontamination procedures, microbes
305 possessing these traits likely contribute to their persistence in cleanroom environments.

306 The metagenome analysis, which aimed to correlate the persistence of novel microbes within the
307 assembly facility after more than a decade of their isolation, revealed that these novel bacterial
308 species were rare microbial species due to their low incidence in shotgun metagenomes and the
309 overall breadth of coverage for their genomes. Although individually rare, members of these novel
310 bacterial communities collectively might have played crucial roles in ecosystem functioning and
311 stability, including nutrient cycling, decomposition, and symbiotic interactions, potentially leading to
312 the discovery of novel bioactive compounds, enzymes, and metabolic pathways³⁶⁻³⁸.

313 Insights into the survival strategies of these extremophilic bacteria, thriving under the unique
314 conditions of cleanrooms, were gathered through comprehensive genomic analyses. Genes
315 responsible for the synthesis of compounds such as unknown NAGGN, extensively found in the
316 novel strains, aided the bacteria in facing osmotic stress. The synthesis of NAGGN was induced to
317 enhance bacterial colonization in various ecological niches³⁹. This functional property, along with
318 other traits like the presence of genes encoding proteins involved in stress response and adaptation,
319 such as heat shock proteins, cold shock proteins, and chaperones, facilitated survival under harsh
320 cleanroom conditions. This is of particular interest for future NASA missions, where understanding
321 microbial resilience is crucial^{40,41}.

322 Biofilms are associated with antibiotic resistance, likely due to their organization, which protects
323 bacteria in the inner layers from antimicrobial agents and promotes horizontal gene transfer of
324 resistance genes⁴²⁻⁴⁴. BolA (COG0271) noticed in proteobacterial members of this study was shown

325 to be highly expressed in bacteria during the stationary phase and under stress conditions, suggesting
326 its role in biofilm formation⁴⁵. Overexpression of BolA in *E. coli* which promoted biofilm formation,
327 while its absence produced thinner biofilms was reported⁴⁶. Stress conditions such as nutrient
328 depletion or oxidative stress resulted in significantly lower biofilm production in BolA mutants
329 compared to the wild-type strain. *Brunndimonas* species during this study also possessed BolA that
330 was reported to be forming biofilms with higher concentrations of antibiotic-resistant bacteria under
331 disinfection pressure from chlorination and chloramination, increasing antibiotic resistance in tap
332 water⁴⁷. The membrane protein YggA (COG1811) that was found to affect biofilm formation in *E.*
333 *coli*⁴⁸ also retrieved in majority of the spore-formers during this study. In *Y. pestis*, biofilm formation
334 increased significantly in cobB and yfiQ (COG3936) mutants, suggesting that they were the key
335 players in biofilm formation. The cell fate regulators YmcA, YlbF, and YaaT (COG1744, COG3679,
336 COG4550) were required for sporulation, competence, and biofilm formation⁴⁹. Multiple
337 transcriptional regulators were involved in complex cell differentiation in actinobacteria,
338 cyanobacteria, and sporulating bacillota⁵⁰. Genetic screens for mutants blocked in biofilm formation
339 revealed that ylbF and ymcA genes played crucial roles, with YlbF and YmcA forming a complex
340 with YaaT. Mutants lacking YaaT also showed impaired biofilm formation, competence, and
341 sporulation^{49,51,52}.

342 *A. phoenicis*, *M. canaveralium*, and *M. jepli* genomes had BGCs related to potential production of ε-
343 Poly-L-lysine which is a versatile biopolymer with significant potential across various industries due
344 to its strong antimicrobial activity and biodegradability. Its applications range from food
345 preservation to biomedical and industrial uses, making it a valuable compound in enhancing product
346 safety and longevity⁵³. Both *Sphingomonas* species (n=2) possess BGCs related to zeaxanthin, a
347 carotenoid produced by other sphingomonads, which is significant for its strong antioxidant
348 properties, protecting cells from oxidative stress⁵⁴. It plays a crucial role in photoprotection by
349 absorbing blue light and preventing damage from UV radiation. In biotechnology, zeaxanthin is
350 valued for its potential health benefits, including eye health, reducing the risk of age-related macular
351 degeneration, and other chronic diseases.

352 *P. canaveralius* showed BGCs related to the production of bacillibactin, which is a siderophore
353 produced by certain *Bacillus* species⁵⁵. Siderophores are small, high-affinity iron-chelating compounds
354 that microorganisms synthesize and secrete to sequester iron from the environment, which is vital
355 for their growth and metabolism, especially under iron-limiting conditions. *P. jepli* contains BGCs
356 related to producing bacillopaline, which is often used in agriculture as biocontrol agent and
357 biofertilizer. Bacillopaline's antimicrobial properties can protect plants from pathogenic
358 microorganisms, thus promoting healthier plant growth. By inhibiting plant pathogens, bacillopaline-
359 producing bacterial strains can reduce the reliance on chemical pesticides, offering a more
360 sustainable and environmentally friendly approach to agriculture⁵⁶.

361 All four strains of *Ps. phoenicis* exhibited BGCs related to carotenoids, which are reported to serve as
362 powerful antioxidants and photoprotective agents, protecting cells from oxidative damage and UV
363 radiation. They also enhance bacterial survival by aiding quorum sensing and biofilm formation, with
364 significant applications in pharmaceuticals, cosmetics, and as food additives⁵⁷. Similarly, both
365 genomes of *G. phoenicis* contain BGCs related to alkylresorcinols, which are bioactive compounds
366 known for their antimicrobial, antifungal, and anticancer properties⁵⁸. They play a role in bacterial
367 defense mechanisms and biofilm formation. Additionally, alkylresorcinols are used in
368 pharmaceuticals for their therapeutic potential and in the food industry as natural preservatives due
369 to their inhibitory effects on spoilage organisms. BGCs related to the potential production of
370 paeninodin were found in both strains of *Pe. phoenicis*. Paeninodin is a cyclic lipopeptide produced by

371 *Paenibacillus* species and exhibits significant antimicrobial properties, particularly against Gram-
372 positive bacteria. This compound is noted for its potential in agricultural biocontrol, offering an
373 environmentally friendly alternative to chemical pesticides. Furthermore, surfactant properties of
374 paeninodin make it valuable in industrial applications, such as in the formulation of biosurfactants
375 for bioremediation processes⁵⁹.

376 Using KMAP analysis, several biotechnological applications were predicted in the novel strains.
377 Notably, genes encoding enzymes like polymerases and cellulases, which are relevant for survival in
378 high temperature and alkalinity conditions, were observed. These extremozymes have significant
379 industrial applications due to their stability and efficiency under extreme conditions, making them
380 valuable for processes such as PCR and bioremediation^{60,61}. Further exploration of these POIs from
381 extremophilic organisms could enhance current industrial processes by comparing them with the
382 best enzymes available, potentially leading to more efficient and robust biotechnological solutions⁶².

383 Culturing methods may introduce biases, favoring certain microbial types over others^{63,64}. However,
384 WGS of novel cultivated species can contribute to metagenome sequence approaches. While
385 comprehensive, technology development is needed for metagenomic analysis to include rare and
386 low-abundant species or those with highly divergent genomes⁶⁵. Future research should focus on
387 further characterizing the functional properties of these novel species, exploring their applications in
388 various industries, and developing improved contamination control strategies.

389 **Material and methods**

390 Samples were taken from the KSC-PHSF at three distinct times: first before the Phoenix spacecraft's
391 arrival on April 25, 2007 (1P), next during the spacecraft's assembly and testing before its launch on
392 June 27, 2007 (2P), and finally after the spacecraft had been moved to the launch pad on August 1,
393 2007 (3P). Sample collection and isolation of bacterial strains (n=215 strains) cultured under
394 different extreme conditions were already published⁹.

395 **DNA extraction and whole-genome sequencing**

396 For WGS, genomic DNA was extracted using the ZymoBIOMICS DNA MagBead kit. The DNA
397 of 215 strains was assessed for the quality, normalized to 50 ng for library preparation, and barcoded
398 with an Oxford Nanopore Technology transposase barcoding kit (SQK-RBK114.96, Oxford
399 Nanopore, Oxford, UK). Finally, each pool of libraries was loaded onto a PromethION flowcell
400 (FLO-PRO114M, R10.4.1) for long-read sequencing.

401 **Genome assembly and relatedness indices**

402 We conducted quality checks of the raw reads using FastQC v.0.12.0⁶⁶. We utilized Unicycler
403 v.0.5.0⁶⁷, Flye v.2.9.1⁶⁸, and Canu v.2.2⁶⁹ on the filtered reads for *de novo* assembly of the genome. To
404 identify the optimal representative assembly from each genome group, genomes within each group
405 were de-replicated using dRep v. 3.4.5⁷⁰. Subsequently, each assembly was assessed for completeness
406 and contamination by CheckM v.1.2.2⁷¹.

407 To facilitate nucleotide-level comparisons of the genomes within their respective genera, the NCBI
408 command line tool datasets v.15.23.0 was employed to obtain all validly described representative
409 genomes of these 18 genera (<https://github.com/ncbi/datasets>). We then computed the pairwise
410 ANI computations using FastANI v.1.34 with the novel strains as a query with representative
411 genomes⁷². Furthermore, for estimating dDDH, the Genome-to-Genome Distance Calculator v.3.0
412 online tool was used with recommended Formula 2 utilizing the BLAST+ alignment tool⁷³. In

413 addition, AAI values were computed using aai.rb function from the Enveomics collection toolbox,
414 and the sequence identity for conserved protein *gyrB* was calculated using Blast v.2.13.0, respectively.

415 **WGS-based phylogeny**

416 For the *Actinomycetota* group (n=11 strains), a set of 138 single-copy genes (SCGs) and *Bacillota*
417 group, 119 SCGs (n=15 strains) were utilized to construct phylogenetic trees at the genus level
418 employing GToTree v.1.8.2⁷⁴. For *Pseudomonadota* group (n=27 strains), a class level phylogenetic tree
419 was generated using 117 SCGs for *Alphaproteobacteria*, 172 SCGs belonging to *Gammaproteobacteria*,
420 and 203 SCGs of *Betaproteobacteria*. An appropriate outgroup was selected for each tree construction.

421 Subsequently, we employed IQTREE v.2.2.0.3⁷⁵ with ModelFinder-Plus⁷⁶ to construct the
422 phylogenetic tree from the protein alignment generated by GToTree with 1,000 ultrafast bootstrap
423 replicates. Additionally, we aimed to place the novel strains in the bacterial tree of life and hence
424 retrieved 4,441 complete, non-anomalous representative genomes of bacteria from the NCBI
425 Reference Sequence (RefSeq) database. We constructed a phylogenetic tree using the 16 SCG-set as
426 previously described by Hug et al.⁷⁷. All trees were then annotated and visualized using the
427 interactive Tree Of Life (iTOL) v.6.7⁷⁸.

428 **Microscopic characterization**

429 Each bacterial strain was cultured on TSA medium incubated at 26°C for up to 48 hours before
430 proceeding for Gram staining⁷⁹. For SEM imaging analysis, the bacterial samples were loaded on
431 silicon wafers and fixed in 4% glutaraldehyde in 0.1 M phosphate buffer for 2 hours at room
432 temperature, followed by 3 washes of 5 minutes with 0.1 M phosphate buffer. The samples were
433 then dehydrated in ascending isopropanol (IPA) and water series (25%, 30%, 50%, 70%, 80%, 90%,
434 95%, and 100%) each for 10 minutes, followed by the final 3 times rinsing in 100% IPA and then
435 were critically point dried in EM CPD300 (Leica Company, Wetzlar, Germany). Finally, the silicon
436 wafers carrying the bacterial samples were mounted on SEM stubs (Ted Pella Inc.) using carbon
437 tape and coated with 2 nm of iridium using a sputter coater (Q300T T Plus; Electron Microscopy
438 Sciences Company, Hartfield, PA, USA). The SEM images were collected on Quattro ESEM
439 (ThermoFisher Company, Waltham, MA, USA).

440 **Estimating the abundance of novel species in the cleanroom metagenomes**

441 In order to investigate the presence of newly identified species within controlled cleanroom
442 environments of NASA, we analyzed 164 metagenome samples obtained from Mars 2020 mission
443 assembly cleanrooms: 140 samples from the Spacecraft Assembly Facility (SAF) at the Jet
444 Propulsion Laboratory (JPL), California, and 24 samples from Payload Hazardous Servicing Facility
445 (PHSF) at the Kennedy Space Center (KSC), Florida. Detailed information about the samples can be
446 found in Supplementary Table S2. The samples treated with propidium monoazide (PMA) were
447 considered for this study to capture only viable and intact cells. Initially, the samples were subjected
448 to quality filtering using fastp v.0.22.0 with a phred-score cut-off of 15 and polyG tails trimming
449 with a minimum length of 10⁸⁰ to eliminate low-quality reads. Then, we utilized Bowtie2 v.1.2.2
450 within MetaCompass v.2.0 to align the filtered reads to newly identified genomes and determine
451 their abundance in the NASA cleanrooms based on mapped reads. Following this, we utilized
452 MEGAHIT v.1.0.6 within MetaCompass to assemble the mapped reads and generate consensus
453 sequences⁸¹. We quantified the percentage of reads aligned to these novel species and assessed the
454 breadth of coverage of the consensus sequences in each sample.

455 ***Genome characterization and screening of secondary-metabolite biosynthetic potential***

456 We identified open reading frames (ORFs) in the 53 novel strains using the command-line tool
457 Prokka v.1.14.5, which employs Prodigal for gene annotation based on multiple reference
458 databases⁸². For functional profiling, we utilized the Python-based tool cogclassifier v.1.0.5
459 (<https://pypi.org/project/cogclassifier/>) to retrieve Clusters of Orthologous Groups (COGs) from
460 the annotated genomes. To detect antibiotic resistance genes and markers, we used the Resistance
461 Gene Identifier (RGI) v.6.0.3, leveraging the Comprehensive Antibiotic Resistance Database
462 (CARD) v.3.2.6⁸³. Only "Perfect" and "Strict" matches were considered to ensure high confidence in
463 the identified antibiotic-resistance genes. All genomes were also annotated using the KAUST
464 Metagenomic Analyses Platform (KMAP)⁸⁴, which captures Proteins of Industrial Interest (POIs)
465 based on a comprehensive dictionary of genes relevant to industries such as bioprocess engineering,
466 medicine, pharmaceuticals, cosmetics, and detergents.

467 Secondary metabolite biosynthetic gene clusters (BGCs) were identified in each novel genome using
468 antiSMASH v.7.0.0⁸⁵ with a "Relaxed" detection setting, and the identified BGCs were curated for
469 functional annotation using MIBiG v.3.1⁸⁶. We focused on one particular BGC, ε-Poly-L-lysine,
470 present in three of the isolates with 100% similarity score. The gene neighborhood across this
471 cluster was visualized using Clinker on the CAGECAT web server
472 (<https://cagecat.bioinformatics.nl/tools/clinker>), comparing it with the known producers *Epichloë*
473 *festucae* and *Corynebacterium variabile*. Additionally, we aligned the protein sequence of ε-Poly-L-lysine
474 synthetase using the Clustal Omega web server (<https://www.ebi.ac.uk/jDispatcher/msa/clustalo>)
475 and visualized the conserved regions in different domains using the NCBI Multiple Sequence
476 Alignment Viewer v.1.25.0.

477 ***Data availability***

478 The 16S rRNA gene and the draft genome sequences of all the 53 novel strains characterized in this
479 study were deposited in NCBI under BioProject PRJNA1048065. The 16S and WGS accession
480 numbers are given in Table 1, and the genome versions described in this paper are the first versions.
481 The codes used in this study are available at <https://github.com/RamanLab/phoenix-novel-species/wiki>.

483 ***Conflict of interest***

484 The authors declare that the research was conducted in the absence of any commercial or financial
485 relationships that could be construed as a potential conflict of interest.

486 ***Authors' contribution***

487 KV and NS managed the Phoenix strain collection. ASR and JS performed the Phoenix mission
488 spacecraft strain genome sequencing. JS, ASR, and KV conceived and designed the study, and
489 generated the draft of the manuscript with contributions from all authors. AR and NP conducted
490 microscopy analysis and visualization. TJ and IA performed the genome assembly. PS, SKMS, and
491 TJ conducted WGS-based phylogenetic placement, comparative genomics, genome annotation, and
492 functional characterization with inputs from KR, NKS, and KV. PS performed biosynthetic gene
493 cluster and biofilm-based gene analysis. PS and SKMS performed metagenomic mapping analysis.
494 SK performed biochemical characterization of the novel species. ASR funded the project. JS and
495 KV wrote the manuscript. All authors read and approved the final manuscript.

496 **Funding**

497 This work was supported by Prof. Alexandre Soares Rosado's KAUST Baseline Grant
498 (BAS/1/1096-01-01). Part of the research described in this publication was carried out at the Jet
499 Propulsion Laboratory, California Institute of Technology, under a contract with National
500 Aeronautics and Space Administration. This research was funded by a 2012 Space Biology
501 NNN12ZTT001N grant no. 19-12829-26 under Task Order NNN13D111T award to KV. PS is
502 supported through the Prime Minister's Research Fellowship from the Ministry of Education,
503 Government of India. The funders had no role in study design, data collection and interpretation,
504 the writing of the manuscript, or the decision to submit the work for publication.

505 **Acknowledgment**

506 We thank Michael Williams, a student intern from CalPoly-Pomona, for reviving and purifying the
507 strains, and Zymo Research Corp. for extracting DNA. We would like to thank the staff from the
508 Bioscience Core Lab, Supercomputing Core Lab, and Imaging and Characterization Core Lab from
509 the King Abdullah University of Science and Technology for their excellent support in conducting
510 the analyses. We thank Abhay Bhat for his support in metagenomics data analysis. P.S. is a recipient
511 of the Prime Minister's Research Fellowship (PMRF) from the Ministry of Education, Government
512 of India. S.K.M.S. acknowledges the Half-Time Teaching Assistantship (HTTA) from the Ministry
513 of Education, Government of India.

514 **References:**

515 1. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor
516 environment. *Science* **345**, 1048-1052 (2014).

517 2. Mora, M. et al. Microorganisms in Confined Habitats: Microbial Monitoring and Control of
518 Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station.
Frontiers in Microbiology **7**(2016).

519 3. Miliotis, G. et al. Novel spore-forming species exhibiting intrinsic resistance to third- and
520 fourth-generation cephalosporins and description of *Tigheibacillus jepli* gen. nov., sp. nov. *mBio*
521 **15**, e00181-24 (2024).

522 4. NASA. Planetary Protection Provisions for Robotic Extraterrestrial Missions. NPR 8020.12D,
523 April 2011. (National Aeronautics and Space Administration, Washington, D.C., 2011).

524 5. La Duc, M.T., Nicholson, W., Kern, R. & Venkateswaran, K. Microbial characterization of
525 the Mars Odyssey spacecraft and its encapsulation facility. *Environ. Microbiol.* **5**, 977-985 (2003).

526 6. La Duc, M.T., Kern, R.G. & Venkateswaran, K. Microbial monitoring of spacecraft and
527 associated environments. *Microbial Ecology* **47**, 150-158 (2004).

528 7. Chander, A.M. et al. Description and Genome Characterization of Three Novel Fungal Strains
529 Isolated from Mars 2020 Mission-Associated Spacecraft Assembly Facility: Recommendations
530 for Two New Genera and One Species. *Journal of Fungi* **9**, 31 (2023).

531 8. La Duc, M.T. et al. Isolation and Characterization of Bacteria Capable of Tolerating the
532 Extreme Conditions of Clean Room Environments. *Applied and Environmental Microbiology* **73**,
533 2600-2611 (2007).

534 9. Ghosh, S., Osman, S., Vaishampayan, P. & Venkateswaran, K. Recurrent isolation of
535 extremotolerant bacteria from the clean room where Phoenix spacecraft components were
536 assembled. *Astrobiology* **10**, 325-35 (2010).

537 10. Blachowicz, A. et al. The Isolation and Characterization of Rare Mycobiome Associated With
538 Spacecraft Assembly Cleanrooms. *Front Microbiol* **13**, 777133 (2022).

539 11. Hendrickson, R. et al. Clean room microbiome complexity impacts planetary protection
540 bioburden. *Microbiome* **9**, 238 (2021).

541 12. Link, L., Sawyer, J., Venkateswaran, K. & Nicholson, W. Extreme spore UV resistance of
542 *Bacillus pumilus* isolates obtained from an ultraclean spacecraft assembly facility. *Microb. Ecol.*
543 **47**, 159-163 (2004).

544 13. Rummel, J.D. Planetary exploration in the time of astrobiology: protecting against biological
545 contamination. *Proc. Nat. Acad. Sci. USA* **98**, 2128-2131 (2001).

546 14. Zhao, X. et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and
547 their ability to degrade macromolecules. *Marine Life Science & Technology* **2**, 181-193 (2020).

548 15. Sefriji, F.O. et al. Insights Into the Cultivable Bacterial Fraction of Sediments From the Red
549 Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of
550 *Mangrovibacillus cuniculi* gen. nov., sp. nov., a Novel Member of the Bacillaceae Family. *Front*
551 *Microbiol* **13**, 777986 (2022).

552 16. Mahnert, A. et al. Cleanroom Maintenance Significantly Reduces Abundance but Not
553 Diversity of Indoor Microbiomes. *PLOS ONE* **10**, e0134848 (2015).

554 17. Li, S.J. et al. Microbial communities evolve faster in extreme environments. *Sci Rep* **4**, 6205
555 (2014).

556 18. Moissl, C. et al. Molecular bacterial community analysis of clean rooms where spacecraft are
557 assembled. *FEMS Microbiology Ecology* **61**, 509-521 (2007).

558 19. Moissl-Eichinger, C. et al. Quo vadis? Microbial profiling revealed strong effects of cleanroom
559 maintenance and routes of contamination in indoor environments. *Scientific reports* **5**(2015).

560

561 20. Vaishampayan, P., Rabbow, E., Horneck, G. & Venkateswaran, K. Survival of *Bacillus pumilus*
562 spores for a prolonged period of time in real space conditions. *Astrobiology* **12**, 487-497 (2012).

563 21. Han, X.Y. & Andrade, R.A. *Brevundimonas diminuta* infections and its resistance to
564 fluoroquinolones. *J Antimicrob Chemother* **55**, 853-9 (2005).

565 22. Correto, E. et al. Comparative Genomics of *Microbacterium* Species to Reveal Diversity,
566 Potential for Secondary Metabolites and Heavy Metal Resistance. *Frontiers in Microbiology*
567 **11**(2020).

568 23. Strong, L.C., Rosendahl, C., Johnson, G., Sadowsky, M.J. & Wackett, L.P. *Arthrobacter aurescens*
569 TC1 metabolizes diverse s-triazine ring compounds. *Appl Environ Microbiol* **68**, 5973-80 (2002).

570 24. da Silva, A.C., Rachid, C.T.C.d.C., de Jesus, H.E., Rosado, A.S. & Peixoto, R.S. Predicting the
571 biotechnological potential of bacteria isolated from Antarctic soils, including the rhizosphere
572 of vascular plants. *Polar Biology* **40**, 1393-1407 (2017).

573 25. Senchenkov, V.Y. et al. Whole-Genome Sequencing and Biotechnological Potential
574 Assessment of Two Bacterial Strains Isolated from Poultry Farms in Belgorod, Russia.
575 *Microorganisms* **11**(2023).

576 26. Patel, S. & Gupta, R.S. A phylogenomic and comparative genomic framework for resolving
577 the polyphyly of the genus *Bacillus*: Proposal for six new genera of *Bacillus* species, *Peribacillus*
578 gen. nov., *Cytobacillus* gen. nov., *Mesobacillus* gen. nov., *Neobacillus* gen. nov., *Metabacillus* gen.
579 nov. and *Alkalibacillus* gen. nov. *Int J Syst Evol Microbiol* **70**, 406-438 (2020).

580 27. Kim, K.H., Han, D.M., Lee, J.K. & Jeon, C.O. *Alkalicoccobacillus porphyridii* sp. nov., isolated
581 from a marine red alga, reclassification of *Shourella plakortidis* and *Shourella gibsonii* as
582 *Alkalicoccobacillus plakortidis* comb. nov. and *Alkalicoccobacillus gibsonii* comb. nov., and emended
583 description of the genus *Alkalicoccobacillus* Joshi et al. 2022. *International Journal of Systematic and*
584 *Evolutionary Microbiology* **73**(2023).

585 28. Paulino-Lima, I.G. et al. Isolation of UVC-tolerant bacteria from the hyperarid Atacama
586 Desert, Chile. *Microb Ecol* **65**, 325-35 (2013).

587 29. Gaete, A., Mandakovic, D. & González, M. Isolation and Identification of Soil Bacteria from
588 Extreme Environments of Chile and Their Plant Beneficial Characteristics. *Microorganisms* **8**,
589 1213 (2020).

590 30. Aftab, H. & Donegan, R.K. Regulation of heme biosynthesis via the coproporphyrin
591 dependent pathway in bacteria. *Frontiers in Microbiology* **15**(2024).

592 31. Blasius, M., Sommer, S. & Hübscher, U. *Deinococcus radiodurans*: what belongs to the survival
593 kit? *Crit Rev Biochem Mol Biol* **43**, 221-38 (2008).

594 32. Frenkiel-Krispin, D. et al. Structure of the DNA-SspC complex: implications for DNA
595 packaging, protection, and repair in bacterial spores. *J Bacteriol* **186**, 3525-30 (2004).

596 33. Liu, Y. et al. Transcriptome dynamics of *Deinococcus radiodurans* recovering from ionizing
597 radiation. *Proc Natl Acad Sci U S A* **100**, 4191-6 (2003).

598 34. Eisen, J.A. & Hanawalt, P.C. A phylogenomic study of DNA repair genes, proteins, and
599 processes. *Mutat Res* **435**, 171-213 (1999).

600 35. Cortesao, M. et al. *Bacillus subtilis* Spore Resistance to Simulated Mars Surface Conditions. *Front*
601 *Microbiol* **10**, 333 (2019).

602 36. Simpson, A.C. et al. Phylogenomics, phenotypic, and functional traits of five novel (Earth-
603 derived) bacterial species isolated from the International Space Station and their prevalence in
604 metagenomes. *Scientific Reports* **13**, 19207 (2023).

605 37. Lam, K.N., Cheng, J., Engel, K., Neufeld, J.D. & Charles, T.C. Current and future resources
606 for functional metagenomics. *Front Microbiol* **6**, 1196 (2015).

607 38. Biket, S. et al. Combining metagenomics, metatranscriptomics and viromics to explore novel
608 microbial interactions: towards a systems-level understanding of human microbiome.
609 *Computational and Structural Biotechnology Journal* **13**, 390-401 (2015).

610 39. Sagot, B. et al. Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine
611 amide is mediated by a new pathway conserved among bacteria. *Proc Natl Acad Sci U S A* **107**,
612 12652-7 (2010).

613 40. Coker, J.A. Recent advances in understanding extremophiles. *F1000Res* **8**(2019).

614 41. Brock, T.D. The value of basic research: discovery of *Thermus aquaticus* and other extreme
615 thermophiles. *Genetics* **146**, 1207-10 (1997).

616 42. Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R.C. & Arenas, J. Biofilms as
617 Promoters of Bacterial Antibiotic Resistance and Tolerance. *Antibiotics (Basel)* **10**(2020).

618 43. Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: a common cause of
619 persistent infections. *Science* **284**, 1318-22 (1999).

620 44. Donlan, R.M. & Costerton, J.W. Biofilms: survival mechanisms of clinically relevant
621 microorganisms. *Clin Microbiol Rev* **15**, 167-93 (2002).

622 45. da Silva, A.A., Galego, L. & Arraiano, C.M. New Perspectives on BolA: A Still Mysterious
623 Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and
624 Stress Survival. *Microorganisms* **11**, 632 (2023).

625 46. Vieira, H.L., Freire, P. & Arraiano, C.M. Effect of *Escherichia coli* morphogene bolA on
626 biofilms. *Appl Environ Microbiol* **70**, 5682-4 (2004).

627 47. Zhang, J. et al. Impact of disinfectant on bacterial antibiotic resistance transfer between
628 biofilm and tap water in a simulated distribution network. *Environ Pollut* **246**, 131-140 (2019).

629 48. Kvist, M., Hancock, V. & Klemm, P. Inactivation of efflux pumps abolishes bacterial biofilm
630 formation. *Appl Environ Microbiol* **74**, 7376-82 (2008).

631 49. Carabetta, V.J. et al. A complex of YlbF, YmcA and YaaT regulates sporulation, competence
632 and biofilm formation by accelerating the phosphorylation of Spo0A. *Molecular Microbiology* **88**,
633 283-300 (2013).

634 50. Tang, S.-K. et al. Cellular differentiation into hyphae and spores in halophilic archaea. *Nature
635 Communications* **14**, 1827 (2023).

636 51. Branda, S.S. et al. Genes involved in formation of structured multicellular communities by
637 *Bacillus subtilis*. *J Bacteriol* **186**, 3970-9 (2004).

638 52. Kearns, D.B., Chu, F., Branda, S.S., Kolter, R. & Losick, R. A master regulator for biofilm
639 formation by *Bacillus subtilis*. *Mol. Microbiol.* **55**, 739-749 (2005).

640 53. Chen, Y. et al. The structure, properties, synthesis method and antimicrobial mechanism of ε-
641 polylysine with the preservative effects for aquatic products. *Trends in Food Science & Technology*
642 **139**, 104131 (2023).

643 54. Breithaupt, D.E. Modern application of xanthophylls in animal feeding – a review. *Trends in
644 Food Science & Technology* **18**, 501-506 (2007).

645 55. Saha, R., Saha, N., Donofrio, R.S. & Bestervelt, L.L. Microbial siderophores: a mini review. *J
646 Basic Microbiol* **53**, 303-17 (2013).

647 56. Kloepper, J.W., Ryu, C.M. & Zhang, S. Induced Systemic Resistance and Promotion of Plant
648 Growth by *Bacillus* spp. *Phytopathology* **94**, 1259-66 (2004).

649 57. Stafsnes, M.H. et al. Isolation and characterization of marine pigmented bacteria from
650 Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing
651 properties. *J Microbiol* **48**, 16-23 (2010).

652 58. Zabolotneva, A.A., Shatova, O.P., Sadova, A.A., Shestopalov, A.V. & Roumiantsev, S.A. An
653 Overview of Alkylresorcinols Biological Properties and Effects. *J Nutr Metab* **2022**, 4667607
654 (2022).

655 59. Ongena, M. & Jacques, P. *Bacillus* lipopeptides: versatile weapons for plant disease biocontrol. *Trends Microbiol* **16**, 115-25 (2008).

656 60. Hough, D.W. & Danson, M.J. Extremozymes. *Curr Opin Chem Biol* **3**, 39-46 (1999).

657 61. Elleuche, S., Schröder, C., Sahm, K. & Antranikian, G. Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. *Curr Opin Biotechnol* **29**, 116-23 (2014).

658 62. Burkhardt, C. et al. Mining thermophiles for biotechnologically relevant enzymes: evaluating the potential of European and Caucasian hot springs. *Extremophiles* **28**, 5 (2023).

659 63. Schultz, J., Modolon, F., Peixoto, R.S. & Rosado, A.S. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. *Frontiers in Microbiology* **14** (2023).

660 64. Schultz, J., dos Santos, A., Patel, N. & Rosado, A.S. Life on the Edge: Bioprospecting Extremophiles for Astrobiology. *Journal of the Indian Institute of Science* **103**, 721-737 (2023).

661 65. McLaren, M.R., Willis, A.D. & Callahan, B.J. Consistent and correctable bias in metagenomic sequencing experiments. *eLife* **8**, e46923 (2019).

662 66. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Retrieved from <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. (2010).

663 67. Wick, R.R., Judd, L.M., Gorrie, C.L. & Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. *PLOS Computational Biology* **13**, e1005595 (2017).

664 68. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. *Nat Biotechnol* **37**, 540-546 (2019).

665 69. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res* **27**, 722-736 (2017).

666 70. Olm, M.R., Brown, C.T., Brooks, B. & Banfield, J.F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. *Isme J* **11**, 2864-2868 (2017).

667 71. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. & Tyson, G.W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* **25**, 1043-55 (2015).

668 72. Jain, C., Rodriguez, R.L., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* **9**, 5114 (2018).

669 73. Meier-Kolthoff, J.P., Carbasse, J.S., Peinado-Olarte, R.L. & Göker, M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. *Nucleic Acids Res* **50**, D801-d807 (2022).

670 74. Lee, M.D. GToTree: a user-friendly workflow for phylogenomics. *Bioinformatics* **35**, 4162-4164 (2019).

671 75. Minh, B.Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Molecular Biology and Evolution* **37**, 1530-1534 (2020).

672 76. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods* **14**, 587-589 (2017).

673 77. Hug, L.A. et al. A new view of the tree of life. *Nature Microbiology* **1**, 16048 (2016).

674 78. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Res* **49**, W293-w296 (2021).

675 79. Claus, D. A standardized Gram staining procedure. *World Journal of Microbiology and Biotechnology* **8**, 451-452 (1992).

702 80. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
703 *Bioinformatics* **34**, i884-i890 (2018).

704 81. Luan, T. et al. MetaCompass: Reference-guided Assembly of Metagenomes. *arXiv preprint*
705 *arXiv:2403.01578* (2024).

706 82. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-9 (2014).

707 83. Alcock, B.P. et al. CARD 2023: expanded curation, support for machine learning, and
708 resistome prediction at the Comprehensive Antibiotic Resistance Database. *Nucleic Acids*
709 *Research* **51**, D690-D699 (2022).

710 84. Alam, I. et al. KAUST Metagenomic Analysis Platform (KMAP), enabling access to massive
711 analytics of re-annotated metagenomic data. *Sci Rep* **11**, 11511 (2021).

712 85. Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation,
713 chemical structures and visualisation. *Nucleic Acids Research* (2023).

714 86. Terlouw, B.R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally
715 validated biosynthetic gene clusters. *Nucleic Acids Res* **51**, D603-d610 (2023).

716 87. Pal, S. et al. Unraveling radiation resistance strategies in two bacterial strains from the high
717 background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis.
718 *PLOS ONE* **19**, e0304810 (2024).

719

720

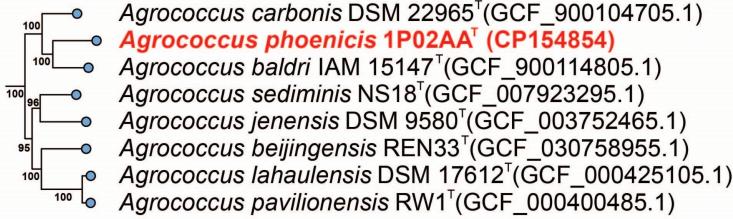
721 **Figure Legends**

722 **Figure 1.** Phylogenetic tree of non-spore-forming bacteria ($n=38$) spanning into nine genera from
723 Phoenix spacecraft mission. Novel species are highlighted in red, and their corresponding NCBI
724 accessions are provided. Bootstrap values (expressed as percentages) are indicated near the branches.

725 **Figure 2.** Phylogenetic tree of 15 novel strains of spore-forming bacteria from *Bacillaceae* family
726 isolated from Phoenix spacecraft mission. Novel species are highlighted in red, and their
727 corresponding NCBI accessions are provided. Bootstrap values (expressed as percentages) are
728 indicated near the branches.

729 **Figure 3.** Scanning electron microscopy of the novel species isolated from the Phoenix spacecraft
730 assembly cleanroom.

731 **Figure 4.** Metagenomic read mapping to novel isolates from NASA cleanrooms, highlighting
732 temporal and spatial dynamics. A. Spatial distribution of mapped reads across 26 novel species,
733 showing distinct signatures between spore-forming and non-spore-forming bacteria in different
734 NASA cleanroom locations. B. Box plots illustrating the breadth of coverage ($>1\%$) of consensus
735 genomes constructed from mapped reads aligned to 23 novel species (out of 26). Reads were
736 collected from cleanrooms at SAF JPL and PHSF KSC in 2016 (red) and PHSF in 2018 (blue).


737 **Figure 5.** Functional insights into novel species from NASA cleanrooms. A. Presence of radiation
738 resistance COGs (from Pal et al.⁸⁷) in the 26 novel species, revealing their genetic potential for
739 radiation resilience. B. Identification of Proteins of Interest (PoI) using KMAP with applications in
740 various industries, leveraging the unique functional capabilities of novel species from NASA
741 cleanrooms.

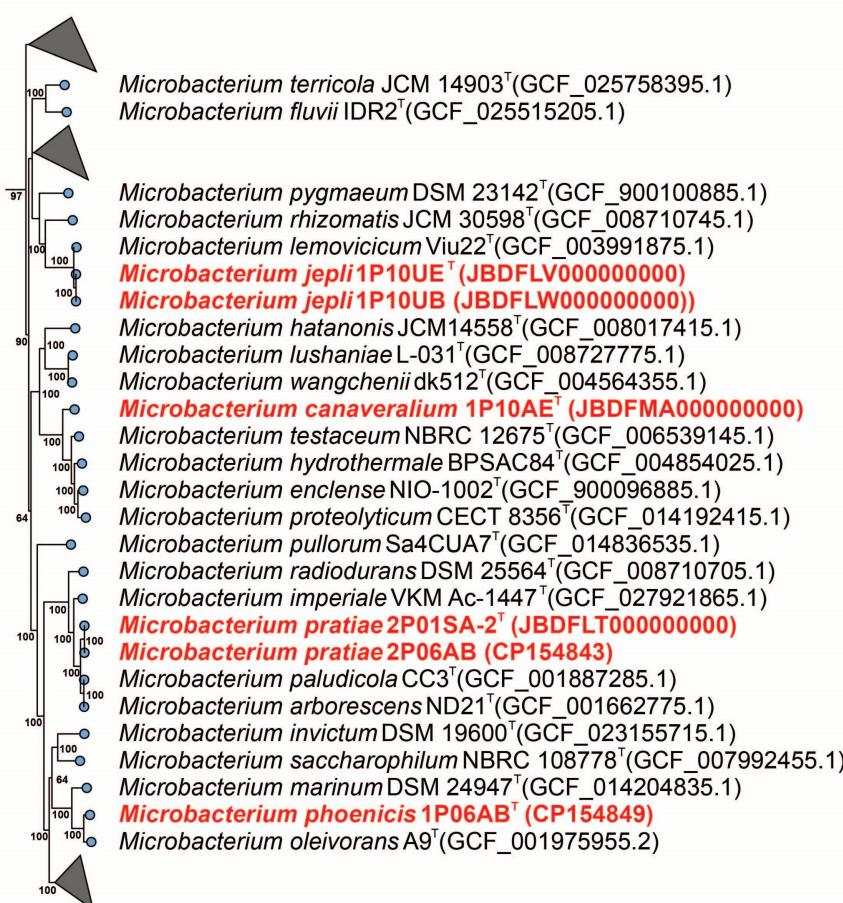
742 **Figure 6.** Comparative analysis of ϵ -Poly-L-lysine synthetase in novel species. A. ϵ -Poly-L-lysine
743 gene cluster comparison in *Epichloe festucae* (fungal producer), *Corynebacterium variabile* (bacterial
744 producer), and three novel species from our study (*Agrococcus phoenicis*, *Microbacterium canaveralium*,
745 *Microbacterium jepli*) and *Leifsonia virtsii* (isolated from ISS) show conserved gene cluster architecture.
746 B. Protein sequence alignment of ϵ -Poly-L-lysine synthetase enzymes from these organisms exhibits
747 conserved domains, including NRPS adenylation (A), thiolation (T), transmembrane (TM), and C-
748 terminal tandem domains (C1, C2, C3).

749

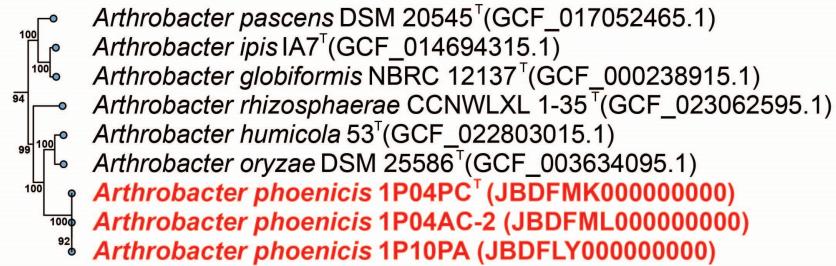
A. Agrococcus

Tree scale: 0.1

C. Brevundimonas


Tree scale: 1

E. Gerogenia


Tree scale: 0.1

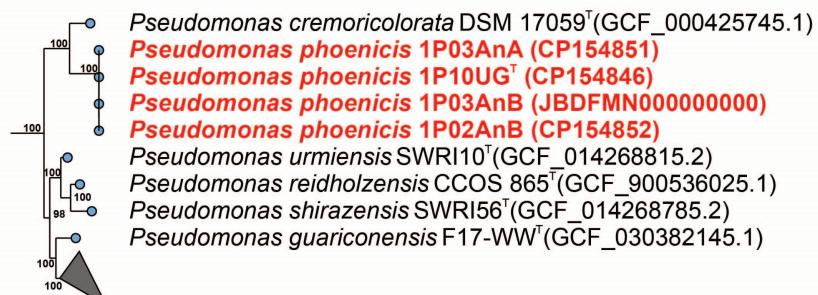
G. Microbacterium

Tree scale: 1

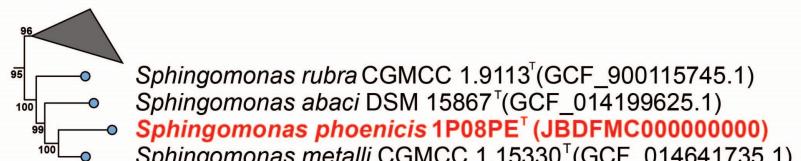
B. Arthrobacter

Tree scale: 0.1

D. Curtobacterium


Tree scale: 1

F. Noviherbspirillum


Tree scale: 1

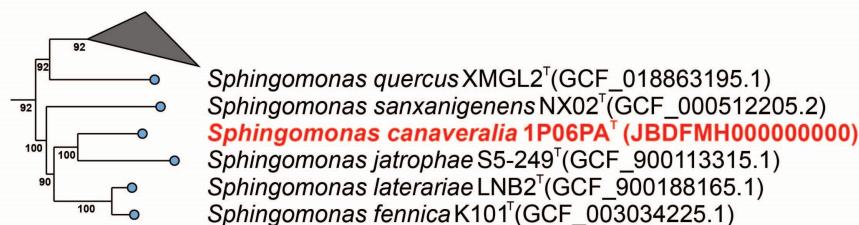
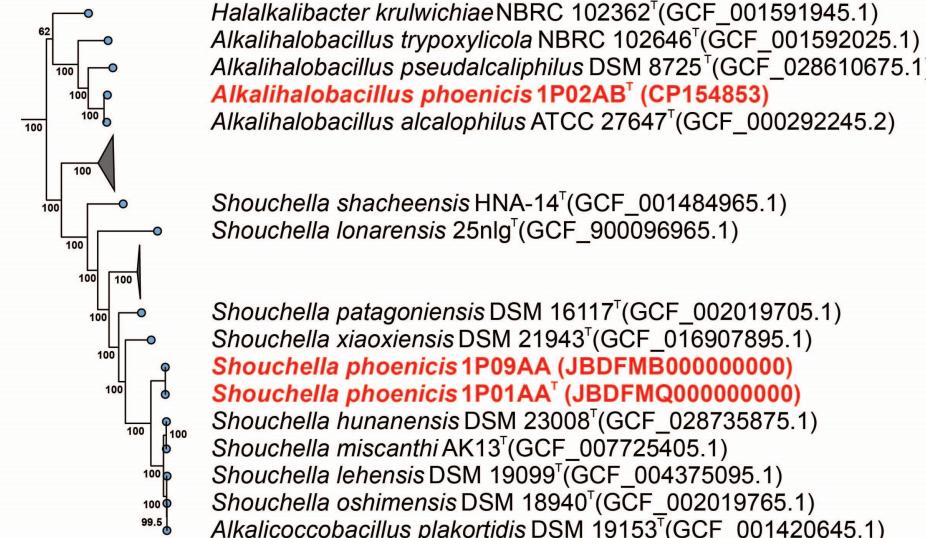
H. Pseudomonas

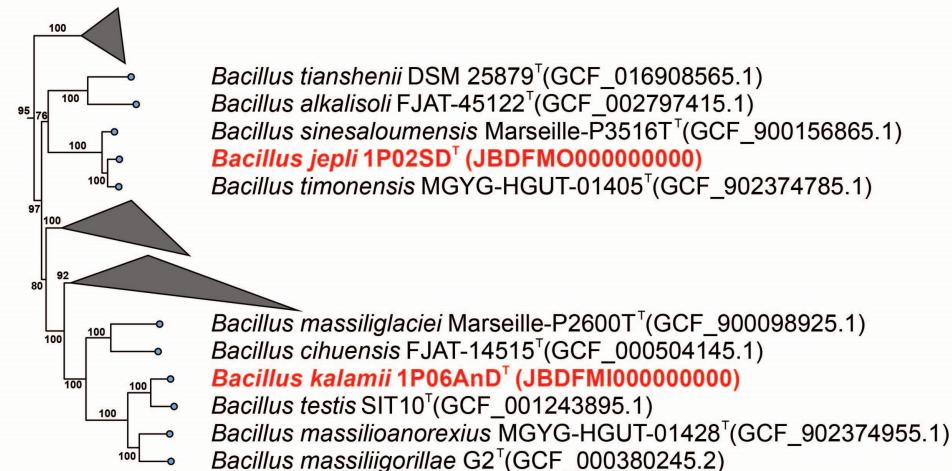
Tree scale: 0.1

I. Sphingomonas

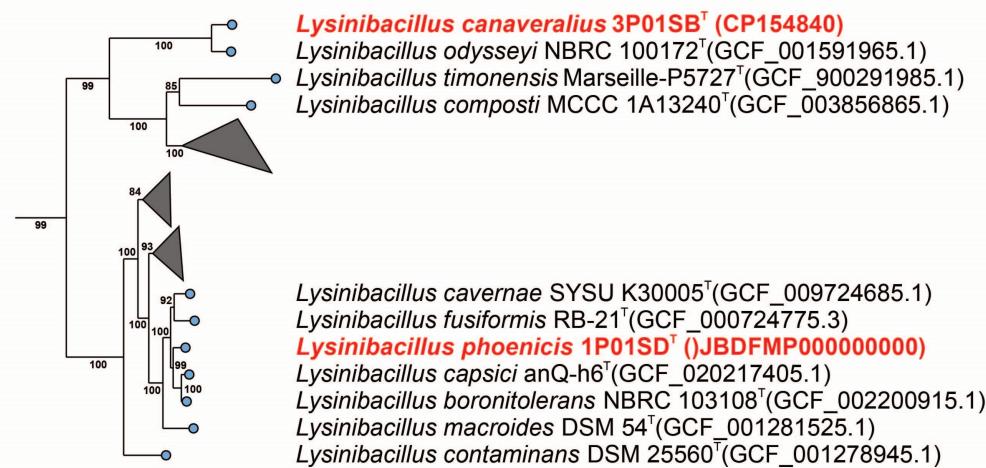
Tree scale: 0.1

Tree scale: 0.1

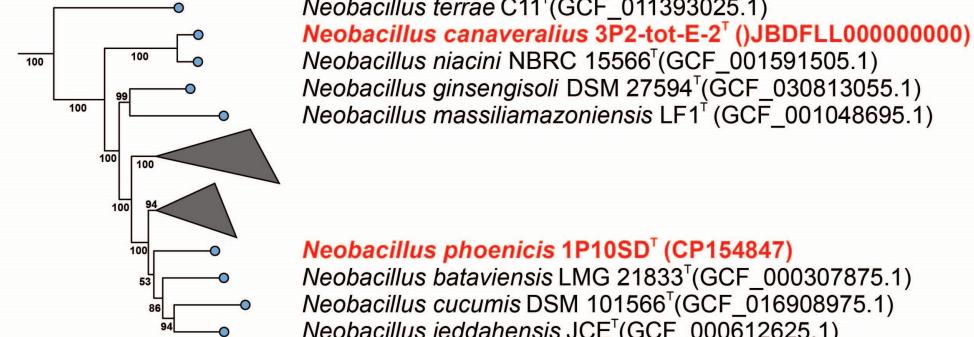




Figure 2

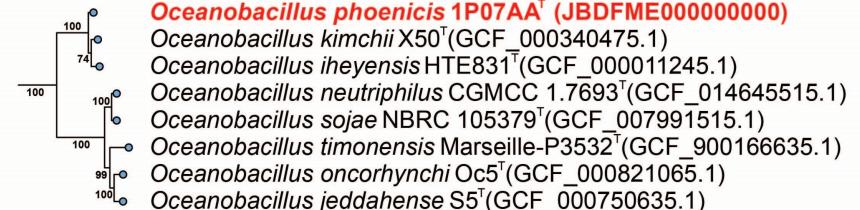
A. Alkalihalobacillus/ Shouchella


Tree scale: 1

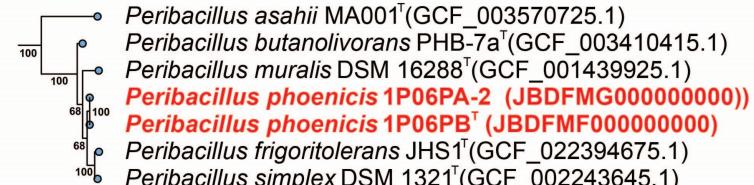
B. Bacillus


Tree scale: 1

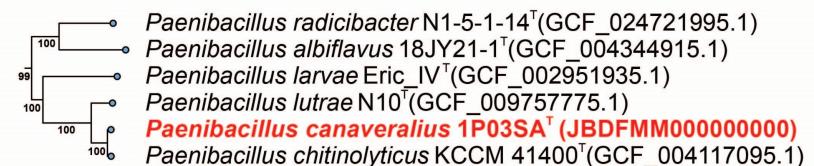
C. Lysinibacillus


Tree scale: 0.1

D. Neobacillus


Tree scale: 0.1

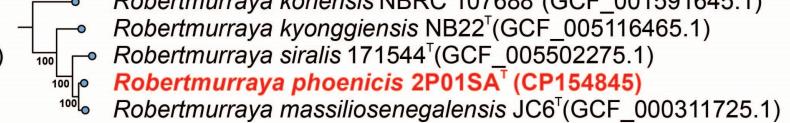
E. Oceanobacillus


Tree scale: 1

F. Peribacillus

Tree scale: 1

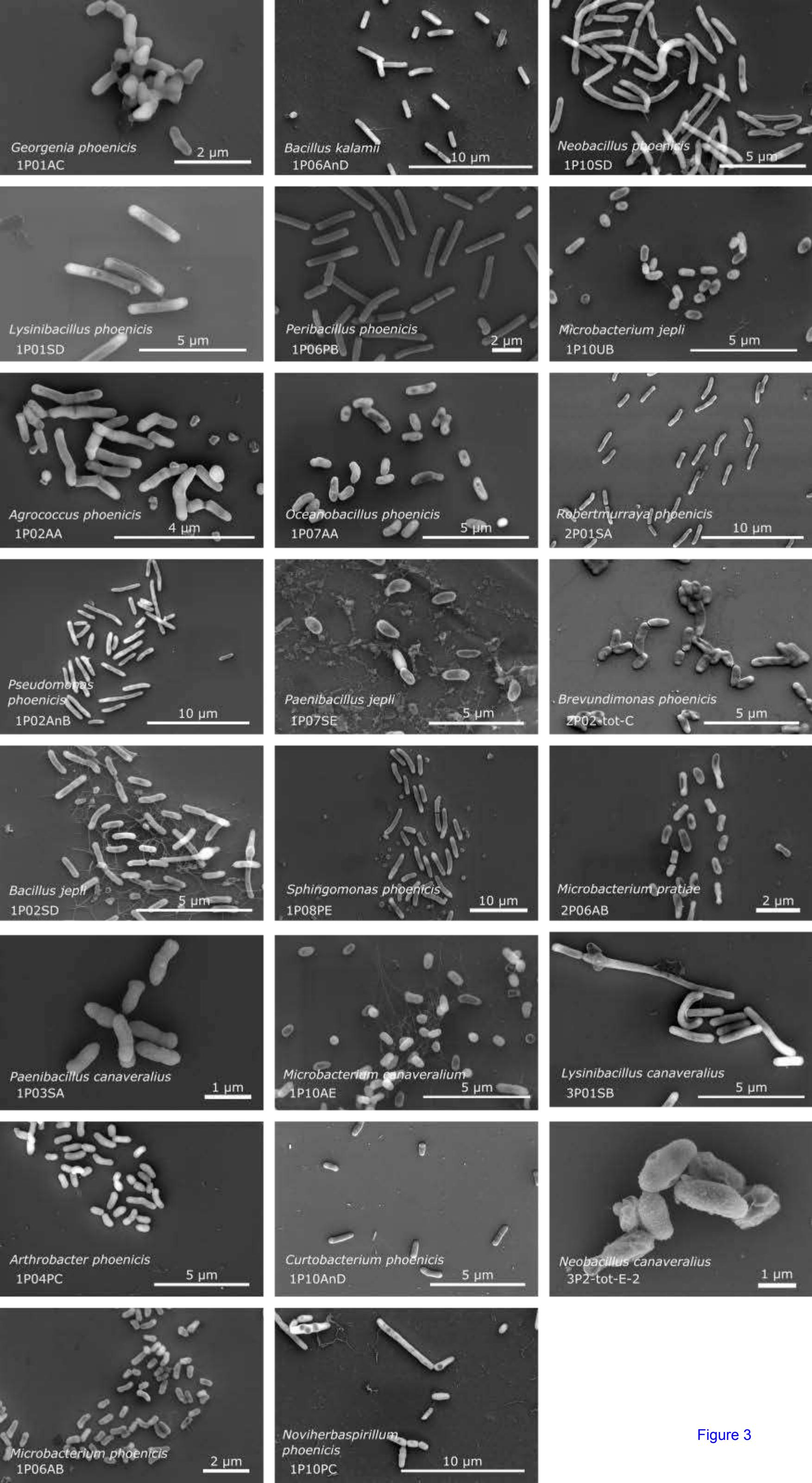
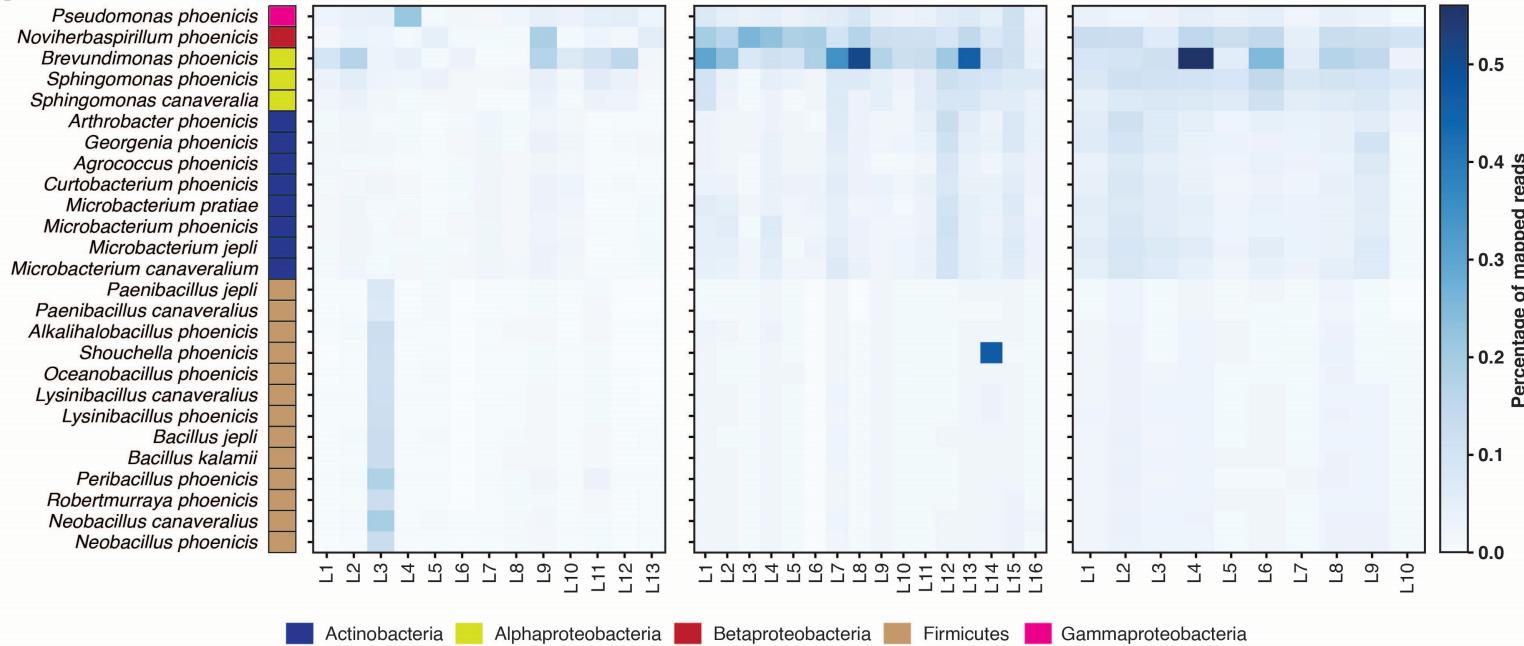
G. Paenibacillus


Tree scale: 1

Tree scale: 1

H. Robertmurraya

Tree scale: 1

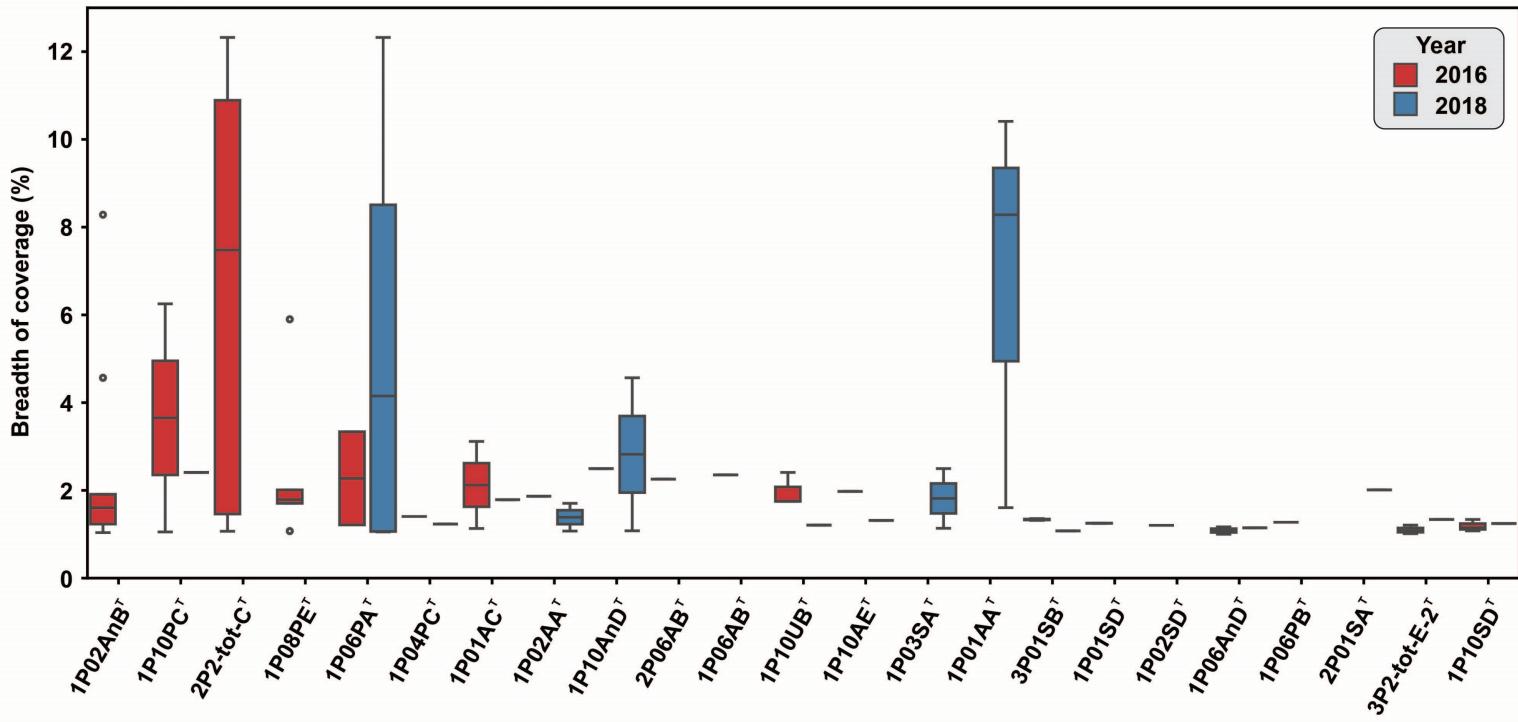
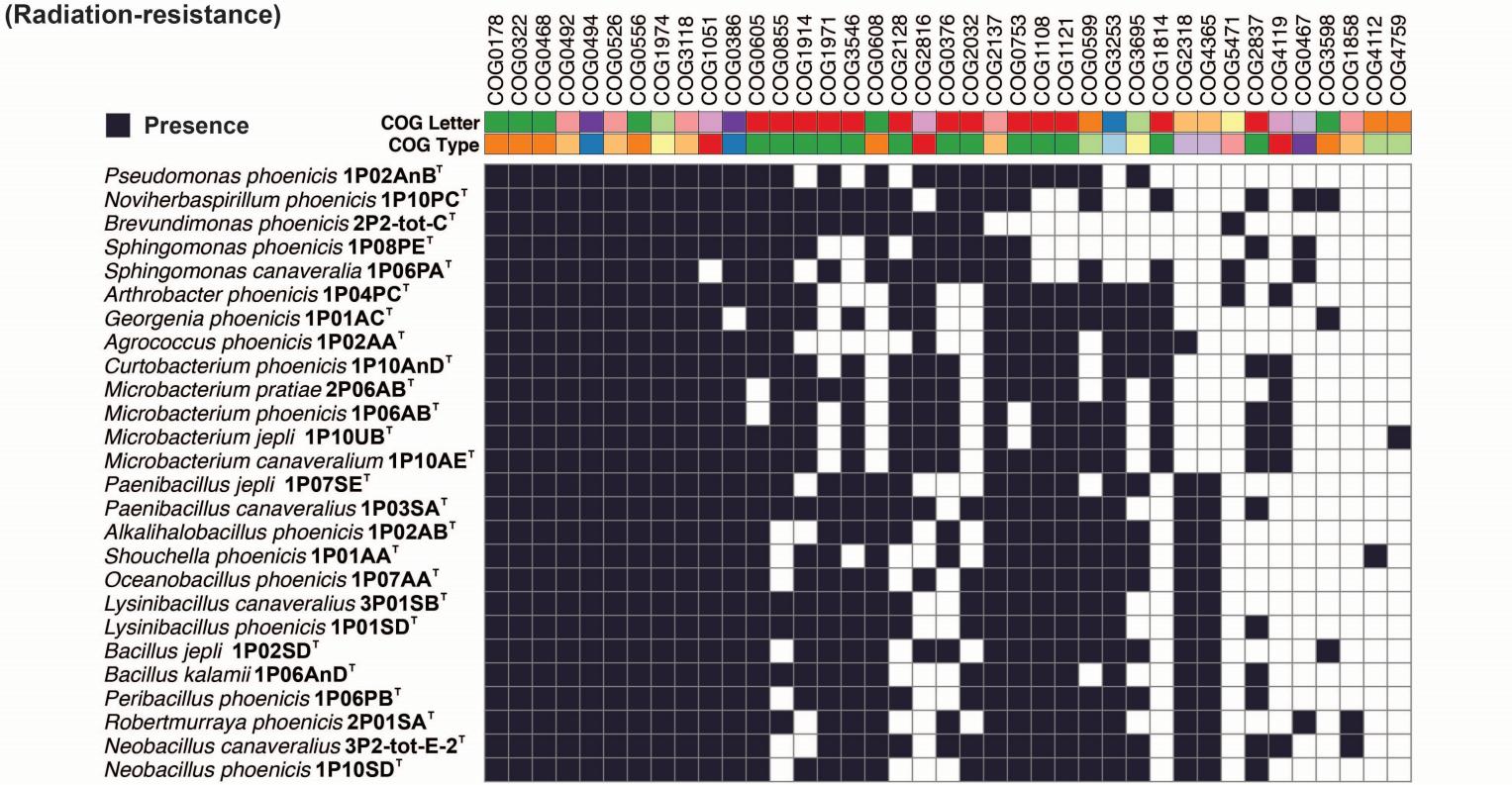

Figure 3

Figure 4


A

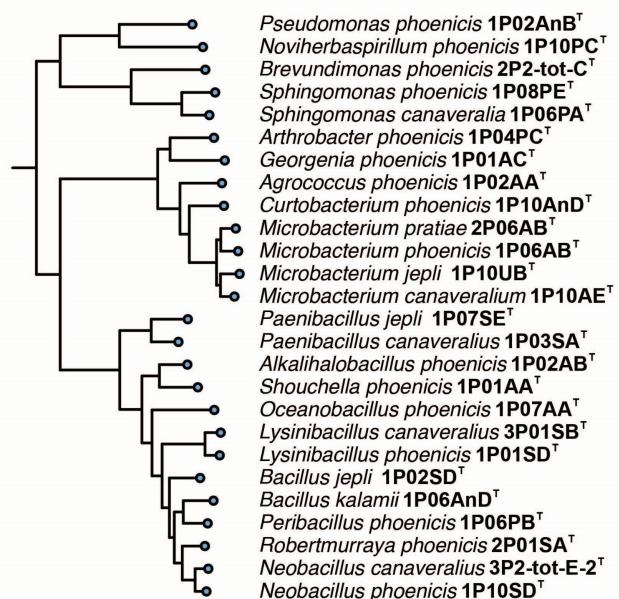
B

A (Radiation-resistance)

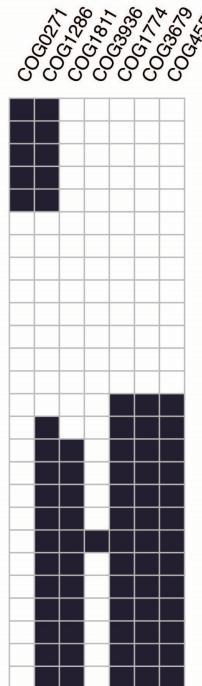
COG Type

■ Coenzyme transport and metabolism	■ Inorganic ion transport and metabolism	■ Posttranslational modification, protein turnover, chaperones
■ Defense mechanisms	■ Mobilome: prophages, transposons	■ Replication, recombination and repair
■ General function prediction only	■ Nucleotide transport and metabolism	■ Signal transduction mechanisms

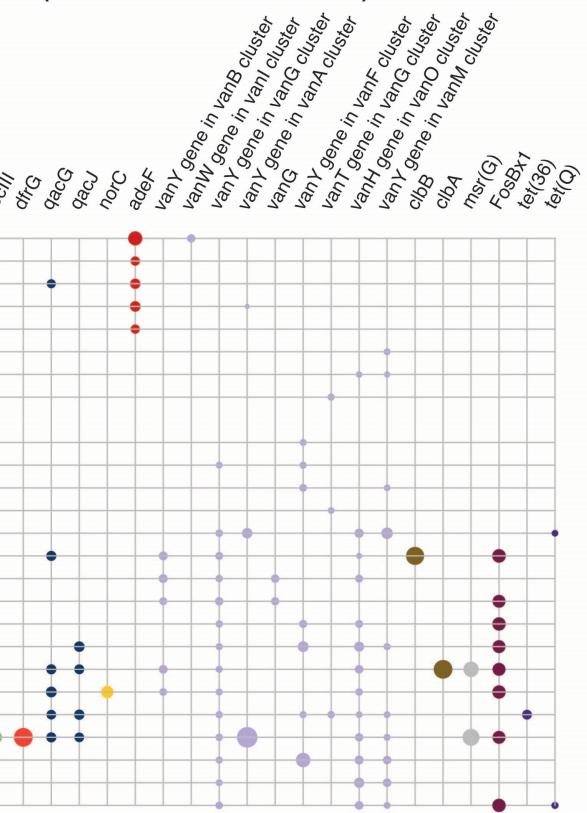
■ Secondary metabolites biosynthesis, transport and catabolism
■ Transcription


COG Letter

■ F	■ L	■ Q	■ V
■ H	■ O	■ R	■ X
■ K	■ P	■ T	


Presence

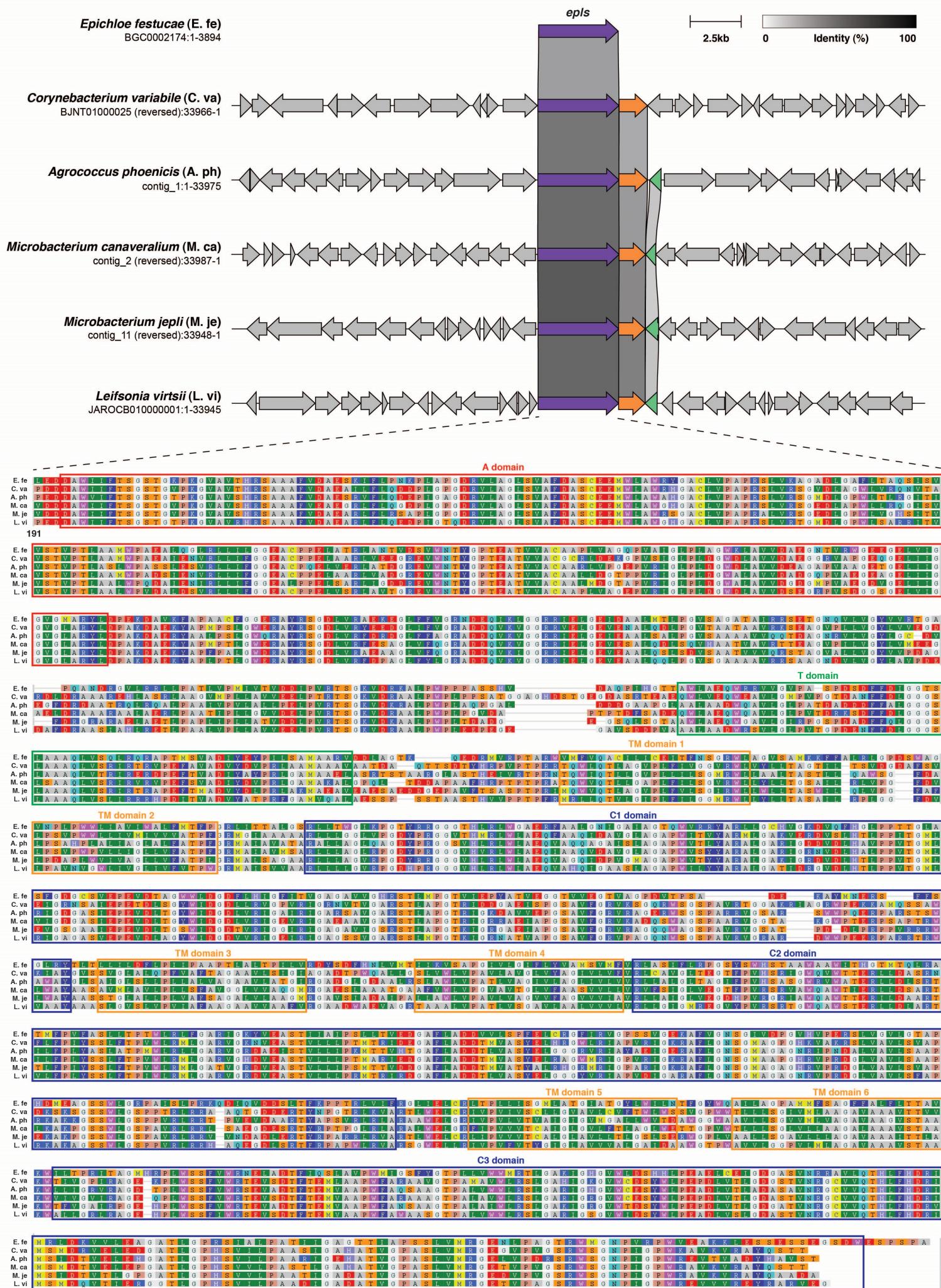
Tree scale: 1


100 50 25
% Identity

B (Biofilm)

C (Antimicrobial-resistance)

Drug class


■ cephalosporin; penem	■ fluoroquinolone; disinfecting agents and antiseptics	■ macrolide; streptogramin
■ diaminopyrimidine antibiotic	■ fluoroquinolone; tetracycline	■ phosphonic acid antibiotic
■ disinfecting agents and antiseptics	■ glycopeptide antibiotic	■ tetracycline

■ lincosamide; streptogramin; streptogramin A; oxazolidinone; phenicol; pleuromutilin

Figure 5

Figure 6

Table 1. Whole genome, marker genes sequence similarities, and dDDH values between novel bacterial species and nearest neighbor from the Phoenix spacecraft mission.

Phoenix novel Species	Phoenix strain #	GenBank accession # of 16S rRNA gene of Phoenix isolates	16S rRNA gene characteristics of the closest species				WGS characteristics of the closest species					
			Name	Accession #	Percent similarities	GenBank accession # of WGS of Phoenix strains	Name	Accession #	ANI (%)	AAI (%)	dDDH (%)	gyrB (%)
<i>Shouchella phoenicis</i>	1P01AA	EU977642	<i>Alkalihalobacillus miscanthi</i>	NR_180786.1	99.09	JBDFMQ000000000	<i>Shouchella humanensis</i>	GCA_028735875.1	80.5	79.9	20.4	82.8
<i>Georgenia phoenicis</i>	1P01AC	EU977812	<i>Georgenia satyanarayanae</i>	NR_117051.1	99.30	CP154855	" <i>Oceanitalea stevensii</i> "	GCF_014837105.1	90.0	88.2	35.8	N/A
<i>Lysinibacillus phoenicis</i>	1P01SD	PP475405	<i>Lysinibacillus fusiformis</i>	NR_042072.1	98.62	JBDFMP000000000	<i>Lysinibacillus capsici</i>	GCF_020217405.1	87.0	90.0	32.3	91.0
<i>Agrococcus phoenicis</i>	1P02AA	PP475406	<i>Agrococcus terreus</i>	NR_116650.1	98.55	CP154854	<i>Agrococcus carbonis</i>	GCF_900104705.1	86.0	80.0	26.7	90.5
<i>Alkalihalobacillus phoenicis</i>	1P02AB	EU977645	<i>Alkalihalobacillus alcalophilus</i>	NR_036889.1	99.53	CP154853	<i>Alkalihalobacillus alcalophilus</i>	GCF_004802515.1	92.0	93.4	45.1	96.3
<i>Pseudomonas phoenicis</i>	1P02AnB	PP475407	<i>Pseudomonas juntendi</i>	NR_180497.1	98.96	CP154852	<i>Pseudomonas crenicolorata</i>	GCF_000425745.1	85.6	85.1	27.1	87.2
<i>Bacillus jepli</i>	1P02SD	EU977769	<i>Bacillus timonensis</i>	NR_133024.1	99.39	JBDFMO000000000	" <i>Bacillus timonensis</i> "	GCF_902374785.1	83.0	85.3	26.7	87.3
<i>Paenibacillus canaveralius</i>	1P03SA	EU977770	<i>Paenibacillus chitinolyticus</i>	NR_112053.1	99.09	JBDFMM000000000	<i>Paenibacillus chitinolyticus</i>	GCF_004117095.1	90.1	91.9	38.7	94.8
<i>Arthrobacter phoenicis</i>	1P04PC	EU977744	<i>Pseudarthrobacter phenanthrenivorans</i>	NR_074770.2	98.23	JBDFMK000000000	<i>Arthrobacter oryzae</i>	GCF_003634095.1	83.0	80.2	24.6	N/A
<i>Microbacterium phoenicis</i>	1P06AB	EU977652	<i>Microbacterium oleivorans</i>	NR_042262.1	99.80	CP154849	<i>Microbacterium paludicola</i>	GCF_00197595.2	86.0	88.3	29.4	91.8
<i>Bacillus kalamii</i>	1P06AnD	PP475408	<i>Bacillus testis</i>	NR_144719.1	99.21	JBDFMI000000000	" <i>Bacillus testis</i> "	GCF_001243895.1	80.0	76.9	21.0	82.0
<i>Sphingomonas canaveralia</i>	1P06PA	EU977746	<i>Sphingomonas prati</i>	NR_152092.1	96.84	JBDFMH000000000	<i>Sphingomonas jatropheae</i>	GCF_900113315.1	79.7	66.8	20.2	78.9
<i>Peribacillus phoenicis</i>	1P06PB	EU977747	<i>Peribacillus frigoritolerans</i>	NR_115064.1	99.87	JBDFMF000000000	<i>Peribacillus frigoritolerans</i>	GCF_022394675.1	93.5	94.3	54.4	97.8
<i>Oceanobacillus phoenicis</i>	1P07AA	EU977643	<i>Oceanobacillus thevenensis</i>	NR_075027.2	98.98	JBDFME000000000	<i>Oceanobacillus kimchii</i>	GCF_000340475.1	90.4	92.3	40.3	93.2
<i>Paenibacillus jepli</i>	1P07SE	PP475409	<i>Paenibacillus hispanicus</i>	NR_152687.1	98.64	JBDFMD000000000	<i>Paenibacillus daejeonensis</i>	GCF_000378385.1	81.0	82.0	22.4	84.7
<i>Sphingomonas phoenicis</i>	1P08PE	EU977752	<i>Sphingomonas roseiflava</i>	NR_117716.1	97.29	JBDFMC000000000	<i>Sphingomonas metalli</i>	GCF_014641735.1	83.0	77.4	23.7	N/A
<i>Microbacterium canaveralium</i>	1P10AE	EU977655	<i>Microbacterium timonense</i>	NR_179660.1	98.36	JBDFMA000000000	<i>Microbacterium hydrothermale</i>	GCF_004854025.1	84.0	80.8	25.4	79.7
<i>Curtobacterium phoenicis</i>	1P10AnD	EU977722	<i>Curtobacterium pusillum</i>	NR_042315.1	99.47	JBDFLZ000000000	<i>Curtobacterium luteum</i>	GCF_014646995.1	89.0	90.1	33.4	80.0
<i>Noviherbaspirillum phoenicis</i>	1P10PC	EU977754	<i>Noviherbaspirillum aurantiacum</i>	NR_118040.1	99.67	JBDFLX000000000	<i>Noviherbaspirillum soli</i>	GCF_015352955.1	93.6	94.2	52.4	97.9
<i>Neobacillus phoenicis</i>	1P10SD	EU977785	<i>Neobacillus bataviensis</i>	NR_036766.1	98.60	CP154847	" <i>Bacillus salipaludis</i> "	GCF_004358205.1	79.0	73.2	20.8	78.3
<i>Microbacterium jepli</i>	1P10UB	EU977807	<i>Microbacterium timonense</i>	NR_179660.1	97.63	JBDFLW000000000	<i>Microbacterium lemovicum</i>	GCF_003991875.1	93.0	94.2	47.5	95.4
<i>Robertmurraya phoenicis</i>	2P01SA	PP475410	<i>Robertmurraya massiliosenegalensis</i>	NR_125590.1	99.12	CP154845	<i>Robertmurraya massiliosenegalensis</i>	GCF_000311725.1	90.8	92.2	41.8	92.0
<i>Microbacterium pratiae</i>	2P06AB	EU977682	<i>Microbacterium arborescens</i>	NR_029265.1	99.93	CP154843	<i>Microbacterium oleivorans</i>	GCF_001887285.1	91.0	93.2	39.2	N/A
<i>Brevundimonas phoenicis</i>	2P2-tot-C	PP475411	<i>Brevundimonas diminuta</i>	NR_040805.1	99.17	JBDFLN000000000	<i>Brevundimonas diminuta</i>	GCF_900445995.1	93.3	92.0	47.0	97.0
<i>Lysinibacillus canaveralius</i>	3P01SB	EU977788	<i>Lysinibacillus odyssei</i>	NR_025258.1	99.47	CP154840	<i>Lysinibacillus odyssei</i>	GCF_001591965.1	84.0	87.6	28.1	88.2
<i>Neobacillus canaveralius</i>	3P2-tot-E-2	PP475412	<i>Neobacillus niaciini</i>	NR_024695.1	99.34	JBDFLL000000000	<i>Neobacillus niaciini</i>	GCF_001591505.1	87.0	87.8	33.4	90.6

Table 2. Species epithet and etymology of the novel species described during this study.

Species name	Strain number	Cell characteristics	Spore formation	Gram stain characteristics	Species Etymology
<i>Shouchella phoenicis</i>	1P01AA	Round-shaped; Cells are aerobic, motile, and rod-shaped. Colony on TSA medium is beige, circular, entire margin, smooth, non-transparent, and raised.	Yes	Gram-positive	<i>Shouchella phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Georgenia phoenicis</i>	1P01AC	Round-shaped; Cells are aerobic, motile, short rods ($0.5 \mu\text{m} \pm 0.2 \mu\text{m}$ in width and $0.5 \mu\text{m}$ in length). Colonies on R2A medium are light yellow, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Georgenia phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Lysinibacillus phoenicis</i>	1P01SD	Rod-shaped; Cells are aerobic, motile, $2.5 \mu\text{m} \pm 0.1 \mu\text{m}$ long and $0.5 \mu\text{m}$ in width. Colonies on R2A medium are white, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Lysinibacillus phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Agrococcus phoenicis</i>	1P02AA	Round-shaped; Cells are aerobic, non-motile, short rods ($0.3 \mu\text{m}$ in width and $0.9 \pm 0.4 \mu\text{m}$ in length). Colonies on R2A medium are light yellow, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Agrococcus phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Alkalihalobacillus phoenicis</i>	1P02AB	Rod-shaped cells, aerobic, and endospore forming and motile. Colony on TSA medium is beige to transparent color, circular, entire margin, smooth, and raised.	Yes	Gram-positive	<i>Alkalihalobacillus phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Pseudomonas phoenicis</i>	1P02AnB	Round-shaped; Cells are aerobic, motile, with $1.8 \pm 0.5 \mu\text{m}$ in length and $0.5 \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light yellow, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Pseudomonas phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Bacillus jepli</i>	1P02SD	Round-shaped; Cells are aerobic, motile, with $1.3 \pm 0.5 \mu\text{m}$ in length and $0.4 \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Bacillus jepli</i> (jep'li. N.L. gen. n. <i>jepli</i> , arbitrary name derived from the abbreviation JPL, meaning of or pertaining to the NASA's Jet Propulsion Laboratory, where the type strain of the species was isolated).
<i>Paenibacillus canaveralius</i>	1P03SA	Rod-shaped; Cells are aerobic, motile, short rods ($0.4 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $0.9 \pm 0.2 \mu\text{m}$ in length). Colonies on R2A medium are white, irregular and opaque after incubation at 25°C for 48 h.	Yes	Gram-positive	<i>Paenibacillus canaveralius</i> (ca.na ve.ra'li.us. N.L. masc. adj. <i>canaveralius</i> pertaining to (Cape) Canaveral, isolated from walls and floors of the Kennedy Space Center at Cape Canaveral).
<i>Arthrobacter phoenicis</i>	1P04PC	Rod-shaped; Cells are aerobic, non-motile, short rods ($0.5 \mu\text{m}$ in width and $1.0 \pm 0.2 \mu\text{m}$ in length). Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Arthrobacter phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Microbacterium phoenicis</i>	1P06AB	Round-shaped; Cells are aerobic, non-motile, short rods ($0.2 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $0.5 \pm 0.2 \mu\text{m}$ in length). Colonies on R2A medium are dark beige, circular and opaque after incubation at 25°C for 48 h.	No	Gram-positive	<i>Microbacterium phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Bacillus kalamii</i>	1P06AnD	Rod-shaped; Cells are aerobic, motile, with $2.1 \pm 0.7 \mu\text{m}$ in length and $0.6 \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Bacillus kalamii</i> (ka.lam'i.i. N.L. gen. n. <i>kalamii</i> referring to Abdul Kalam, a well-known scientist who advanced space research in India).
<i>Sphingomonas canaveralia</i>	1P06PA	Cells are aerobic, non-motile, short rods or ovoid. Colonies on R2A medium are bright yellow, small, circular, and entire margin, smooth, and raised after incubation at 25°C for 2 to 7 days.	No	Gram-negative	<i>Sphingomonas canaveralia</i> (ca.na ve.ra'li.a. N.L. fem. adj. <i>canaveralia</i> pertaining to (Cape) Canaveral, isolated from walls and floors of the Kennedy Space Center at Cape Canaveral).
<i>Peribacillus phoenicis</i>	1P06PB	Rod-shaped; Cells are aerobic, motile, with $3.0 \pm 1.1 \mu\text{m}$ in length and $0.6 \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Peribacillus phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Oceanobacillus phoenicis</i>	1P07AA	Rod-shaped; Cells are aerobic, motile, short rods ($0.4 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $0.9 \pm 0.3 \mu\text{m}$ in length). Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-positive	<i>Oceanobacillus phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).

Species name	Strain number	Cell characteristics	Spore formation	Gram stain characteristics	Species Etymology
<i>Paenibacillus jepli</i>	1P07SE	Rod-shaped; Cells are aerobic, motile, $1.4 \pm 0.3 \mu\text{m}$ in length and $0.7 \mu\text{m} \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Paenibacillus jepli</i> (jep'li. N.L. gen. n. <i>jepli</i> , arbitrary name derived from the abbreviation JPL, meaning of or pertaining to the NASA's Jet Propulsion Laboratory, where the type strain of the species was isolated).
<i>Sphingomonas phoenicis</i>	1P08PE	Rod-shaped; Cells are aerobic, non-motile, $1.6 \pm 0.5 \mu\text{m}$ in length and $0.5 \mu\text{m} \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are orangeish, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Sphingomonas phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Microbacterium canaverarium</i>	1P10AE	Round-shaped; Cells are aerobic, non-motile, short rods ($0.6 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $1.1 \pm 0.4 \mu\text{m}$ in length). Colonies on R2A medium are yellow, circular and opaque after incubation at 25°C for 48 h.	No	Gram-positive	<i>Microbacterium canaverarium</i> (ca.na ve.ra'li.um. N.L. neut. adj. <i>canaverarium</i> pertaining to (Cape) Canaveral, isolated from walls and floors of the Kennedy Space Center at Cape Canaveral).
<i>Curtobacterium phoenicis</i>	1P10AnD	Round-shaped; Cells are aerobic, motile, short rods ($0.4 \mu\text{m}$ in width and $1.0 \pm 0.2 \mu\text{m}$ in length). Colonies on R2A medium are yellow, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Curtobacterium phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Noviherbaspirillum phoenicis</i>	1P10PC	Round-shaped; Cells are aerobic, motile, $1.4 \pm 0.6 \mu\text{m}$ in length and $0.6 \mu\text{m} \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Noviherbaspirillum phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Neobacillus phoenicis</i>	1P10SD	Rod-shaped; Cells are aerobic, motile, $1.8 \pm 1.0 \mu\text{m}$ in length and $1.1 \mu\text{m} \pm 1.1 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-positive	<i>Neobacillus phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Microbacterium jepli</i>	1P10UB	Round-shaped; Cells are aerobic, non-motile, short rods ($0.4 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $0.7 \pm 0.2 \mu\text{m}$ in length). Colonies on R2A medium are white, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Microbacterium jepli</i> (jep'li. N.L. gen. n. <i>jepli</i> , arbitrary name derived from the abbreviation JPL, meaning of or pertaining to the NASA's Jet Propulsion Laboratory, where the type strain of the species was isolated).
<i>Robertmurraya phoenicis</i>	2P01SA	Rod-shaped; Cells are aerobic, motile, $2.1 \mu\text{m} \pm 0.5 \mu\text{m}$ long and $0.5 \mu\text{m} \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are light white, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-positive	<i>Robertmurraya phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Microbacterium pratiae</i>	2P06AB	Round-shaped; Cells are aerobic, non-motile, short rods ($0.4 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $1.0 \pm 0.4 \mu\text{m}$ in length). Colonies on R2A medium are dark beige, circular and opaque after incubation at 25°C for 48 h.	No	Gram-positive	<i>Microbacterium pratiae</i> (prati'ae. N.L. gen. fem. n. <i>pratiae</i> referring to Dr. Lisa Pratt, a biogeochemist and astrobiologist who previously served as the Planetary Protection Officer for NASA).
<i>Brevundimonas phoenicis</i>	2P2-tot-C	Round-shaped; Cells are aerobic, motile, short rods ($0.6 \mu\text{m} \pm 0.1 \mu\text{m}$ in width and $1.2 \pm 0.4 \mu\text{m}$ in length). Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	No	Gram-negative	<i>Brevundimonas phoenicis</i> (phoe'ni.cis. L. gen. n. <i>phoenicis</i> of phoenix, isolated from the surface of the clean room where the Mars Phoenix spacecraft was assembled).
<i>Lysinibacillus canaverarius</i>	3P01SB	Rod-shaped; Cells are aerobic, motile, $1.7 \mu\text{m} \pm 0.7 \mu\text{m}$ long and $0.4 \mu\text{m} \pm 0.1 \mu\text{m}$ in width. Colonies on R2A medium are white, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Lysinibacillus canaverarius</i> (ca.na ve.ra'li.us. N.L. masc. adj. <i>canaverarius</i> pertaining to (Cape) Canaveral, isolated from walls and floors of the Kennedy Space Center at Cape Canaveral).
<i>Neobacillus canaverarius</i>	3P2-tot-E-2	Rod-shaped; Cells are aerobic, motile, $2.3 \pm 1.0 \mu\text{m}$ in length and $1.0 \mu\text{m} \pm 0.5 \mu\text{m}$ in width. Colonies on R2A medium are light beige, circular and opaque after incubation at 25°C for 48 h.	Yes	Gram-negative	<i>Neobacillus canaverarius</i> (ca.na ve.ra'li.us. N.L. masc. adj. <i>canaverarius</i> pertaining to (Cape) Canaveral, isolated from walls and floors of the Kennedy Space Center at Cape Canaveral).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SupplementarymaterialPhoenixManuscript.pdf](#)
- [zT.SupplementaryTablesPhoenixManuscript.xlsx](#)