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Supplementary Figures
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Supplementary Figure 1: Accuracy of SEISMIC-RNA’s clustering algorithm.
Datasets were simulated with one to four “true” alternative structure(s) in three
mixing proportions and with 1,000 to 1,000,000 reads (all full-length). For each
number of reads, 12 unique 280-nt RNAs were simulated and processed with
SEISMIC-RNA. For simulations in which the correct number of clusters was de-
tected, (a) the Pearson correlation of the true DMS reactivities versus those cal-
culated by the clustering algorithm and (b) the Euclidean distance between the
vector of true cluster proportions and those calculated by the clustering algorithm
is shown as one point; medians are shown as gray bars. (c) and (d) Same as (a)
and (b), respectively, but reads were simulated with random 5’ and 3’ ends rather
than fully covering the RNA.
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Position in 2,924 nt segment of SARS-CoV-2 RNA
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Supplementary Figure 2: Mutational profile of each ASO target section upon
adding the corresponding group of ASOs to the 2,924 nt segment of SARS-
CoV-2 genomic RNA. Positions are colored based on the RNA sequence.
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Position in 2,924 nt segment of SARS-CoV-2 RNA
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Supplementary Figure 3: Mutational profiles of the FSE section upon adding
each group of ASOs to the 2,924 nt segment of SARS-CoV-2 genomic RNA.
Positions are colored based on the RNA sequence.
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Supplementary Figure 4: Improved prediction of long-range stems in SARS-
CoV-2 using clustered DMS reactivities. (a)Model of the two inner stems of the
FSE-arch [52], denoted long stems (LS) 1 and 2a/b. (b) Mutational profiles of the
ensemble average and of clusters 1 and 2 on both sides of the FSE-arch. (c) For
each mutational profile (as well as a purely thermodynamic prediction with no
DMS reactivities), the fraction of predicted structures in which each long stem was
predicted perfectly (i.e. all base pairs were present). The numbers of predicted
structures (N) are indicated.
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Supplementary Figure 5: Reproducibility of clustering the SARS-CoV-2 FSE
after adding ASOs. (a) Heatmaps of the Pearson correlation coefficient (PCC)
between each pair of clusters from two replicates of the 1,799 nt segment of
SARS-CoV-2. Each heatmap corresponds to one order (i.e. number of clusters).
Clusters are marked with red circles if at least one DMS reactivity exceeded 0.3.
(b) Same as (a) plus Anti-AS1 ASO. (c) Same as (a) plus Anti-PS2-overlap ASO.
(d) Same as (a) plus Anti-AS1 and Anti-PS2-overlap ASOs.
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Supplementary Figure 6: Computational screen of long-range base pairing
near the FSE in 60 coronaviruses. For each 2,000 nt segment of each coron-
aviral genome, the fraction of predicted structures in which each position outside
the range 101-250 base-paired with any position in the range 101-250 is indicated.
Genomes are clustered by their base-pairing frequencies. For each genome, the
accession number for NCBI [54] is indicated.
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Supplementary Figure 7: Experimental screen of long-range base pairing
near the FSE in 10 coronaviruses. (a) Taxonomy of the ten coronavirus
species/strains in this screen; the lowest-level group for each virus is bolded. Bat-
CoV-1A: bat coronavirus 1A (NC_010437.1), TGEV: transmissible gastroenteritis
virus (NC_038861.1), HCoV-OC43: human coronavirus OC43 (NC_006213.1),
MHV-A59: murine hepatitis virus strain A59 (NC_048217.1), Bat-CoV-BM48-31:
bat coronavirus BM48-31 (NC_014470.1), SARS-CoV-1: severe acute respira-
tory syndrome coronavirus 1 (NC_004718.3), SARS-CoV-2: severe acute respira-
tory syndrome coronavirus 2 (NC_045512.2), MERS-CoV: Middle East respiratory
syndrome coronavirus (NC_019843.3), IBV-Beaudette: avian infectious bronchi-
tis virus strain Beaudette (NC_001451.1), Common-Moorhen-CoV-HKU21: com-
mon moorhen coronavirus HKU21 (NC_016996.1). (b) Spearman correlation co-
efficients of DMS reactivities over the FSE between replicates 1 and 2 of short
(239 nt) and long (1,799 nt) segments of each coronaviral genome.
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Supplementary Figure 8: Replicates of TGEV in ST cells and comparison to
the 1,799 nt segment. (a) Comparison of DMS reactivities of the two technical
replicates for each biological replicate of TGEV in ST cells. Each point represents
one base in the sequence. The number of points (N) and Pearson correlation
coefficient (PCC) are indicated for each plot. Two bases with DMS reactivities
exceeding 0.3 in both technical replicates of biological replicate 1 are not shown.
(b) Comparison of DMS reactivities of the two biological replicates (pooled techni-
cal replicates). One base with DMS reactivity exceeding 0.3 in biological replicate
1 is not shown. (c) DMS reactivities of TGEV in ST cells using random fragmenta-
tion versus amplicons (pooled biological replicates). (d) DMS reactivities of TGEV
in ST cells (pooled biological replicates) versus the 1,799 nt segment.66
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Supplementary Figure 9: Alternative structures on both sides of the long-
range base pairs in TGEV. (a) DMS reactivities of clusters 1 and 2 on both sides
of the long-range base pairs in TGEV, from amplicon samples. (b) Three lowest-
energy structure models of the 1,799 nt segment (positions 12,042-13,840) based
on the DMS reactivities of each cluster. Long-range stem 3 (LS3) is highlighted
when it appears in a model. Structures were drawn with VARNA [82].
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Supplementary Figure 10: Short-range base pairs across the full TGEV
genome. Model of the secondary structure of the entire TGEV genome with a
maximum distance of 300 nt between paired bases (blue). DMS reactivities used
to generate the model are shown in red. Rolling (window = 45 nt) area under
the receiver operating characteristic curve (AUC-ROC), measuring how well the
secondary structure model fits the DMS reactivities, is shown in green.
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Supplementary Figure 11: Secondary structure of the TGEV 5’ UTR. (a) Model
of the secondary structure of the first 330 nt of the TGEV genome, based on DMS
reactivities in infected ST cells normalized to the 95th percentile. Bases are col-
ored by DMS reactivity. The model includes the conserved stem loops SL1, SL2,
SL3, SL4, SL5a, SL5b, and SL5c [10]. The leader transcription regulatory se-
quence (TRS-L) [83], upstream open reading frame (uORF) [84], and start codon
of ORF1 are also labeled. The model was drawn using VARNA [82]. (b) Receiver
operating characteristic curve showing agreement between the DMS reactivities
and the secondary structure model; the area under the curve (AUC) is indicated.

69



Supplementary Methods

Correcting observer bias due to drop-out of reads

Let N reads from K clusters align to a reference sequence of length L. Let the

proportion of reads whose 5’ and 3’ ends align, respectively, to coordinates a and

b (1 ≤ a ≤ b ≤ L) be ηab (assuming these proportions are equal for all clusters).

Let the mutation rate of base j (1 ≤ j ≤ L) in cluster k (1 ≤ k ≤ K) be µjk. Let

the proportion of cluster k in the ensemble be πk. To express these quantities as

probabilities, let Ck be the event that a read comes from cluster k; let Eab be the

event that a read aligns with 5’ and 3’ coordinates a and b, respectively; let Sj be

the event that a read contains position j (i.e. its alignment coordinates a and b

satisfy 1 ≤ a ≤ j ≤ b ≤ L); let Mj be the event that a read has a mutation at

position j; and let Gg be the event that a read has no two mutations separated by

fewer than g non-mutated bases.

Deriving mutation rates of reads with no two mutations too
close

In terms of these events, the total mutation rates (µjk) are P (Mj|SjCk), i.e. the

probability that a read would have a mutation at position j given that it contained

position j and came from cluster k; and the observable mutation rates (mjk) are

P (Mj|SjCkGg), i.e. the probability that a read would have a mutation at position

j given that it contained position j, came from cluster k, and had no two muta-

tions closer than g bases. Using these definitions and Bayes’ theorem yields a

probabilistic formula for mjk:

mjk = P (Mj|SjCkGg) = P (Mj|SjCk)
P (Gg|SjMjCk)

P (Gg|SjCk)
= µjk

P (Gg|SjMjCk)

P (Gg|SjCk)

The term P (Gg|SjCk) is the probability that a read would have no two muta-

tions closer than g bases given that it contained position j and came from cluster

k. It can be computed using P (Gg|EabCk) (abbreviated dabk): the probability that
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a read would contain no two mutations closer than g bases given that its 5’ and 3’

coordinates are a and b, repectively (1 ≤ a ≤ b ≤ L), and that it came from cluster

k. If position b were mutated (probability µbk), then the read would contain no two

mutations closer than g bases if and only if none of the g bases preceding b (i.e. po-

sitions b−g to b−1, inclusive) were mutated (probability∏b−1
j′=max(b−g,a)(1−µj′k), ab-

breviatedwmax(b−g,a),b−1,k) and two nomutations between positions a and b−(g+1),

inclusive, were too close (probability da,max(b−(g+1),a),k)). If position b were not mu-

tated (probability 1−µbk), then the read would contain no twomutations closer than

g bases if and only if no mutations between positions a and b− 1, inclusive, were

too close (probability da,max(b−1,a),k). These two possibilities generate a recurrence

relation:

dabk = µbkwmax(b−g,a),b−1,kda,max(b−(g+1),a),k + (1− µbk)da,max(b−1,a),k

The base case is dabk = 1 when a = b because such a read would contain one

position and thus be guaranteed to have no two mutations too close. Then,

P (Gg|SjCk) is the average of dabk over every read that contains position j,

weighted by the proportions ηab:

P (Gg|SjCk) =

∑j
a=1

∑L
b=j ηabdabk

∑j
a=1

∑L
b=j ηab

The term P (Gg|SjMjCk) is the probability that a read would have no two mu-

tations too close given that it contained a mutation at position j and came from

cluster k. It can be computed using P (Gg|MjEabCk) (abbreviated fabjk): the prob-

ability that a read would contain no two mutations too close given that position j

is mutated (1 ≤ a ≤ j ≤ b ≤ L), that its 5’ and 3’ coordinates are a and b (respec-

tively), and that it came from cluster k. Because position j is mutated, having no

two mutations too close requires that none of the g bases on both sides of position

j be mutated. The probability that none of the preceding g positions (j−g to j−1)

is mutated is wmax(j−g,a),j−1,k, while that of the following g positions (j + 1 to j + g)

is wj+1,min(j+g,b),k. Upstream of the g bases flanking position j (i.e. positions a to
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j − (g+1)), the probability that no two mutations are too close is da,max(j−(g+1),a),k;

downstream (i.e. positions j+(g+1) to b), the probability is dmin(j+(g+1),b),b,k. Since

mutations in these four sections are independent, the probability that the read con-

tains no two mutations too close is the product:

fabjk = da,max(j−(g+1),a),kwmax(j−g,a),j−1,kwj+1,min(j+g,b),kdmin(j+(g+1),b),b,k

Then, P (Gg|SjMjCk) is the average of fabjk over every read that contains position

j, weighted by the proportions ηab.

P (Gg|SjMjCk) =

∑j
a=1

∑L
b=j ηabfabjk

∑j
a=1

∑L
b=j ηab

Combining the above results yields an explicit formula for mjk:

mjk = µjk

∑j
a=1

∑L
b=j ηabfabjk

∑j
a=1

∑L
b=j ηabdabk

Deriving end coordinate proportions of reads with no two
mutations too close

The total proportions (ηab) of reads aligned to 5’ and 3’ coordinates a and b, respec-

tively, are P (Eab); and the proportions of reads with no two mutations too close

that align with coordinates a and b (eabk) are P (Eab|GgCk). Note that, while reads

are assumed to come from the same distribution of coordinates (ηab) regardless

of their cluster k, the observable distribution of coordinates (eabk) varies by clus-

ter because P(GgCk) depends on k. Using these definitions and Bayes’ theorem

yields a probabilistic formula for eabk:

eabk = P (Eab|GgCk) = P (Gg|EabCk)
P (Eab|Ck)

P (Gg|Ck)
= dabk

ηab
P (Gg|Ck)

The term P (Gg|Ck) is the probability that a read would have no two mutations

too close given that it came from cluster k. It can be computed as an average of

P (Gg|EabCk) (i.e. dabk) over all coordinates a and b (such that 1 ≤ a ≤ b ≤ L),
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weighted by the proportion of each coordinate, P (Eab) (i.e. ηab):

P (Gg|Ck) =

∑L
a=1

∑L
b=a ηabdabk∑L

a=1

∑L
b=a ηab

=
L∑

a=1

L∑

b=a

ηabdabk

This expression is already normalized because ∑L
a=1

∑L
b=a ηab = 1, by definition.

Combining the above results yields an explicit formula for eabk:

eabk =
ηabdabk

∑L
a′=1

∑L
b′=a′ ηa′b′da′b′k

Deriving cluster proportions of reads with no two mutations
too close

The proportion of total reads in cluster k is πk = P (Ck). The proportion among

only reads with no two mutations closer than g bases is

pk = P (Ck|Gg) = P (Gg|Ck)
P (Ck)

P (Gg)
= πk

∑L
a=1

∑L
b=a ηabdabk

P (Gg)

The term P (Gg) is the probability that a read from any cluster would have no two

mutations closer than g bases and can be solved for by leveraging that the cluster

proportions (pk) must sum to 1:

1 =
K∑

k=1

pk =
K∑

k=1

πk

∑L
a=1

∑L
b=a ηabdabk

P (Gg)
=

1

P (Gg)

K∑

k=1

πk

L∑

a=1

L∑

b=a

ηabdabk

P (Gg) =
K∑

k=1

πk

L∑

a=1

L∑

b=a

ηabdabk

The result is an explicit formula for pk:

pk =
πk

∑L
a=1

∑L
b=a ηabdabk∑K

k′=1 πk′
∑L

a=1

∑L
b=a ηabdabk′
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Solving total mutation rates and cluster and coordinate
proportions

The observed mutation rates (mjk), end coordinate proportions (eabk), and cluster

proportions (pk) can be calculated as weighted averages over the N reads with

no two mutations too close:

mjk =

∑N
i=1 zikxij

∑N
i=1 ziksij

eabk =

∑N
i=1 zikyabi∑N

i=1 zik

pk =

∑N
i=1 zik
N

where sij is 1 if read i contains position j, otherwise 0; xij is 1 if read i has a

mutation at position j, otherwise 0; yabi is 1 if read i aligns to coordinates a and b,

otherwise 0; and zik is the probability that read i came from cluster k.

The original parameters µjk, ηabk, and πk can be solved by setting the two

formulae each for mjk, eabk, and pk equal to each other, creating a system of

equations:

µjk

∑j
a=1

∑L
b=j ηabfabjk

∑j
a=1

∑L
b=j ηabdabk

= mjk =

∑N
i=1 zikxij

∑N
i=1 ziksij

ηab
dabk

∑L
a′=1

∑L
b′=a′ ηa′b′da′b′k

= eab =

∑N
i=1 zikyabi∑N

i=1 zik

πk

∑L
a=1

∑L
b=a ηabdabk∑K

k′=1 πk′
∑L

a=1

∑L
b=a ηabdabk′

= pk =

∑N
i=1 zik
N

Solving this entire system at once has proven computationally impractical for all

but extremely short sequences. A more feasible approach is to first solve for µjk

given an initial guess for ηab, next solve for ηab given the updated µjk, then solve

for πk given the updated µjk and ηab, and iterate until all three sets of parameters

converge.

Even assuming every ηab is a constant, these equations are still too complex to

solve for µjk analytically because dabk and fabjk also depend on µjk (as well as on

other µ variables). Thus, every µjk is solved for numerically by rearranging each
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equation to

µjk

∑j
a=1

∑L
b=j ηabfabjk

∑j
a=1

∑L
b=j ηabdabk

−mjk = 0

and applying the Netwon-Krylov method [85] implemented in SciPy [80].

Once every µjk has been solved for, every ηab can be updated. Because dabk

does not depend on ηab (except indirectly through the µjk parameters, which are

now assumed to be constants), each equation can be rearranged to

ηab =
eab
dabk

L∑

a′=1

L∑

b′=a′
ηa′b′da′b′k

Leveraging that ∑L
a=1

∑L
b=a ηab = 1, by definition, leads to

L∑

a=1

L∑

b=a

eab
dabk

L∑

a′=1

L∑

b′=a′
ηa′b′da′b′k = 1

L∑

a′=1

L∑

b′=a′
ηa′b′da′b′k =

1
∑L

a=1

∑L
b=a

eab
dabk

and finally a closed-form expression for each ηab given µjk (and hence dabk) and

eabk:

ηab =
eab
dabk∑L

a′=1

∑L
b′=a′

ea′b′
da′b′k

This equation should theoretically yield the same value of ηab for every k. In prac-

tice, the values will differ due to inexactness in floating-point arithmetic. Thus, the

consensus value of ηab is taken to be the average ηab over every k, weighted by

πk:

ηab =
K∑

k=1

πk

eab
dabk∑L

a′=1

∑L
b′=a′

ea′b′
da′b′k

With updated values of µjk and ηab, πk can also be solved. The above equa-

tions can be rearranged to

πk = pk

∑K
k′=1 πk′

∑L
a=1

∑L
b=a ηabdabk′∑L

a=1

∑L
b=a ηabdabk
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Given that ∑K
k=1 πk = 1, by definition:

K∑

k=1

pk

∑K
k′=1 πk′

∑L
a=1

∑L
b=a ηabdabk′∑L

a=1

∑L
b=a ηabdabk

= 1

K∑

k′=1

πk′

L∑

a=1

L∑

b=a

ηabdabk′ =
1

∑K
k=1

pk∑L

a=1

∑L

b=a
ηabdabk

which leads to a closed-form expression for each πk given µjk (and hence dabk),

ηab, and pk:

πk =

pk∑L

a=1

∑L

b=a
ηabdabk

∑K
k′=1

pk′∑L

a=1

∑L

b=a
ηabdabk′

Clustering reads with the expectation-maximization
algorithm

Let N reads from K clusters align to a reference sequence of length L. Let the

proportion of reads whose 5’ and 3’ ends align, respectively, to coordinates a and

b (1 ≤ a ≤ b ≤ L) be ηab (assuming these proportions are equal for all clusters).

Let the mutation rate of base j (1 ≤ j ≤ L) in cluster k (1 ≤ k ≤ K) be µjk. Let

the proportion of cluster k in the ensemble be πk.

Maximization step

The maximization step updates the parameters (µjk, ηab, and πk) using the current

cluster memberships (zik). The observed estimates of the parameters mjk, eab,

and pk are first computed; then, the underlying parameters µjk, ηab, and πk are

solved for as described in 10.1.4.

Expectation step

The expectation step updates the cluster memberships (zik) and the likelihood

function (L) using the current parameters (µjk, ηab, and πk). Each cluster mem-

bership is defined as the probability that read i came from cluster k given its
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5’/3’ end coordinates (Eab) and mutations (M ) and given that no two mutations

are too close (Gg): zik = P (Ck|EabMGg). The likelihood of the model (L) is the

product of the marginal probability (Li) of observing each read i from any clus-

ter: Li = P (EabM |Gg). Both Li and zik can be expressed in terms of the joint

probability (Lik = P (EabMCk|Gg)) of observing each read i from each cluster k:

Li = P (EabM |Gg) =
K∑

k=1

P (EabMCk|Gg) =
K∑

k=1

Lik

zik = P (Ck|EabMGg) =
P (EabMCkGg)

P (EabMGg)
=

P (EabMCk|Gg)

P (EabM |Gg)
=

Lik

Li

To derive a formula for Lik, it can be factored into three parts using the chain

rule for probability:

Lik = P (EabMCk|Gg) =
P (EabMCkGg)

P (Gg)
= P (M |EabCkGg)P (Eab|CkGg)P (Ck|Gg)

The first part – the probability that a read would have the specific mutations xij

given that its 5’/3’ end coordinates are a and b (respectively), it comes from cluster

k, and no two mutations are too close – is the product over every position j from a

to b of the probability of a mutation (µjk) if read i is mutated at position j (xij = 1),

otherwise (xij = 0) the probability of no mutation (1 − µjk), normalized by the

probability that no two mutations would be too close (dabk):

P (M |EabCkGg) =
1

dabk

b∏

j=a

µ
xij

jk (1− µjk)
(1−xij)

The second part, P (Eab|CkGg) = eabk, can be calculated from the parameters µjk,

ηab, and πk, as explained in 10.1.2. Likewise, the third part, P (Ck|Gg) = pk, can

also be calculated from the parameters, as explained in 10.1.3. Combining all

parts yields a formula for Lik in terms of the parameters µjk, ηab, and πk and of

their derived values dabk, eabk, and pk:

Lik = pk
eabk
dabk

b∏

j=a

µ
xij

jk (1− µjk)
(1−xij)
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The formula for the total likelihood of the model and its parameters follows:

L(µ, η, π) =
N∏

i=1

Li =
N∏

i=1

K∑

k=1

pk
eabk
dabk

b∏

j=a

µ
xij

jk (1− µjk)
(1−xij)
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Supplementary Tables

Table 1: Sequences of the antisense oligonucleotides (ASOs) targeting the

2,924 nt segment of SARS-CoV-2 RNA.

Group ASO Sequence

1 1 GGCAGCACAAGACATCTGTCGTAGTGCAACAGGACTAA-

GCTCATTATT

2 TGTAGTAAGCTAACGCATTGTCATCAGTGCAAGCAGTTT-

GTGTAGTACC

3 TGTAAATCGGATAACAGTGCAAGTACAAACCTACCTCCC-

TTTGTTGTGT

4 GATAGTACCAGTTCCATCACTCTTAGGGAATCTAGCCCA-

TTTCAAATCC

5 CTTTAGGTGTGTCTGTAACAAACCTACAAGGTGGTTCCA-

GTTCTGTATA

2 1 ATACCTCTATTTAGGTTGTTTAATCCTTTAATAAAGTATAA-

ATACTTCACTTTAGGAC

2 CACTTCTGTTGCATTACCAGCTTGTAGACGTACTGTGGC-

AGCTAAACTACCAAGTACC

3 AAGCTTTAGCAGCATCTACAGCAAAAGCACAGAAAGATA-

ATACAGTTGAATTGGCAGG

4 CACAACATCTTAACACAATTAGTGATTGGTTGTCCCCCA-

CTAGCTAGATAATCTTTGT

3 1 GATCCATATTGGCTTCCGGTGTAACTGTTATTGCCTGAC-

CAGTACCAGTGTGTGTA

2 ATGATCTATGTGGCAACGGCAGTACAGACAACACGATG-

CACCACCAAAGGATTCTT

Continued on next page

79



Table 1: Sequences of the antisense oligonucleotides (ASOs) targeting the

2,924 nt segment of SARS-CoV-2 RNA. (Continued)

3 GTTGTAGGTATTTGTACATACTTACCTTTTAAGTCACAAA-

ATCCTTTAGGATTTGG

4 CCGCAGACGGTACAGACTGTGTTTTTAAGTGTAAAACCC-

ACAGGGTCATTAGCACAA

4 1 CTGAAGCATGGGTTCGCGGAGTTGATCACAACTACAGC-

CATAACCTTTCCACATA

2 GGAAGCGACAACAATTAGTTTTTAGGAATTTAGCAAAAC-

CAGCTACTTTATCATTG

5 1 TGTCTCTTAACTACAAAGTAAGAATCAATTAAATTGTCAT-

CTTCGTCCTTTTCTT

2 GACAATCCTTAAGTAAATTATAAATTGTTTCTTCATGTTG-

GTAGTTAGAGAAAGTG

3 GGTACCATGTCACCGTCTATTCTAAACTTAAAGAAGTCA-

TGTTTAGCAACAGCTG

4 AAGCATAGACGAGGTCTGCCATTGTGTATTTAGTAAGAC-

GTTGACGTGATATATGT

6 1 TGTATGTGACAAGTATTTCTTTTAATGTGTCACAATTACC-

TTCATCAAAATGCCTTA

2 GGTTTTCTACAAAATCATACCAGTCCTTTTTATTGAAATA-

ATCATCATCACAACAAT

3 TTAACAAAGCTTGGCGTACACGTTCACCTAAGTTGGCGT-

ATACGCGTAATATATCTG

4 ATGTCAGTACACCAACAATACCAGCATTTCGCATGGCAT-

CACAGAATTGTACTGTTT

Continued on next page
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Table 1: Sequences of the antisense oligonucleotides (ASOs) targeting the

2,924 nt segment of SARS-CoV-2 RNA. (Continued)

7 1 GTTTGTATGAAATCACCGAAATCATACCAGTTACCATTG-

AGATCTTGATTATCTA

2 TAGGCATTAACAATGAATAATAAGAATCTACAACAGGAA-

CTCCACTACCTGGCGTG

3 GTTAAGTCAGTGTCAACATGTGACTCTGCAGTTAAAGCC-

CTGGTCAAGGTTAATA

4 TTAACCTCTCTTCCGTGAAGTCATATTTTAACAAATCCCA-

CTTAATGTAAGGCTTT

8 1 AACACAATTTGGGTGGTATGTCTGATCCCAATATTTAAAA-

TAACGGTCAAAGAGTT

2 GAGAATAAAACATTAAAGTTTGCACAATGCAGAATGCAT-

CTGTCATCCAAACAGTT

3 CATCAACAAATATTTTTCTCACTAGTGGTCCAAAACTTGT-

AGGTGGGAACACTGTA

4 ATGTACAACACCTAGCTCTCTGAAGTGGTATCCAGTTGA-

AACTACAAATGGAACAC

9 1 TACACAAGTAATTCCTTAAAACTAAGTCTAGAGCTATGTA-

AGTTTACATCCTGATT

2 TGCGTTTATCTAGTAATAGATTACCAGAAGCAGCGTGCA-

TAGCAGGGTCAGCAGCA

3 TTTGACAGTTTGAAAAGCAACATTGTTAGTAAGTGCAGC-

TACTGAAAAGCACGTAG

4 CTTAAAGAAACCCTTAGACACAGCAAAGTCATAGAAGTC-

TTTGTTAAAATTACCGGG

Continued on next page
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Table 1: Sequences of the antisense oligonucleotides (ASOs) targeting the

2,924 nt segment of SARS-CoV-2 RNA. (Continued)

10 1 CAGCATTACCATCCTGAGCAAAGAAGAAGTGTTTTAATT-

CAACAGAACTTCCTTC

2 CTGATATCACACATTGTTGGTAGATTATAACGATAGTAGT-

CATAATCGCTGATAG

3 ACCATCGTAACAATCAAAGTACTTATCAACAACTTCAACT-

ACAAATAGTAGTTGT

4 AACCAGCTGATTTGTCTAGGTTGTTGACGATGACTTGGT-

TAGCATTAATACAGCC

11 1 CCTCATAACTCATTGAATCATAATAAAGTCTAGCCTTACC-

CCATTTATTAAATGGAA

2 ATTTGAGTTATAGTAGGGATGACATTACGTTTTGTATATG-

CGAAAAGTGCATCTTGAT

3 GAGACACCAGCTACGGTGCGAGCTCTATTCTTTGCACTA-

ATGGCATACTTAAGATTC

4 GGCTATTGATTTCAATAATTTTTGATGAAACTGTCTATTG-

GTCATAGTACTACAGATA

12 1 CAACCACCATAGAATTTGCTTGTTCCAATTACTACAGTA-

GCTCCTCTAGTGGC

2 CCATAAGGTGAGGGTTTTCTACATCACTATAAACAGTTTT-

TAACATGTTGTGC

3 CATAATTCTAAGCATGTTAGGCATGGCTCTATCACATTTA-

GGATAATCCCAAC

4 ACGGTGTGACAAGCTACAACACGTTGTATGTTTGCGAG-

CAAGAACAAGTGAGGC

Continued on next page
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Table 1: Sequences of the antisense oligonucleotides (ASOs) targeting the

2,924 nt segment of SARS-CoV-2 RNA. (Continued)

13 1 ACACATGACCATTTCACTCAATACTTGAGCACACTCATTA-

GCTAATCTATAGAA

2 AGTTGTGGCATCTCCTGATGAGGTTCCACCTGGTTTAAC-

ATATAGTGAACCGCC

3 ATTAACATTGGCCGTGACAGCTTGACAAATGTTAAAAAC-

ACTATTAGCATAAGC

4 TAAATTGCGGACATACTTATCGGCAATTTTGTTACCATCA-

GTAGATAAAAGTGC
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Table 2: Sequences of the forward (F) and reverse (R) primers for amplify-

ing the target site of each ASO group in the 2,924 nt segment of

SARS-CoV-2 RNA.

Group Primer Sequence

1 F AATAATGAGCTTAGTCCTGTTGCACTACG

R AGGTTGTTTAATCCTTTAATAAAGTATAAATACTTCACT-

TTAGG

2 F ACCTTGTAGGTTTGTTACAGACACACCTAA

R TTGCCTGACCAGTACCAGTGTGTG

3 F GGACAACCAATCACTAATTGTGTTAAGATGTTG

R TCACAACTACAGCCATAACCTTTCCACA

4 F CTTAAAAACACAGTCTGTACCGTCTGC

R GTAAGAATCAATTAAATTGTCATCTTCGTCCTTTTC

5 F TGCTAAATTCCTAAAAACTAATTGTTGTCGCTT

R ATGTGTCACAATTACCTTCATCAAAATGCCT

6 F CAATGGCAGACCTCGTCTATGC

R GAAATCATACCAGTTACCATTGAGATCTTGATTATC

7 F CGAAATGCTGGTATTGTTGGTGTACTGAC

R GTCTGATCCCAATATTTAAAATAACGGTCAAAGAG

8 F TGTTAAAATATGACTTCACGGAAGAGAGGTT

R AAGTCTAGAGCTATGTAAGTTTACATCCTGA

9 F CCACTTCAGAGAGCTAGGTGTTGTAC

R CAAAGAAGAAGTGTTTTAATTCAACAGAACTTCCT

10 F TGACTTTGCTGTGTCTAAGGGTTTCTTTA

R CATAATAAAGTCTAGCCTTACCCCATTTATTAAATGG

11 F CGTCAACAACCTAGACAAATCAGCTGG

Continued on next page
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Table 2: Sequences of the forward (F) and reverse (R) primers for amplify-

ing the target site of each ASO group in the 2,924 nt segment of

SARS-CoV-2 RNA. (Continued)

R TTCCAATTACTACAGTAGCTCCTCTAGTG

12 F GACCAATAGACAGTTTCATCAAAAATTATTGAAATCAA-

TAG

R ATACTTGAGCACACTCATTAGCTAATCTATAG

13 F ACAACGTGTTGTAGCTTGTCACACC

R TAAATTGCGGACATACTTATCGGCAATTTTG
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Table 3: Sequences of the antisense oligonucleotides (ASOs) targeting the

1,799 nt segment of SARS-CoV-2 genomic RNA. A plus sign (+) indi-

cates that the following nucleotide is locked nucleic acid (LNA).

ASO Sequence

Anti-LS1 GTAATTC+CTTAAAA+CTAAG

Anti-LS2a TGAAA+AGCAA+CATTGTT

Anti-LS2b TA+CCGGGTTTGACAG

Anti-LS3b A+CCCTTAGACACAGCA

Anti-AS1 TGGGTTCGCG+GAGTTG

Anti-PS2-overlap GT+TAAAATTA+CCG+GG
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Table 4: PCR primer annealing temperatures for coronavirus gene frag-

ments.

Coronavirus Annealing Temperature (°C)

Bat Coronavirus 1A 55

Bat Coronavirus BM48-31 60

Common Moorhen Coronavirus 55

Human Coronavirus OC43 55

Infectious Bronchitis Virus 60

MERS Coronavirus 60

Murine Hepaitis Virus 60

SARS Coronavirus 1 60

SARS Coronavirus 2 55

Transmissible Gastroenteritis Virus 55
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Table 5: Sequences of the forward (F), forward with T7 promoter (F+T7),

and reverse (R) primers for amplifying the 239 nt segment of each

1,799 nt segment of coronaviral RNAs.

Coronavirus Primer Sequence

Bat Coronavirus 1A F GGACCCTATACGGTTTTGT-

CTTGAAAA

F+T7 TAATACGACTCACTATAGGA-

CCCTATACGGTTTTGTCTTG-

AAAA

R TTTTACAATAAAGAAAGCAT-

CATGCTT

Bat Coronavirus BM48-31 F GGGTTTTATTCTTAGAAACA-

CAGTCTG

F+T7 TAATACGACTCACTATAGG-

GTTTTATTCTTAGAAACACA-

GTCTG

R GGAGTCTAATAAGTTGCCC-

TCTTCATC

Common Moorhen Coronavirus F GGATAAAGATAAGGAACCT-

GTTTCTTT

F+T7 TAATACGACTCACTATAGGA-

TAAAGATAAGGAACCTGTTT-

CTTT

R ACTATTAGGTATTGGCAAAT-

TAATGCG

Human Coronavirus OC43 F GGCTGTGTCTTATGTTTTGA-

CACATGA

Continued on next page
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Table 5: Sequences of the forward (F), forward with T7 promoter (F+T7),

and reverse (R) primers for amplifying the 239 nt segment of each

1,799 nt segment of coronaviral RNAs. (Continued)

F+T7 TAATACGACTCACTATAGG-

CTGTGTCTTATGTTTTGACA-

CATGA

R ATCTAATTTATCACCGTTCT-

CATCAAC

Infectious Bronchitis Virus F GGTTTGCACTGTTTGCCAG-

TGTTGGAT

F+T7 TAATACGACTCACTATAGGT-

TTGCACTGTTTGCCAGTGTT-

GGAT

R CTCAAGATTTCCATCTTCAG-

TATCGCG

MERS Coronavirus F GGGATTTTGTTTGTCAAATA-

CCCCCTG

F+T7 TAATACGACTCACTATAGG-

GATTTTGTTTGTCAAATACC-

CCCTG

R ATGATGCCCTTGGTCATCT-

AATTCTAC

Murine Hepatitis Virus F GGCTGTGTCATATGTGTTG-

ACGCATGA

F+T7 TAATACGACTCACTATAGG-

CTGTGTCATATGTGTTGAC-

GCATGA

Continued on next page
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Table 5: Sequences of the forward (F), forward with T7 promoter (F+T7),

and reverse (R) primers for amplifying the 239 nt segment of each

1,799 nt segment of coronaviral RNAs. (Continued)

R ATCCAACTTGTTGCCGTCC-

TCATCTAC

SARS Coronavirus 1 F GGGTTTTACACTTAGAAACA-

CAGTCTG

F+T7 TAATACGACTCACTATAGG-

GTTTTACACTTAGAAACACA-

GTCTG

R AGAGTCTAATAAATTGCCTT-

CCTCATC

SARS Coronavirus 2 F GGGTTTTACACTTAAAAACA-

CAGTCTG

F+T7 TAATACGACTCACTATAGG-

GTTTTACACTTAAAAACACA-

GTCTG

R AGAATCAATTAAATTGTCAT-

CTTCGTC

Transmissible Gastroenteritis Virus F GGCAATTCGGTTCTGTATT-

GAAAATGA

F+T7 TAATACGACTCACTATAGG-

CAATTCGGTTCTGTATTGAA-

AATGA

R TTTGACAATGTAGTAGGCAT-

CATGTTT
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Table 6: Sequences of the antisense oligonucleotides (ASOs) targeting the

1,799 nt segments of coronaviral RNAs.

Coronavirus ASO Sequence

Bat Coronavirus 1A 1 CAGGGCTCTAGTCGAGCTGC-

ACTAGAGCCCCTTGCTCGTTT-

AAATAAGCCTGATCAACAG

2 GCAACTTCTTTATTGTAAATAT-

CAAAGGCGCGTACAACATGC-

TCCGGTTCAGTACCATTA

Bat Coronavirus BM48-31 1 GACATCAGTGCTTGTGCCTGT-

GCCGCACGGTGTAAGACGGG-

CCGCACTTACACCGCAAAC

2 TTTTAGGAACTTTGCAAAACC-

AGCAACTTTCTCATTATAAATA-

TCAAAAGCCCTGTAAAC

3 AAAATAGGAGTCTAATAAGTT-

GCCCTCTTCATCAACTTCCTG-

GAAACGGCAACAATTTGT

Common Moorhen Coronavirus 1 TGGGGTTCTAGACGGGCATC-

ACTAGAACCCTTTACTCGTTT-

AAATAAGCTGTATTTTGCA

2 GTTATATTATTATGTACATGAA-

ACGCCCTTTTTACAATATCCG-

GCTGAGTGCCAGACTGT

Infectious Bronchitis Virus 1 ACATCAAAGGCTCGCTTTACA-

ACATCAGGATCACATCCACTA-

GCAAGGGGTATCAGCCGA

Continued on next page
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Table 6: Sequences of the antisense oligonucleotides (ASOs) targeting the

1,799 nt segments of coronaviral RNAs. (Continued)

Murine Hepatitis Virus 1 AAGCCACTGGCACAGGGTAC-

AAGACGGGCATTTACACTTGT-

ACCCCGAATCCGTTTAAAA

2 CCAATGCCAGCTCGATTAGCA-

TTACAAATGTCAAATGCCCTT-

AATTGAACATCAGTGTCC

3 AACTTGTTGCCGTCCTCATCT-

ACACGCTGGAAGCGGCAGCA-

ATTCACTTTATAATACAAA

SARS Coronavirus 1 1 TTTGCAAAACCAGCAACTTTT-

TCGTTGTAAATATCAAAAGCC-

CTGTAGACGACATCAGTA

2 TCTAATAAATTGCCTTCCTCAT-

CCTTCTCCTGGAAGCGACAG-

CAATTAGTTTTTAGGAAC

SARS Coronavirus 2 1 GACATCAGTACTAGTGCCTGT-

GCCGCACGGTGTAAGACGGG-

CTGCACTTACACCGCAAAC

2 TTTTAGGAATTTAGCAAAACC-

AGCTACTTTATCATTGTAGAT-

GTCAAAAGCCCTGTATAC

Transmissible Gastroenteritis Virus 1 TAAATAACTTTGATCAACAGT-

AAAACTCTGCATAGAAGTACG-

ATCGCACATGCAACCATT

Continued on next page
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Table 6: Sequences of the antisense oligonucleotides (ASOs) targeting the

1,799 nt segments of coronaviral RNAs. (Continued)

2 GGTCTGGATCAGTACCATTGC-

AGGGTTCTAGTCGAGCTGCA-

CTAGAACCCCGCACTCGTT
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