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Supplementary Materials

Supplementary Fig. 1 | Fabrication of HAP NWs. a, SEM image of HAP NWs. b, XRD pattern of HAP
NWs.
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Supplementary Fig. 2 | Image of lamellar HAP with different ratios of PVA to HAP. a, Photograph of the
lamellar HAP. b,e, The cross-section SEM images of the lamellar HAP scaffold with different ratios of PVA
to HAP (b) PHB-5, (¢) PHB-15.
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Supplementary Fig. 3 | a, Scheme of scalable fabrication and optical image of a large-sized lamellar scaffold.
b, Photograph of the lamellar HAP scaffold.
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Supplementary Fig. 4 | Elemental composition of PHB. a, SEM image of the cross-section of PHB. b-e,
corresponding EDS mapping (with detected elements of C, O, B and P) of the PHB nanocomposite.
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Supplementary Fig. 5§ | Orientation characterization. a,b, Azimuthal angle (¢) plots of PHB-10 (a) and
PHB-R (b), f represents the Herman’s orientation factors, inset is 2D SAXS image of PHB-R.
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Supplementary Fig. 6 | a, Schematic diagram of three-point bending tests of different load directions. b,
Comparison of mechanical properties of PHB composites with different load directions.
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Supplementary Fig. 7 | The flexural stress-strain curves of pure PVA.

S8



hn B W N =

Supplementary Fig. 8 | Force-displacement curves of PB, PHB-R, and PHB composites with different
HAP NWs contents.
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Supplementary Fig. 9 | a, Flexural stress-strain curves of PHB composites with different temperatures (30-
50 °C). b, Flexural stress-strain curves of PHB composites at room temperature with different relative
humidity (10%-70% RH). ¢, Contact angle of unmodified and modified PHB composites. d, Flexural stress-

strain curves of unmodified and modified PHB composites.
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Supplementary Fig. 10 | a, Tensile stress-strain curves of the PB, PHB-R, and PHB-10 composites. b,c,
Comparison of (b) flexural stress, modulus and (¢) toughness of the PB, PHB-R, and PHB-10 composites.
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Supplementary Fig. 11 | a,b, 2D FEM simulations of composite with (a) disordered HAP NWs and (b)
ordered HAP NWs for the three-point bending test. Based on identical interface interaction for PHB-10 and
PHB-R, the microstructure has a significant role in the improvements in mechanical properties. In contrast to
the random distribution of HAP, the ordered arrangement of HAP in PHB-10 like enamel ensures a better

transfer of stress to avoid catastrophic damage thus enhancing the mechanical properties.
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Supplementary Fig. 12 | Mechanism analysis of the fracture process of the PHB-R composites. a, SEM
image of the PHB-R composites showing the crack deflection extension. b, SEM image of crack branching.
¢, SEM image of pull-out of nanowires and nanowires bridging. d, SEM image of cracks away from the

main crack. e, Schematic illustrations of the stress behavior of the PHB and PHB-R composites.
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Supplementary Fig. 13 | Thermal behaviours of PHB composites. a, TG curves of PHB composites. b,
DSC curves of PHB composites.

S14



(O N O R S

Supplementary Fig. 14 | Healable performance of the PB. a, Modulus and strength of healed PB at
different times. b, self-healing efficiency of healed PB at different times.
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Supplementary Fig. 15 | Healable performance of the PHB composites. a,b, The flexural stress-strain
curves of (a) healed PHB-5 and (b) healed PHB-15 after 24 h at 80 °C.
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Supplementary Fig. 16 | a, Photographs of PHB composites spline healing at 80 °C, 50% RH and 80 °C,
90% RH for 24 h, respectively. b, Flexural stress-strain curves of PHB composites spline healing at 80 °C,
50% RH and 80 °C, 90%. ¢, d, Comparison of (¢) flexural strength, modulus and (d) self-healing efficiency
of PHB composites spline healing at 80 °C, 50% RH and 80 °C, 90% RH.
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Supplementary Fig. 17 | Healable performance of the PHB-10. a, Modulus and strength of healed PHB-
10 at different times. b, Self-healing efficiency of healed PHB-10 at different times.
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Supplementary Fig. 18 | a, The flexural stress-strain curves of PB composites with different healed times.

b, Comparison of self-healing efficiency (1) of PB composites with different healed times.
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Supplementary Fig. 19 | a, Force-displacement curves of PHB-10 with different healed times. b,
Comparison of fracture toughness of original and healed 24 h PHB.
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Supplementary Fig. 20 | Self-healing efficiency of PHB nanocomposites with different ratios of PVA to
HAP NWs.
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Supplementary Fig. 21 | The flexural stress-strain curves of healed PHB-R.
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Supplementary Fig. 22 | a, Fracture toughness comparisons of the composites with engineering plastics. b,

Ashby chart summarizing the strength vs. modulus vs. fracture toughness of engineering plastics.
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Supplementary Fig. 23 | a, Schematic illustration of the hydrogen bonded cross-linked network of tannic
acid and polyvinyl alcohol. b, Photographs of the sample spline healing at 80 °C for 3 h. c. Flexural stress-
strain curves of PHT and PHB composites. d. Comparison of flexural strength and modulus of the PHT and
PHB composites. e. Flexural stress-strain curves of original PHT composites and healed PHT composites at
80 °C for 24 h. f. Comparison of flexural strength and modulus of original PHT composites and healed PHT
composites at 80 °C for 24 h.
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1 Supplementary Table 1

Summary of mechanical behavior of various self-healable materials.

2
Modulus | Strength Healing Damaged Healing
References Species Mechanism Ratio -
(MPa) (MPa) (%) manner Conditions
o
1 Adv. Mater. 50 °C, DMF,
35, 2300286 (2023). Elastomer Hydrogen bond 69.33 142.35 -- Fracture 24t
Room
2 Adv. Funct. Mater.
30, 1907109 (2020). Elastomer Hydrogen bond 1.95 4.83 -- Fracture tem}j&relllture,
Host-guest
3 Adv. Funct. Mater. interaction o
30, 1907139 (2020). Elastomer and hydrogen 0.51 1.05 93 Fracture 55°C,48h
bond
Oxime-carbamate
4 Chem. Eng. J. Elastomer | interaction and 49 29.5 99.8 Fracture 70°C, 12h
410, 128300 (2021).
hydrogen bond
5 Mater. Horiz. Room
8, 2238-2250 Elastomer Hydrogen bond 7.84 334 93 Fracture temperature,
(2021). DMF, 12 h
6 Angew. Chem. Int.
Ed. Elastomer | Waals interactions 42.1 153 95 Fracture 25°C,120h
60, 26192 (2021).
; Angew. E(ilhem. Int. El(t)srt;%gzi Room
62, €202305282 Elastomer and hydrogen 0.32 5.80 91 Fracture tempze4ra}1;[ure,
(2023). bond
. Room
8 Adv. Mater. Imine bond and
31, 1904956 (2019). Hydrogel hydrogen bond 7.2 43 84 Fracture temperature,
80 min
Chem. Mater.
% 1 30,1729-1742 | Hydrogel Host-guest 0.093 0.18 - Fracture Room
Interaction temperature
(2018).
. Room
10 Natl. Sci. Rev.
9, nwab147 (2022). Hydrogel Hydrogen bond 0.029 1.02 -- Fracture tempg,(r)aslture,
Angew. Chem. Int.
1 Ed. 60, 7947 Glass Hydrogen bond 1560 15.99 99.1 Fracture 25 ¢, 1 MPa,
lh
(2021).
12 Nat. Commun. ultraviolet
7,10995 (2016). Glass Hydrogen bond 3040 6.42 -- Fracture light, 5 min
13 Macromolecules 160 &
54, 1760-1766 Resin Borate ester bond 114 11 - Fracture -
2 MPa, 5 min
(2021).
14 J. Mater. Chem. A, 120 °C
9, 4055-4065 Resin Hydrogen bond 2840 100.12 94 Fracture ’
2021) DMF, 1 h
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15 53, 7914-7924 Resin Hydrogen bond 1740 68.5 99.7 Fracture 120€,
DMF, 1 h
(2020).
16 Nat. Commun. . Diels-Alder .
10, 800 (2019). Composite reaction 3600 62.2 95 Fatigue 50€,24h
17 Matter . Near-infrared
4,2474 (2021), Composite Hydrogen bond 6110 45.38 98 Scratch light, 30 s
18 Our work Composite | Borate ester bond 4430 173.47 97.7 Fracture 80€ ,24h
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Supplementary Table 2 | Summary of mechanical behavior of various engineering plastics.

Reference Species Modulus Susnath
(MPa) (MPa)
1 RSC Adv. 2016, 6, 67954-67967. PC 2154 95.8
2 J. Appl. Polym. Sci. 2013, 128, 1170-1175. PVC 2800 81
3 Res. Express. 2020, 7, 015330. PLA 3370 65
4 Materials 2016, 9, 314. PP 1660 42.8
5 Funct. Compos. Struct. 2020, 2, 015002. PS 4720 70.9
6 Appl. Compos. Mater. 2017, 25, 1205-1217. ABS 2380 80
7 Materials 2019, 12, 3438. PMMA 2179.4 66.12
8 J. Thermoplast. Compos. Mater. 2011, 6, 889. PET 2140 56
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